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Few wish to assess others, 

Even fewer wish to be assessed, 

But everyone wants to see the scores 

(Paul Holland, quoted in Dorans, 2018) 

�ere are many ways that a testing program can assign and report scores that re�ect test 
performance. Score reporting can be based on performance standards set by content 
experts; on relative standing with respect to one or more test-taker groups; on perfor-
mance, strengths, and weaknesses across a set of tests contained in a test ba�ery; or 
on performance for a particular age group or grade level in a scale constructed to track 
growth in age- or grade-appropriate tests of increasing di�culty. It would be di�cult 
to overstate the importance of reported scores for a large-scale testing program. As a 
testing program’s most visible and widely used products (Dorans, 2002; Kolen, 2006; 
Zenisky et al., this volume), it is essential to understand and document how reported 
scores are produced, maintained, and, at times, related to the scores reported by other 
testing programs. �is chapter focuses on procedures for producing, maintaining, and 
linking testing programs’ reported scores. 

�is chapter is an updated version of prior writings on scaling, equating, and linking. 
�e a�empt is to build on the seminal and foundational work of the chapters in previ-
ous volumes of Educational Measurement (Ango�, 1971; Flanagan, 1951; Holland & 
Dorans, 2006; Kolen, 2006; Petersen et al., 1989). Extensive reviews of these chapters 
are, regre�ably, not possible here, but are strongly encouraged. �e major goal of the 
current chapter is to provide a “point-in-time” description of how issues and problems 
in the current testing �eld engage with, challenge, and build on prior chapters’ discus-
sions and frameworks for scaling, equating, and linking a testing program’s reported 
scores. 

• Scaling focuses on the theory and practice of establishing a testing program’s 
reporting score scales. 

• Equating focuses on the de�nition, requirements, history, and methodological 
practices of equating for maintaining a testing program’s reporting score scales. 

• Linking types are summarized with historical and recent examples for how a 
testing program might relate its reported scores to other scales. 

In addition to the scaling, linking, and equating chapters in previous Educational 
Measurement volumes, the current chapter re�ects two major in�uences. First, the 
testing program from which reported scores are produced represents a system of 
test production, administration, scoring, using, and interpreting test results, in mul-
tiple testing sites, and repeating in cycles over multiple points in time (Dorans, 
2011; Holland, 1994, 2008). Understanding reported scores requires an under-
standing of the testing program’s system, especially test speci�cations and devel-
opment, administration conditions, and scoring procedures. �e second in�uence 
pertains to the interpretations of reported scores. Testing standards emphasize 
that reported scores should be produced and maintained in ways that encourage 
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appropriate interpretations and discourage misinterpretations (American Educa-
tional Research Association [AE�] et al., 2014; Kolen, 2006; Petersen et al., 1989). 
�e discussions in this chapter are intended to specify and elaborate on what this means 
and on ways to most e�ectively re�ect “the overarching consideration . . . that users 
be given appropriate guidance about score interpretation and use” (Brennan, 2007, p. 
175). 

SCALING 

�e purpose of scaling is to establish the reporting scale(s) for the individual measures 
of a new or redesigned testing program. Scales are produced in the context of several 
activities of a testing program, such as the development of a test or measure from an 
established set of speci�cations for the content, construct, and individual items. Scaling 
is used in several testing contexts, including: 

• admissions testing, where testing companies develop tests with relatively long 
scales for use in admissions decisions; 

• K-12 , where testing companies develop content-based tests associated with 
speci�c curricular standards adopted by policy makers to classify students at one 
or very few cut points for school and educator accountability, high school exit 
requirements, and instructional decisions; 

• certi�cation and licensure programs, where test content is determined with 
extensive input from practitioners and test takers are classi�ed at cut points that 
indicate su�cient knowledge and skills to qualify for professional practice; and 

• large-scale survey assessments developed by policy makers, educators, measure-
ment and content experts, and other stakeholders for use in the estimation of 
trends in scale score distributions and classi�cations of populations and subpop-
ulations over time. 

Scaling activities also involve the administration of the developed test to test takers 
from a de�ned testing population under speci�c administration conditions, the scor-
ing of test takers’ test items, and the conversion of test takers’ item scores into overall 
test scores or ability estimates. �e data collection design for a test-taker sample from 
population P who take test form Y  is shown in the �rst row of Table 11.1 (the terms and 
other designs in Table 11.1 are described throughout this chapter). �e task in scaling 
is to develop a transformation that assigns numbers or ordered indicators to the test 
performance data. 

�e scaling process re�ects the tests and their intended measurement, interpretations, 
and perspectives reviewed in the “Scaling Perspectives” section. Consider Y  as a test form 
and a set of performance values test takers might receive, such that speci�c performance 
values are denoted y = 0 1, ,  2, ....  �e ys can re�ect sums of correct item scores, 
weighted summed scores, summed predicted probabilities of item-level models, or other 
indicators as described in the Basic Unit of Scaling section. Scale score transformations of 



738 EDUCATIONAL MEASUREMENT

 

 

 

 
 
 
 

  
 
 

Table 11.1 Summary of Data Collection Designs for Scaling, Equating, 
and Linking 

Description Design Table 

Scaling/norming for 
a single test 

Population Sample Y 

P 1 √ 

Single group Population Sample X Y 

P 1 √ √ 

Randomly equivalent groups Population Sample X Y 

P 1 √ 

P 2 √ 

Counterbalanced Population Sample X1 Y1 X 2 Y2 

P 1 √ √ 

P 2 √ √ 

NEAT Population Sample X A Y 

P 1 √ √ 

Q 2 √ √ 

Common-item equating to a 
calibrated pool 

Population Sample X A X New 

P 1 √ √ 

Section pre-equating Population Sample X1 X 2 Y1 Y2 

P 1 √ √ √ 

P 2 √ √ √ 

Item pre-equating Population Sample X New 

P 1 √ √ 

Note. NEAT = nonequivalent groups with anchor test. Depending on the context, X  and Y  can refer to alternate forms of a single test (equating) or to distinct 

tests (linking). For all but the NEAT design, P is assumed to be the target population for the test (T). 

test performance are developed to produce reported scale scores that re�ect increasing 
levels of achievement or pro�ciency, sc( )Y , that encourage speci�c interpretations. Two 
types of scales might be developed from the inputs, primary and auxiliary. Primary scales 
refer to reporting scales and test performance indicators that underlie the psychometric 
operations of a test (Kolen, 2006; Petersen et al., 1989), including the equating of scores 
from alternate test forms (see the Equating section) to the primary scale. Methods of 
establishing primary scale scores are described in the section Scaling Methods for Primary 
Scale Scores. Auxiliary scales are developed to facilitate interpretations and convey mean-
ing in primary scales, and are described in the section Auxiliary Scales. 
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Scaling Perspectives 
Early antecedents for educational and psychological testing and scaling include Horace 
Mann’s e�orts in 1845 to standardize oral exams of test-taker placement to control for 
the in�uence of di�erent topics, examiners, and other e�orts in psychophysics to apply 
scienti�c methods to study relationships between psychological sensations and phys-
ical stimuli (Briggs, 2022; Mislevy, 2018). E�orts to establish scales for nonphysical, 
psychological measures re�ected these antecedents, as well as aspirations that mea-
sures and scales of nonphysical a�ributes might exhibit the measurement and scaling 
properties of physical a�ributes. �e Binet–Simon Intelligence Test, released in France 
in 1905 by Alfred Binet and �eodore Simon, was an a�empt to identify children in 
need of special services in ways that would be objective and free of teacher judgment 
and variations in the terminology, evidence, and reasoning used at that time (Binet & 
Simon, 1916; Cronbach, 1949). In the Binet–Simon test, test takers between ages 3 and 
13 completed a series of 10 to 30 age-speci�c tests and were given a scale score designat-
ing an age and “intellectual level” corresponding to the test they were able to complete 
(Becker, 2003; Cronbach, 1949): 

The fundamental idea of this method is the establishment of what we shall call 

a measuring scale of intelligence. This scale is composed of a series of tests of 

increasing difficulty, starting from the lowest intellectual level that can be observed, 

and ending with that of average normal intelligence. Each group in the series cor-

responds to a different mental level. (Binet & Simon, 1916, p. 40) 

In another early example of scaling and measurement, �orndike (1910) proposed a 
scale for handwriting quality by obtaining rankings of subsamples of handwriting sam-
ples of children in the ��h to eighth grades from competent judges and averaging these 
rankings to produce a scale for the entire sample. �orndike (1910) described his scale 
of handwriting quality as one that ranged from “be�er than which no pupil is expected 
to produce, down to a quality so bad as to be intolerable, and probably almost never 
found, in school practice in the grammar grade” (p. 89). He also considered his scale of 
handwriting quality a way to assess educational outcomes similar to physical and scien-
ti�c measures in other disciplines: 

In general, the experience of constructing this scale gives great encouragement 

to the hope that for many educational facts, units and scales may be invented 

that shall enable us to think quantitatively in somewhat the same way that we can 

about facts of physics, chemistry or economics. (Thorndike, 1910, p. 150) 

Scaling, measurement processes, and models were developed beyond the work of 
Binet and Simon (1916) and �orndike (1910). For the Binet–Simon tests (i.e., items 
or questions) that were designed to be taken by children of speci�c ages, �urstone 
(1925) developed a method to place the statistics of all Binet–Simon tests onto a single, 
continuous, normally distributed ability scale. �is scale allowed �urstone to evaluate 
and critique the a priori age groupings of the tests: “�e questions are unduly bunched 
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at certain ranges and rather scarce at other ranges” (�urstone, 1925, p. 448). �urstone 
(1926, 1927) also provided a rationale and more fully developed theory of �orndike’s 
(1910) scale in his law of comparative judgment (Coombs et al., 1970). �is allowed 
for scales to be produced from any process of pairwise comparisons through modeling 
averages of pairwise di�erences and assuming they followed normal distributions. Gut-
tman (1944) proposed a scaling approach that predicts an individual’s agreement/dis-
agreement with an ordered set of unidimensional a�itude statements in a deterministic 
model asserting that individuals who agree/disagree with a stronger/milder statement 
of a�itude will also agree/disagree with all milder/stronger statements. Rasch (1960) 
proposed a scaling procedure based on a statistical logistic item response model of the 
probability of an individual’s response to an item based on one parameter for each item’s 
di�culty and one parameter for an individual’s ability (see the IRT Ability Estimates 
section; Wright, 1977). 

Despite the methodological di�erences in previously described scaling approaches, 
comparative summaries have pointed out several similarities. �e scaling approaches of 
�orndike (1910) and �urstone (1926, 1927) re�ect an assumed “monotonicity prop-
erty” in the nonphysical variables being scaled, implying consistency in judgments and 
subjective di�erences between stimuli (Coombs et al., 1970, p. 42). �urstone’s, Gu�-
man’s (1944), and Rasch’s (1960) approaches assume invariant comparisons in scales 
intentionally constructed to be unidimensional (Andrich, 1988). Engelhard (1984) 
compared the item calibration approaches of �urstone (1925) and Rasch (1960) and 
another approach from �orndike (1919), showing that these approaches produce 
similar empirical results and that they all a�empt to eliminate the e�ects of samples 
and groups and thus achieve invariance. �ese scaling approaches can be described as 
giving increasingly greater emphasis to a particular model over data (Engelhard, 1984, 
p. 35). An implication of these approaches’ emphases on models is that uses and inter-
pretations of the scales occur “only a�er a scale is developed that adequately �ts the 
model” (Kolen & Brennan, 2014, p. 373). 

Scaling has been addressed in fundamental de�nitions of what constitutes a measure 
and its scale. Early work was based on a classical perspective of discovering or estimating 
quantities and numerically representing them (Campbell, 1928; Hölder, 1901; Michell, 
2008). From this perspective, a�ributes are established as quantitative and fundamen-
tal measures to the extent that they exhibit numerical properties that have a physical 
analogue, like length and concatenation (the adding or laying of objects end to end, 
Coombs et al., 1970; Hölder, 1901; Mislevy, 2018). An implication of these arguments 
is that measurement can be established only in the physical sciences. Psychophysical 
variables could not be established as measures because psychophysical variables would 
not exhibit concatenation operations or invariant relationships with established physi-
cal measures (Campbell, 1928; Ferguson et al., 1940). 

Stevens (1946) provided a general typology of scales achieved through rules of 
assignment of numerals to a wide range of objects or events. By focusing on assign-
ment rules rather than on requisite conditions for measurement (e.g., Campbell, 1928), 
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Stevens’s (1946) scaling approach is more encompassing, alternatively described as 
paraphrasing (Stevens, 1946), circumventing (Mislevy, 2018), shi�ing (Briggs, 2022), 
or de�ecting (Michell, 2008) the emphasis of earlier arguments on classical measure-
ment and quantitative measures. For Stevens, scales are achieved in an operational-
ist (vs. classical) process of following (vs. discovering) rules for assigning numerals 
to objects according to their assumed level of measurement (vs. a�ributes of objects 
that must �rst be established as measurable; Briggs, 2022). �e objects and measure-
ments for which scales can be established include nominal (categorical labels), ordinal 
(ordered labels), interval (ordered labels that have equal intervals), and ratio (interval 
scales with a natural zero). In Stevens’s arguments, the meaning and interpretation of 
scales depends on using admissible transformations for types of measurement (i.e., a 
monotonically increasing transformation for ordinal, linear transformations for inter-
val) and on using permissible statistics for speci�c types of scales (e.g., medians for 
ordinal scales, means for interval scales). Stevens’s scaling theory was further developed 
in subsequent work (Coombs et al., 1970; Krantz et al., 1971; Suppes & Zinnes, 1963). 

Other approaches re-emphasized the classical focus on quantitative (interval or 
ratio) measurement through conditions other than concatenation (Coombs et al., 
1970), including conjoint measurement (Luce & Tukey, 1964). One condition of con-
joint measurement is double cancelation, which refers to a variable that consistently, 
additively, and noninteractively increases or decreases with two other variables (see the 
Ability Estimates From Rasch and Other 1PL IRT Models section). 

Scaling approaches used in practice and described in measurement theory have been 
nearly separate pursuits in educational and psychological testing: “�e axiomatic anal-
ysis of measurement models does not always provide feasible methods for constructing 
scales” (Coombs et al., 1970, p. 31). Binet and Simon (1916) described inconsistencies 
in the actual and aspirational measurement properties of their Binet–Simon test, simul-
taneously arguing for treating the scale of their test as equal to a quantitative measure 
even as they acknowledged that it re�ected an ordinal scale of ordered, discrete classes: 

This scale properly speaking does not permit the measure of intelligence, because 

intellectual qualities are not superposable, and therefore cannot be measured as 

linear surfaces are measured, but are on the contrary, a classification, a hierarchy 

among diverse intelligences; and for the necessities of practice this classification 

is equivalent to a measure. We shall therefore be able to know, after studying two 

individuals, if one rises above the other and to how many degrees, if one rises 

above the average level of other individuals considered as normal, or if he remains 

below. (pp. 40–41) 

Another argument for treating ordinal measures as though they re�ected interval scales 
in scaling practice appealed to pragmatics and usefulness over formal measurement 
properties: 

Although, formally speaking, interval measurement can always be obtained by 

specification, such specification is theoretically meaningful only if it is implied 
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by the theory and model relevant to the measurement procedure. At various 

times in this book however, we shall treat a measurement as having interval scale 

properties, although it is clear that the measurement procedure and the theory 

underlying it yield only a nominal or, at best, an ordinal scale . . . from a pragmatic 

point of view, the only meaningful evaluation of this procedure is one based on 

an evaluation of the usefulness of the resulting scale. (Lord & Novick, 1968, pp. 

21–22) 

Some objections have been expressed about Stevens’s (1946) arguments concern-
ing levels of measurement and permissible statistics, such as Lord’s (1953) argument 
that statistical operations seemingly reserved for interval scales could be appropriate 
even for nominal scales like numbers on football players’ jerseys. Connections of 
measurement theory and scaling practice have been considered in terms of the statis-
tical and probabilistic Rasch models and conjoint measurement (Embretson & Reise, 
2000; Karabatsos, 2001; Perline et al., 1979). However, noted limitations in the �t of 
the Rasch model have raised questions about the inconsistencies of pursuits to estab-
lish scales that re�ect measurement theory versus those that �t actual test data (Briggs 
et al., this volume; Embretson, 2006; Embretson & Reise, 2000; �issen & Orlando, 
2001; Wright, 1994). 

�e perspectives taken in describing the practice of establishing reporting scales for 
educational tests in the �rst four volumes of Educational Measurement make speci�c 
references to, and departures from, previous discussions of scaling and measurement 
(Ango�, 1971; Flanagan, 1951; Kolen, 2006; Petersen et al., 1989). Most of the Edu-
cational Measurement chapters present a basic de�nition of scaling similar to Stevens’s 
(1946), one of assigning numerals or numbers to a test taker’s test performance. Inter-
pretation and meaning are less about requirements for measurement, statistics, or scal-
ing transformations and more about the scale properties that might be desirable for 
other criteria and interpretations (described in the Scaling Methods for Primary Scale 
Scores and Auxiliary Scales sections). All of the Educational Measurement volumes dis-
cussed scale score interpretations in terms of scale score distributions on relevant test-
ing populations (norms). Discussions of interval scales and other measurement issues 
either appear in other nonscaling chapters (e.g., Lorge, 1951) or are described in terms 
of their limited usefulness for scaling and psychological measures due to the absence 
of operational de�nitions that are agreed on by experts (Ango�, 1971) and the lack 
of a complete theory and de�nition for the psychological and educational constructs 
in need of scales (Kolen, 2006). Finally, perspectives on scaling for educational tests 
emphasize a starting point that di�ers from the one implied in measurement de�nitions 
and models. Petersen et al. (1989), Kolen (2006), and Brennan (personal communi-
cation, September 17, 2020) have distinguished educational measurement from other 
types of measurement because the starting point in educational measurement, that is, 
test content and speci�cations, comes from an external entity (e.g., one of the testing 
contexts summarized in the beginning of Scaling). �ey argue, consistent with Lind-
quist (1953), that 
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the objective is handed down . . . by those agents of society who are responsible 

for decisions concerning educational objectives, and what the test constructor 

must do is to attempt to incorporate that definition as clearly and as exactly as 

possible. (p. 35) 

For educational measurement, content, test development, and measurement models 
in�uence the development of a test’s reporting scale in choices for the basic unit used in 
scaling (see the Basic Unit of Scaling section), transformations of test performance mea-
sures to a reporting scale with desired properties (see the Scaling Methods for Primary 
Scale Scores section), and maintenance of the scale in subsequently developed forms 
through equating (see the Equating section). 

Basic Unit of Scaling 
�e Scaling Perspectives section described fairly di�erent views on scaling. �ese di�er-
ences are apparent in the options for de�ning the basic unit of test performance used 
to establish a testing program’s score scale. �is section covers choices and implications 
for representing test performance, including di�erent types of observed test scores that 
summarize observed test performance, and the latent abilities estimated using some 
item response theory (IRT) models. For other summaries of these options, including 
descriptions of approaches for scoring di�erent types of items, see Kolen (2006) and 
Dorans (2018). 

Observed Test Scores 

Test performance indicators can be established as di�erent types of observed scores. 
For test form Y  that contains i = 1 to I  items that are not distinguished with respect to 
content area or item format, the most common observed score is the sum of the i = 1 
to I  item scores, Vi, 

Y =∑ wi iV (1) 
i 

where wi =1 for all I  items. With this option, a test taker’s score re�ects equally 
weighted contributions from each item in the test. Other options involve the summing 
of di�erentially weighted item scores, where the item score weights might be chosen to 
maximize some measure of test reliability or validity (Gulliksen, 1950; Lord & Novick, 
1968). Although these reliability and validity measures for maximization are de�ned 
by Gulliksen (1950) and Lord and Novick (1968), many issues concerning reliability, 
true score variance, and error variance for scaling procedures are, at best, imperfectly 
understood. Other texts should be consulted for comprehensive discussions of reli-
ability (Brennan, 2001; Haertel, 2006; Lee & Harris, this volume). Di�erent options 
suggested in Equation 1 can be used to summarize test takers’ test performance on a 
speci�c set of test items. 

Test form Y  may also be a “composite” or “mixed format” test containing items with 
di�erent content areas and/or item formats. When Y includes I multiple-choice (MC) 
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items and J constructed-response (CR) items, an approach to weighting the item type 
scores and obtaining observed composite scores is 

Y = wMC ∑ iVi MC + wCR ∑ jVj CR, . (2), 

One option is to nominally weight the scores from the MC and CR items so that the 
weighted scores re�ect an intended number and percentage of composite score points. �e 
Advanced Placement exams provide several simple and complex examples of MC item 
score weights and CR item score weights being set such that the weighted and summed 
scores contribute desired numbers of points to the composite score (College Board,n.d.; 
Moses et al., 2006). Another option is to determine e�ective weights such that the weighted 
scores re�ect a desired proportion of the composite’s observed score variance or true score 
variance. A third option is to select weights for the scores summed from di�erent item for-
mats such that some measure of composite score reliability is maximized. 

�e options for summing item scores produce measures of test performance with dif-
ferent implications. Sums of item scores that are equally weighted or weighted to re�ect 
intended numbers of composite score points are the simplest methods of reporting test 
performance, associated with scoring rules that can be fairly easily communicated to 
test takers (i.e., “To do as well as possible, answer every item”). Simple summed scores 
can directly re�ect expert judgments about the test as indicated by the numbers and 
weights of di�erent items described in test speci�cations. Other options weight items 
based on statistics such as variances, maximized reliabilities, or validities and have inter-
pretations based on those criteria. In addition, the weights re�ect population and sample 
characteristics of those corresponding statistics. �e scoring rules associated with these 
options for weighted observed test scores are more complex and may be more di�cult 
to communicate to test takers depending on when these population-dependent weights 
are derived (i.e., test takers may approach the test in a way that is suboptimal or incon-
sistent with item weights that may be derived before or a�er the test is administered). 
Most of these observed score options should be understood to re�ect an unspeeded 
test where test takers have su�cient time to answer every item. Inadequate testing time 
can elicit rushed or random responding that could result in unintended measurement 
properties for those speeded items and the overall test. Equally or nominally weighted 
item scores may be suboptimal with respect to test score reliability, especially if these 
weights result in higher contributions from the scores of less reliable item types (i.e., 
higher contributions of CR scores relative to MC scores). 

Observed test scores are direct indications of actual test performance and indirect 
re�ections of unobservable latent abilities. As such, potential uses of observed test 
scores as estimates of latent abilities require supplemental measures of the reliability 
or generalizability of the scores to other possible item samples, test administrations, 
and admissible measurement conditions. When interpreted in terms of measure-
ment and scale properties, test scores are o�en described as ordinal scales for some 
latent ability they are assumed to measure (Embretson & Reise, 2000). Alternatively, 
observed test scores could be considered interval scales from a pragmatic perspective 
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(Lord & Novick, 1968), or from a perspective where scores from a particular test form 
are regarded as indices of test performance rather than estimated abilities, such that a 
test form’s scores exhibit equal increases with additional correct responses to test items 
(Mislevy, 2018, p. 316). 

IRT Ability Estimates 

Scales might be established on estimated latent abilities rather than on the test per-
formance observed for a set of test items. In theory, the item response data from a test 
form might be modeled in ways that produce estimates of abilities that are independent 
of the test form. In practice, this involves ��ing IRT models to data from a test and its 
�xed, speci�c set of items, such that the item characteristics require scaling procedures 
to account for their sample e�ects (described by Kolen & Brennan, 2014). �e result is 
that test performance measures can be produced that may be regarded as estimates of 
latent ability, but that are essentially computationally complex summaries of observed 
item performance, in need of their own reliability estimates (Lee & Harris, this volume). 

Assume test form Y  contains dichotomously scored items with correct responses scored 
1 and incorrect responses scored 0. Assume further that test takers’ responses to the I  items 
are conditionally independent given a latent and unidimensional ability, q , and that the 
probability of a correct response follows a logistic model with up to three parameters, such 
that the probabilities monotonically increase with q . �e item response probabilities from 
the one-, two-, or three-parameter logistic models (1PL, 2PL, 3PL) can be expressed as 

Pr(V =1|q, ,a b c, )= + −c (1 c ) 1 (3)i i i i i i + [−1 exp Da (q −b )]i i 

where ai , bi , and ci  are discrimination, di�culty, and guessing parameters for item i 
and D is a scaling constant that is sometimes 1 and other times set to 1.702 so that Equa-
tion 3’s logistic function approximates a normal ogive (Haley, 1952). �is section sum-
marizes some approaches for estimating test takers’ abilities, q , based on test takers’ scored 
responses to the items on test form Y , v1, v2 , … vI  and on parameter estimates for all I 
items on the test form that are treated as population values (not estimated). IRT ability 
estimates re�ect several choices for ��ing IRT models to test data, including calibration 
decisions, estimation so�ware, and approaches for polytomously scored items and mixed 
format tests (for additional discussions of IRT models, see Cai et al., this volume). 

�ree commonly used IRT ability estimates are the maximum likelihood estimate 
(MLE), the Bayesian expected a posteriori (EAP), and the test characteristic curve 
(TCC) estimate (for others, see �issen & Orlando, 2001). 

�e MLE is obtained by solving for q  using an iterative procedure to maximize, 

L V( = v V  v , V v | q), = … =1 1 2 2 I I 

v (1 vi ) (4)
∏Pr V( =1|q, , ,a

i
b c

i
) i [ − Pr V =1|q a b

i ci )
− 
.= 1 ( , , ,  ]

i i i i 
i 
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�e MLE can be described as the ability estimate with maximum information (i.e., 
precision) and inverse sampling variance. �e MLE corresponds to an optimally

åw Vweighted observed score, i i  , for a particular IRT model (Lord, 1980; Yen & Fitz-
patrick, 2006). i 

�e Bayesian EAP estimate, 

L V  = v V, v , V v |q )Prq ( = … =  ( )q qd1 1 2 2 I I∫ 
EAP = q , (5)

L V( = v V  v , V v | )  Pr ( )d, = … =  q q q1 1 2 2 I I∫ q 
is the mean of a distribution of q obtained as the product of the likelihood and an 
assumed prior distribution for test-taker ability, Pr( )q . In practice Pr( )q is usually 
represented as a discrete approximation of the standard normal distribution, though it 
can also be obscure. 

�e TCC estimate is based on relating the IRT-expected summed scores given q , 
τ θY ( ) , to the observed summed score (Equation 1). Ignoring measurement error in 
the scores of test form Y and making other adjustments to account for true scores that 
are unde�ned in the IRT model, Equation 1 and a summed version of Equation 3 are set 
equal to each other and q is estimated to preserve this equality: 

∑ i , ,  b c i )= τY =∑w Vi i  = w Pr(Vi =1|θ ai i , Y (θ) (6) 
i i 

Although the solution to q in Equation 6 ensures that the IRT-expected summed score 
matches the observed score, this application of true score relationships to observed 
scores lacks justi�cation (Kolen & Brennan, 2014, p. 201). 

ABILITY ESTIMATES FROM RASCH AND OTHER 1PL IRT MODELS For the Rasch (1960) 
(all ais =1 , all cis = 0 , and D =1 ) and other 1PL models (all a si = constant , all 
ci s = 0 , and D =1.702), ability estimates have a one-to-one relationship with the test 
score summed from equally weighted items, all wis = Dai , and the TCC and MLE esti-
mates are equal (�issen & Orlando, 2001). When a uniformly distributed prior is used, 
Pr( )q , EAP ability estimates are also equal to those of MLE and TCC, except that the 
highest and lowest summed scores have estimates from EAP but are unde�ned with MLE 
and TCC. �ese results re�ect a property of Rasch and 1PL models that the summed 
test score with equal wis  is a su�cient statistic that contains all information needed 
for estimating q (Lord, 1980). Response probabilities from Rasch and 1PL models are 
additive and consistently ordered for item di�culties (or test-taker abilities), regardless 
of abilities (or items), always increasing as item easiness and test-taker ability increase. 
�is means that the Rasch and 1PL models exhibit double cancelation and could be said 
to have a probabilistic relationship to conjoint measurement (Briggs et al., this volume; 
Embretson & Reise, 2000; Mislevy, 2018; Perline et al., 1979). Although this relation-
ship has been the basis of a�empts to establish quantitative measures with interval prop-
erties in test data, these a�empts are challenging because of model–data �t limitations 
(see the Scaling Perspectives section). �e relationship also re�ects inconsistencies in 
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observed item responses, the probabilistic Rasch (1960) model of latent and estimated 
item parameters and abilities, and the deterministic framework of observed variables in 
conjoint measurement (Kyngdon, 2008; Mislevy, 2018; Perline et al., 1979). 

As stated in the Scaling Perspectives section, Rasch models are more restrictive and 
less likely to �t observed data than other IRT models. �ese model–�t limitations can 
prompt calls to impose statistical consequences to the data or edit or remove non��ing 
responses (Wright, 1977). Examples include “reinterpreting or modifying the frame of 
reference” (Andrich, 1988, p. 62) or reducing the intended scale: 

The broader the domain of interest, the more difficult it will be to make targeted and 

testable hypotheses. This would suggest that vertical scales could only be plausibly 

supported for more narrowly defined latent variables. (Briggs, 2013, pp. 219–220) 

Removal of test-taker data could potentially limit intended scale interpretations, such as 
by narrowing the intended scaling population (i.e., changing P in Table 11.1). Removal 
of non��ing items could result in narrowing the construct de�ned in test speci�cations. 

ABILITY ESTIMATES FROM 2PL AND 3PL IRT MODELS �e 2PL (unique ais  and cis = 0 ) 
and 3PL (unique ais and cis >0) IRT models can be used to produce more com-
plex ability estimates with unique contributions from individual items. �e MLE and 
EAP estimates from 2PL and 3PL models re�ect pa�erns of correct and incorrect 
responses to individual items, such that they di�er from and convey more informa-
tion than the TCC estimates. �e MLE for the 2PL IRT model re�ects item pa�ern 
scores and an optimally weighted test score where item scores are weighted by their 
discrimination, wi = Dai , and the resulting weighted test score is the su�cient sta-
tistic for q . A TCC procedure usually based on equally weighted item scores di�ers 
from the MLE, but can produce the MLE estimate when modi�ed to sum optimally 
weighted item scores (Lord, 1980). For the 3PL model, there is no su�cient statistic 
for q , and the MLE estimate re�ects a test score summed using optimal weights de�ned 

Pr V( i =1|q, ai, ,b ci i)−ci Da ias w = .i 1−c Pr V( =1|q, a , ,b c  )i i i i i 

�e MLE, EAP, and TCC ability estimates based on 2PL and 3PL IRT models have 
unique properties (S. Kim & Moses, 2025; Kolen, 2006; Kolen et al., 2011; �issen 
& Orlando, 2001; Yen & Fitzpatrick, 2006). MLEs (Equation 4) are asymptotically 
unbiased estimates of q , though for tests of realistic length they have conditional 
biases that are positively correlated with q  (Lord, 1983) and an overall variance that 
is larger than that of q . MLE estimates are unavailable for some response pa�erns, 
such as those where the responses to the test items are all incorrect or all correct. 
EAP estimates from Equation 5 have conditional biases that are negatively correlated 
with q  (Lord, 1986), and they are less variable than the MLEs. �e EAP estimates 
re�ect shrinkage to the prior distribution of q , meaning that q  values are overesti-
mated for test takers below the mean in the population and underestimated for test 
takers above the mean. q  estimates based on EAP are available for all item response 



748 EDUCATIONAL MEASUREMENT

 
 
 

 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 

pa�erns. Ability estimates based on EAP and MLE item pa�ern scores have smaller 
standard errors than those using the usual TCC approach, though their similarity 
with TCC estimates increases for longer tests with items that have smaller guessing 
e�ects (Yen & Fitzpatrick, 2006). 

Ability estimates for 2PL and 3PL IRT models have implications for model–data �t, 
theoretical measurement properties, and score interpretations. �ese IRT models �t 
observed test data more closely than Rasch and 1PL models, but do so with added com-
plexity. From a theoretical measurement perspective, interval properties in ability esti-
mates from 2PL and 3PL IRT models are more di�cult to defend than for Rasch models. 
Item characteristic curves for given items can cross for higher and lower test-taker abili-
ties, and this nonadditivity means that 2PL and 3PL IRT models are not guaranteed to 
meet the double cancelation condition or have a probabilistic relationship to conjoint 
measurement. Ability estimates are nevertheless sometimes described as interval scales 
because 2PL and 3PL IRT models produce probabilities that are invariant under dif-
ferent linear transformations of their parameters for a speci�ed functional form and 
population distribution (contrasting points are made about this description in Briggs 
et al., this volume, endnote 10, and Mislevy, 2018, pp. 316–317). Empirical research 
on interval scales from these IRT models has been encouraged (Michell, 2008), and 
statistical tests may be possible for the 2PL model (Kyngdon, 2011). 

From an interpretational perspective, MLE and EAP ability estimates from 2PL 
and 3PL models are more complex and more di�cult to understand than those based 
on simple sums of equally weighted item scores (i.e., the usual TCC). �e weighting 
of individual items in the scoring is likely to be less closely aligned to the intended test 
content as determined by test developers and described in test speci�cations (Kolen, 
2006). �e complexity of ability estimates based on pa�ern scoring implies more 
complicated scoring rules and increased di�culty in communicating, understanding, 
and explaining scoring and advising on how test takers might maximize their perfor-
mance. For MLEs based on the 2PL model, items with higher discriminations make 
greater contributions to test takers’ ability estimates, which creates fairness issues 
when these di�erentially important items are not communicated to test takers (Dor-
ans, 2012). For the 3PL model, MLEs re�ect di�erentially weighted items for di�er-
ent test takers (i.e., for less able test takers, correct item responses tend to count less 
and are more likely a�ributed to guessing; Lord, 1980, p. 75). �is characteristic was 
described by Mislevy (2012) as “unse�ling” and tough to explain (p. 39). �e fairness 
of pa�ern scoring based on the 3PL model is questionable and has been described as 
a challenge for establishing comparability in adaptive tests (Phillips, 2016, p. 258). 
A complication with EAP estimates is that they re�ect not only test performance in 
item pa�ern scores, but also a test-taker ability distribution (Kolen, 2006). 

ABILITY ESTIMATES FROM MORE COMPLEX MODELS Scoring approaches have been 
developed and considered that are even more complex than those that have been previ-
ously described. �ese approaches are developed based on a range of motivations. One 
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is to obtain scores on noncognitive traits assessed with faking resistant forced-choice 
item formats using item parameter estimates obtained in previous administrations of 
those items in formats that are not faking resistant (Drasgow et al., 2012; Stark et al., 
2005). Other e�orts score tests composed of family-generated clone items using IRT 
methods like Equations 4–6 based on parameters from the item families rather than 
parameter estimates for the items test takers actually take (cautions provided in Drasgow 
et al., 2006; Harris, 2023; Luecht & Burke, 2020; van der Linden & Glas, 2010). Other 
e�orts are being considered for measuring response processes like test-taking strategies, 
thought processes, and behaviors like reading, interpretation, and strategy formulation 
with response times, computer screen gazes, verbalizations, and other process infor-
mation (Ercikan & Pellegrino, 2017). Deep-learning neural network models might be 
considered for automated scoring versions of subjective human scoring of test takers’ 
writing (Zesch et al., 2023). 

For complex scoring approaches, test takers’ test performance measures might re�ect 
not only their performance on the test and items they take, but also other unspeci�ed 
aspects of the scoring procedures. Scoring based on item families can produce test-taker 
scores that re�ect errors in the IRT parameter estimates of items they may not actually 
take. Complex scoring algorithms can be di�cult to interpret and explain (Lo�ridge et 
al., 2023; Zesch et al., 2023), and the resulting test performance measures may re�ect 
reduced accuracy and fairness, or unrepresentativeness in the data used to train the mod-
els (Broussard, 2020; Hussein et al., 2019; W. Lee & Harris, this volume). Performance 
measures that re�ect test-taking processes can warrant validation e�orts and a�ention to 
the processes di�erent test takers use to optimize their performance (Kane & Mislevy, 
2017; Wise, 2017). �ese approaches to representing test performance are mentioned 
here to illustrate recent trends for increased complexity and, likely, increased di�culty 
in explaining, justifying, and defending scales for the resulting performance measures. 

Scaling Methods for Primary Scale Scores 
�e approaches to representing test performance described in the Basic Unit of Scaling 
section are usually considered inadequate for use as a testing program’s reporting scale 
(Ango�, 1971; Kolen, 2006). Observed test scores represent test performance in ways 
that are speci�c to a test form, its items, and its measurement characteristics (di�culty, 
reliability, etc.). Under strong assumptions, IRT ability estimates may be regarded as theo-
retically independent of a test form and its items, but even if these assumptions are met in 
practice, the ability estimates have their own interpretational di�culties because of their 
similarity to standard normal variables, with means near zero, and small numbers with 
decimals that can be negative or positive. Consistent with the scaling discussions from 
earlier Educational Measurement volumes (Ango�, 1971; Flanagan, 1951; Kolen, 2006; 
Petersen et al., 1989), scale scores established from untransformed observed scores, 
sc Y Y q = , are not recommended. ( )  = , or untransformed estimated IRT thetas, sc( )  q 

�e task in scaling is to develop a numeric transformation of a measure of test 
performance that assigns numbers or ordered indicators such that the scale scores, 
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sc Y( )  , re�ect monotonically increasing levels of achievement. For large-scale testing 
programs, this task of establishing scale transformations is intended to be applied not 
only to the scores of test form Y , but also to other alternate versions of  Y  developed, 
administered, and equated (see the Equating section) to Y . Another goal of scaling is 
that the scale scores be established to facilitate score interpretations and discourage mis-
interpretations. In this section, di�erent scale score transformations are reviewed that 
focus on the structure, normative, shape, measurement, and content aspects of report-
ing scales. In each subsection, methods and intended interpretations are described. 

Reporting Scale Basics 

Some aspects to be determined for a testing program’s reporting scale are structural, such 
as the scale score range and number of possible points. Recommendations are usually 
to establish the range of the scale scores in such a way that the scores cannot be easily 
interpreted as observed test score performance (Dorans, 2002; Kolen, 2006; Livingston, 
2004). For example, scale score ranges such as 100–200 (Praxis) and 200–800 (SAT) are 
wide enough to impede unwarranted guesses about the relationship between the number 
of items and scale score points. �e GRE scale score range (130–170) and the ACT range 
(1–36) are also not likely to be interpreted as simple transformations of raw scores. 

Another aspect to consider in scale scores is the interval, or the number of possi-
ble scale score points re�ected in the range of the scale scores. Most recommendations 
are to establish the scale score interval such that it represents the available informa-
tion or precision of the test (Dorans, 2002; Flanagan, 1951; Kolen, 2006; Livingston, 
2004). When intervals are too �ne, the resulting scores could lead users to overinterpret 
score di�erences, such as on pre-1970 SAT scales of 200–800 in integer units (Living-
ston, 2004). When scale score intervals are more coarse than test performance (e.g., 
stanines), then the scale scores can result in lost information (Flanagan, 1951; Kolen, 
2006) or test takers with very di�erent test performance receiving the same scale score 
(Dorans et al., 2010). 

Scale score intervals might be established based on simple recommendations, such 
as ensuring that the possible scale score points do not exceed the number of observed 
score points on the test (Dorans, 2002) or establishing desired con�dence intervals 
for true scores or scale scores (Kolen, 2006). Kolen (2006) summarized two propos-
als for establishing scale score points that re�ect desired con�dence intervals for true 
scores for the Iowa Tests of Educational Development (ITED, 1958) and more gener-
ally (Kelley, as cited in Kolen, 2006, p. 165). �ese procedures are based on assuming 
that measurement error is normally distributed and constant across the scale, that the 
reliability of test performance is known or well estimated in population P, and that the 
scale score transformation is linear. With these assumptions, a scale score transforma-
tion that re�ects true score con�dence intervals could be established based on 

6s ( ), = 6 h (7)
sc Y P  

z Y 1 Y Prel , 

,
− 
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where h is the width of the desired scale score interval, zY is the standard normal 
z-score associated with the desired g 100% con�dence interval, relY P, is the reliability 
of Y  in population P, s ( ), ( )  in P, and 6ssc Y Pis the standard deviation of sc Y ( ), , when sc Y P  

rounded, provides a recommended number of distinct scale score points. For the ITED 
implementation in Equation 7, the scale score units are set such that adding or subtract-
ing one scale score point establishes a 50% con�dence interval for true scores (i.e., h =1 
and zY » .6745  for g =50% ). For Kelley’s implementation of Equation 7, the scale 
score units are set such that adding or subtracting three scale score points establishes an 
approximate 68% con�dence interval ( h= 3  and zY »1 for g  = 68%). From Kolen’s 
(2006) summary of these proposals, Kelley’s rule generally leads to about twice as many 
scale score points as the ITED rule. For both approaches, the number of recommended 
scale score points decreases as reliability decreases. Equation 7 can be used with any mea-
sure of test performance for which a reliability estimate is available, including an IRT q . 
Once used, a linear scale score transformation is found that produces scale scores with 
a range of units that is consistent with Equation 7. 

Another structural aspect of scale scores is the level of truncation, where recom-
mendations are for the range of minimum and maximum reported scale scores to be 
narrower than the actual scale score range (i.e., the working range, Dorans, 2002). Trun-
cation of the maximum scale scores has been recommended because it avoids interpre-
tational di�culties such as conveying perfect test performance on test forms that di�er 
in di�culty and have di�erent untruncated scale scores (Livingston, 2004). Truncation 
also helps make the resulting scale scores more resistant to shi�s in score distributions 
due to changes in the population or in the di�culties of the test forms (Dorans, 2002). 
Establishing a minimum reported scale score that is higher than what is suggested by 
the scale score transformation can be useful for avoiding meaningless distinctions at 
test performance levels lower than theoretical guessing levels where measurement is 
less precise (Livingston, 2004). 

Finally, consider that a reporting scale can be established to specify the scale score that 
should correspond to one or more speci�c observed scores of Y . �e situation of inter-
est is one for which a scale score transformation is established such that two observed 
scores of test Y , y1 and y2 , will have prespeci�ed scale scores, sc y and sc( ) :( )1 y 2 

sc( )y2 − sc y( )1( )  sc y1 − 1sc y = ( )  +( y y  ) (8)
y2 − y1 

�is transformation has been described as a basis for a scale score range of 100–200 on 
Praxis (Livingston, 2004). 

Normative 

When establishing scale scores, a common desire is for the scale scores to represent a 
test-taker group of interest in terms of one or more statistics (i.e., statistics of a reference 
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group or sample of population P taking test Y ; Table 11.1). Scale score conversions 
might involve transformations of the observed test performance on Y  to a speci�ed 
scale score value. One commonly used linear transformation converts the mean and 
standard deviation of test performance in population P, m

Y P,  and sY P, , to desired scale 
score values, m  and s :

sc Y( ), sc Y PP ( ), 

σ sc Y P,
sc y  = µ ( ), + (y− µ ) . (9)( )  sc Y P  Y P, 

( )  

σ Y P, 
Equation 9 can be used to establish raw-to-scale score transformations that satisfy 
several scaling criteria. For example, to satisfy a recommendation that the scale score 
mean be set at the center of the possible scale score range (Dorans, 2002), Equation 9 
might be used to set the mean test performance for a test-taker group to be sc( )y = 500 
for a 200–800 range (SAT; Dorans, 2002) or 18 for a 1–36 range (ACT; Brennan, 
1989). Also, Equation 9 might be used to produce a set of viable raw-to-scale score 
transformations that vary in how they satisfy di�erent criteria for numbers of distinct 
scale score points (Equation 7) and how far the actual scale scores extend below and 
above a truncated range of scale scores, as well as to establish the means and standard 
deviations for nonlinear raw-to-scale score transformations (reviewed next). 

Another example of a linear scale score transformation that re�ects the normative 
information for a group of test takers is to establish a desired scale score standard devi-
ation and a conversion of one particular score, y1 , to sc y1 ,( )  

ssc Y P( )  sc y1 − 1 
( ), 

(10)sc y = ( )  +( y y  ) . 
sY P, 

where s ( ),  is the intended standard deviation of the sc( )y s  in population P. Lin-sc Y P  

ear raw-to-scale transformations such as Equations 9 and 10 establish scale scores as 
linearly increasing indications of test performance, retaining the shape (skewness and 
kurtosis) of the raw scores in the scale scores. 

Nonlinear Transformations 

Nonlinear transformations can be used to establish scale scores that encourage interpre-
tations based on scale score basics (see the Reporting Scale Basics section), distribution 
shape, or measurement precision. Rounding scale scores to integers or other units can 
establish scale scores that convey an intended range of possible scale score points. Trun-
cating the lowest and highest possible scale score values to intended values also helps 
to consistently maintain the structural aspects of scale scores. Nonlinear raw-to-scale 
score transformations might also be developed to satisfy other criteria. �ese might be 
subjected to an additional linear transformation like Equation 9 to re�ect aspects such 
as the intended range and number of possible scale score points. 

One nonlinear transformation involves establishing scale scores that are approxi-
mately normally distributed. �e resulting scale scores can then be described as sym-
metric and re�ective of a shape that is familiar to test users (Dorans, 2002; Petersen et 
al., 1989). Normally distributed scale scores can be established by �rst obtaining the 
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percentile ranks or “percent at and below” for a measure of performance on test Y (Kolen 
& Brennan, 2014). For this discussion, consider the measure of test performance to be 
the raw scores obtained as the sum of I  items, yk , k =1  to I , where the actual scores 
range from 0 to yI. A continuized version of the scores is assumed where each individ-
ual score, yk , ranges from yk - .5  to yk+ .5  and the entire set of continuized scores 
ranges from -.5 to yI + .5 . �e percentile ranks for these continuized scores can be 
computed as 

G y( )  = 100{ Pr (y ) +P k ∑ P j 

y j < y* 

 *  * 


y −( y −.5) Pr (y )}, − ≤  <.5 y yI +. (11) k  P k 5 

= 0, yk <− .5 

= 100, yk ≥ +yI .5, 

where PrP yk 
*  is( )  is the relative frequency at score yk for population P and where y 

the closest integer to yk  such that y ∗− ≤ y < ∗
+ .5. Values of the standard normal.5 k y 

distribution are found, zk , such that their cumulative distribution values, F( )  , equalzk 

a function of the percentile ranks of the yks , 
21 zk −w /2 

G y( )/100 = Φ(z ) = e dw.P k k ∫ (12)
2π −∞ 

In Equation 12, w is a variable that assumes values ranging from −  to zk  in the inte-

gration denoted by ∫ 
zk 
…dw . �e resulting zks  can be linearly transformed to have 

−∞ 

an intended mean and standard deviation (Equation 9) and rounded and truncated to 
have the intended range of possible scale scores. �e normal transformation was used 
to establish recentered SAT scales in 1995 based on the 1990 reference group of grad-
uating seniors (Dorans, 2002). Other examples provided by Kolen (2006) and Kolen 
and Brennan (2014) illustrate that the normal transformation is approximate and that 
its closeness to the normal distribution depends on the distribution of the raw scores. 

Another motivation for nonlinear transformations is producing scale scores that pro-
vide a stabilized version of conditional measurement error. �at is, testing standards call 
for reporting conditional standard errors of measurement (CSEMs) for several scores if 
CSEMs di�er across the score range (AE� et al., 2014). For most psychometric models, 
the CSEMs of scores are small for the highest and lowest unscaled true scores and large for 
true scores in the middle of the range (Lord & Novick, 1968). Kolen (1988) proposed an 
arcsine transformation developed by Freeman and Tukey (1950) for use as a scale score 
transformation of number-correct true scores. Assuming that the errors of number-cor-
rect true scores follow a binomial, compound binomial, or IRT model (Kolen, 2006), scale 
scores having approximately equal CSEMs across their range can be produced as 

g y( )= . 



 

5 sin 
−1 


 

y 

I +1 

.5 .5 
 

  y +1−1
+ sin . (13)

I +1 


 



 



  

∞
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�e resulting scale scores can be reported and described as re�ecting a single standard 
error of measurement (SEM) value across the range of true scores (Kolen et al., 1992). 
�ey can also be further transformed to have an intended mean and standard deviation 
(Equation 9) and rounded and truncated to have an intended range of possible scale 
scores. Arcsine transformations have been used to establish scales for the ACT (Bren-
nan, 1989) and the 2016 redesigned SAT (Y. K. Kim et al., 2016). 

Nonlinear transformations to achieve normal distributions or to stabilize CSEMs 
can have interpretational difficulties. Both types of transformations can result in 
extreme stretching of the highest and lowest scale scores, exaggerating scale score 
results and creating gaps (missing scale scores) for the highest and lowest levels 
of test performance. These methods can also produce scale scores with inconsis-
tent properties, such that arcsine transformations can result in more skewness (less 
symmetry) in the scale score distributions. A conceptual issue with CSEM stabi-
lization is that the scales are established for true scores and applied to observed 
scores. 

To produce a scale score transformation that could achieve symmetry with less 
extreme conversions of the highest scale scores, Moses and Golub-Smith (2011) pro-
posed a cubic transformation of raw scores, 

1 2 3 
sc( )y = +  y +d y +d y , (14)d d0 1 2 3 

where the ds are derived to achieve a desired mean, standard deviation, skewness, and 
kurtosis in the scale scores (and also to satisfy a constraint that the scale scores are 
monotonically increasing). �is procedure can be used to approximate the normal 
distribution, but to varying degrees that produce less extreme transformations and 
fewer gaps at the highest and lowest scale score regions. �is procedure was used to 
set the scales of the revised GRE (Golub-Smith & Moses, 2014). Another version of 
the cubic transformation was proposed by Moses and Kim (2017) to produce scale 
scores that would stabilize an inpu�ed set of CSEMs. �is procedure was used to set 
one of the scales of the 2016 redesigned SAT (Y. K. Kim et al., 2016). Moses and Kim 
(2017) also showed how cubic transformations could be established that satisfy a 
set of scaling criteria to varying degrees, such as by making scale score CSEMs more 
similar while also targeting scale score symmetry. Finally, because CSEMs are inputs 
in developing the scale score transformation, the cubic transformation can also tar-
get stabilizations for a limited number of scores involving consequential decisions 
(i.e., cut scores; Lord, 1985) or for di�erent measures of test performance, such as 
CSEMs at IRT qs or at true scores and test performance measures for mixed format 
tests. Another situation where the �exibility of the cubic transformation might be uti-
lized is stabilizing true score intervals for a speci�ed range of observed scores (Lord 
& Novick, 1968), an application that would likely produce di�erent scaling results 
than those produced to stabilize CSEMs given true scores. Finally, the cubic trans-
formation could be extended to �t even higher moments in a targeted distribution 
(Headrick, 2002). 
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Interval Scales 

Some discussions of psychological measures (Michell, 2008) and vertical scales (Briggs, 
2013) have taken issue with claims that psychological and educational measures can be 
interpreted as quantitative and as having interval properties. A recommendation from 
these perspectives is that assumptions for the treatment or interpretation of variables as 
quantitative should be explicitly acknowledged or, be�er yet, should prompt empirical 
evaluations such as empirical tests of whether the variables meet conjoint measurement 
conditions (see the Scaling Perspectives and Basic Unit of Scaling sections, Michell, 2008). 
As suggested in the Basic Unit of Scaling section, most available measures of test perfor-
mance are di�cult to establish as quantitative scales for the above notion of “quantita-
tive.” Some apparent consequences have been described in the context of vertical scaling 
(Briggs, 2013), where the intent is to establish a scale where growth across grades can be 
measured and interpreted with respect to interval interpretations (see the Vertical Scaling 
section). Claims about vertical scales exhibiting interval properties might be made by test 
publishers, claims that have been discussed as inconsistent with growth rates observed to 
vary across lower versus higher grades or across lower versus higher parts of the scale score 
distribution (Briggs, 2013; Hoover, 1984). Empirical evaluations for the existence of 
intervals in vertical scaling results have been suggested by Briggs and Domingue (2013). 

�e starting point for establishing a scale with interval properties is a measure of test 
performance with interval properties. From the Basic Unit of Scaling section there are at 
least three possibilities: 

• operationalist or pragmatic perspectives of the observed test scores as inter-
val-based indices of performance for a speci�c test form 

• Rasch ability estimates from test data shown to �t a Rasch model, speci�cally 
with empirically demonstrated double cancelation and conjoint measurement 
conditions 

• ability estimates from 2PL or 3PL models, based on arguments about the spec-
i�cation and invariance of the probabilities from these models under di�erent 
linear transformations 

Following Stevens (1946), linear scale transformations (Equations 8, 9, and 10) of these 
test performance measures would retain the established, or argued-for, interval proper-
ties, whereas nonlinear transformations would not. Note that the linear transformation 
would apply to one of the three possibilities but not to all three, because the three possi-
bilities cannot coexist because of inconsistencies in the assumed model (Rasch vs. 2PL 
or 3PL) and nonlinear relationships in observed test scores and IRT-based abilities. 

Scales for Exams With Cut Scores 

For K-12  and certi�cation and licensure tests, the interest is in reporting performance 
for a limited number of performance categories rather than on the entire range of a 
score scale. For example, test takers might be placed into Pro�cient and Nonpro�cient 
categories or into levels of certi�cation, achievement, or competence. �e performance 
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reporting for these types of tests would be oriented more to classi�cation results and 
less to the properties of an entire range of scale scores. Cut scores and classi�cations 
would have increased importance, such that representing test performance relative to 
cut scores involves a classi�cation problem with unique implications for measurement, 
CSEMs (Lord, 1985), and other properties of the classi�cations. 

Some proposed procedures for cut scores are adaptions of what was described in the 
Reporting Scale Basics section. For tests with a long range of reported scores, Dorans 
(2002) recommended scale scores centered at the midpoint of the scale, with a working 
range that extends beyond the reporting range and with scale score units that do not 
exceed the number of possible raw score points. For tests with a small number of cut 
scores, Dorans et al. (2010) recommended that scales be established that are centered 
near the cut score(s), with score points not exceeding the number of raw score points, 
and with working ranges wider than reporting ranges, all of which would accommodate 
shi�s in test di�culty and potential additions of new cut scores. For both types of tests, 
the score scale should be regarded as infrastructure likely to require repair and correc-
tive action. Recommendations are for test assembly and scaling procedures that focus 
on the cut scores of interest. Also, CSEMs that are equal across the entire range of a 
test’s scores might be less important than ensuring that the CSEMs are small near a cut 
score of interest (Lord, 1985). 

Other procedures for establishing scale scores for tests with cut scores are content 
based and not data, sample, or population based as described in Table 11.1. �e most 
well known of these are standard-se�ing procedures (Hambleton & Pitoniak, 2006; 
Ferrara et al., this volume), which begin with a statement of what competent test tak-
ers know and are able to do and then search for potential cut scores judged to re�ect 
these statements. Various standard-se�ing methods can be used to ask a set of judges 
to work with or produce statements for what they think test takers should be able to do 
at a speci�c performance level and then identify through judgmental processes the test 
questions and performance that correspond to these statements. Although the basis of 
standard-se�ing procedures is primarily judgment and test content, the process is o�en 
supplemented with test performance data, such as item and test performance, and results 
indicative of the impact of cut score recommendations on scale score distributions. 

Scales for Test Batteries and Composites 

For a ba�ery of tests covering di�erent content areas, scales might be established using 
the same scaling methods with all tests in the ba�ery, as taken by the same test-taker 
group. �e resulting scales for each test in the ba�ery can facilitate similar interpretations 
for scores in each of the tests, such that test takers’ strengths and weaknesses are revealed 
in their scores on the ba�ery. One of the earliest examples of ba�ery scaling was proposed 
by Kelley (1914, 1923) for establishing comparable units (i.e., same means and standard 
deviations in the reference population) for the handwriting scoring method proposed by 
�orndike (see the Scaling Perspectives section) and another scoring method. From a dis-
cussion of alternative proposals for establishing comparable scores from the two scoring 
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methods of handwriting, Kelley proposed establishing comparable measures as standard 
scores similar to Equation 9. More recent examples of ba�ery scaling are the recentered 
SAT (Dorans, 2002), where the SAT Math and Verbal scales were both established based 
on normal distributions with means of 500 and standard deviations of 110. �e 2016 
redesigned SAT also targeted similar Math and Evidence-Based Reading and Writing 
(ERW) Section score means and standard deviations (Kim et al., 2016). �e ACT resca-
ling targeted means of 18 with constant SEMs (Brennan, 1989), but di�erent scale score 
standard deviations. �e scale scores for each of these ba�eries can encourage di�erent 
types of interpretations, such that test ba�eries for normalized scales might facilitate ref-
erences to percentiles of the normal distributions, those established with similar means 
and standard deviations might facilitate references to standard deviation units, and those 
established based on stabilized SEMs might encourage SEM-based score distinctions 
rather than distinctions based on standard deviation units (Kolen, 2006). 

Composite scores might be formed based on linear combinations of the scores on 
each test in the ba�ery. For example, the Total score of the 2016 redesigned SAT is 
the sum of the Math and Evidence-Based Reading and Writing Section scores, and the 
ACT Composite score is the average of the math, science, English/writing, and reading 
test scores. Both examples are re�ections of nominally weighted scores. Other weight-
ing procedures such as those based on e�ective weights and the proportional contri-
bution of test score variances to the composites can produce di�erent composite score 
scales, to the extent that the test scales have di�erent standard deviations and the tests 
have di�erent correlations with each other (Brennan, 1989; Kolen, 2006). �e scaling 
characteristics of ba�eries and composites of multiple tests are a�ected by the scaling 
results for the individual tests, the scale score standard deviations of the individual tests, 
and the intercorrelations among the scale scores of the tests. Because scales are usually 
set and maintained on individual tests, the scale score characteristics for ba�eries and 
composites are more di�cult to establish and maintain. �e Ba�ery Scaling and Com-
posites section provides further discussion and an example of these issues. 

Auxiliary Scales 
A�er one or more primary scales are set, additional procedures and methods can be 
used to convey enhanced interpretations of the primary scale scores. For auxiliary 
scales, the goal is less about building interpretations directly into the scales themselves 
and more about supplementing the primary scales with additional interpretive infor-
mation. Two categories of interest are based on normative information and on content. 

Auxiliary Scales Based on Norms 

Norms refer to the statistical information that could be provided and used to describe 
performance associated with di�erent scale scores, such as the scale score mean, stan-
dard deviation, and percentile ranks (Equation 11 applied to sc( )Y ) for one or more 
test-taker groups. Norms might be determined for groups sampled from particular 
populations. Sometimes the group used to establish norms is the same sample from 
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population P used to establish the scale scores, in which case the norms of sc( )Y are 
consistent with the statistics (i.e., means, standard deviations) directly established in 
the distribution of sc( )Y . Previous volumes of Educational Measurement have listed 
options for norms groups and reporting (Ango�, 1971; Flanagan, 1951; Kolen, 2006; 
Petersen et al., 1989), presented here with an update. 

• National norms: Describe test performance from nationally representative test 
takers at the age or educational level for which the test was designed. 

• Local norms: Describe test performance from test takers from speci�c educa-
tional or geographic units. 

• User norms: Describe test performance from test takers who take the test during 
a given time period. 

• Convenience norms: Describe test performance from test takers who are avail-
able at the time a test is constructed. 

• Group-level norms: Describe aggregated test performance from groups, such as 
average performance for schools, districts, or states. 

• Item-level norms: Describe the performance on speci�c items for a norm group. 
• Skill-level norms: Describe the performance on sets of items measuring a partic-

ular skill for a norm group. 
• Growth norms: Describe test performance for a group of students (e.g., K-8) 

that takes at least two tests at di�erent grades, usually where separate sets of 
norms on the second test are reported for subgroups of students obtaining di�er-
ent scale scores on the earlier test (Betebenner, 2009; Castellano & Ho, 2013). 

Typically, national norms that describe test performance for nationally representative 
test takers need the most technically elaborate norming studies. National norming 
studies require that the national population of interest is precisely de�ned in terms of 
students, schools, etc. A sampling plan is developed to include test takers for whom 
norms will produce accurate estimates of the population norms. National norming 
studies may use several sampling approaches to increase the representativeness of 
the test takers and resulting norms, including simple random sampling, random sam-
pling within de�ned strata of student characteristics (e.g., geographic region, school 
type), cluster sampling of test-taker groups (e.g., schools), or systematic random 
sampling that re�ects the ordering of a variable related to the test scores of interest in 
the norms study. O�en, national norming studies use a combination of sampling and 
statistical weighting procedures to obtain schools and test takers and increase their 
national representativeness. Approaches to national norming studies by the National 
Assessment of Educational Progress (NAEP, h�ps://nces.ed.gov) and by ACT were 
compared in terms of their methods, complexity, and practical challenges by Kolen 
(2006). Other types of norms (user, convenience, etc.) might be produced using less 
elaborate procedures (e.g., test takers available at the time the norms are produced). 
Such norming groups may be less stable and more likely to change (Petersen et al., 
1989). 

https://nces.ed.gov
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Auxiliary Scales Based on Content 

Some auxiliary scales are a�empts to supplement primary score scales with content-based 
descriptions of speci�c scale scores. One example involves item mapping, or �nding a set 
of items that represents various scale score points. In the case of NAEP, these items “help 
to illustrate what students know and can do in NAEP subject areas by positioning descrip-
tions of individual assessment items along the NAEP scale at each grade level” (h�ps:// 
nces.ed.gov). For item mapping, the scores of individual items are regressed on scale 
scores using logistic regression or an IRT model. �en a response probability is adopted 
to divide test takers into groups with “higher” and “lower” probabilities of success on test 
items. �e actual values used to divide the higher and lower probability groups could be 
. /. /.5 5, .8 2, or other probabilities for dichotomously scored items. In NAEP, these groups 
are divided using probabilities based on 74% for MC items and 65% for CR items. �ese 
response probability values were obtained based on work by Huynh (1998), who showed 
that these values correspond to the maximum IRT-based information provided by a cor-
rect response to MC or CR items. �e result of item mapping is a list of test questions that 
represents various scale score points, with content-based descriptions that take the form 
of phrases that describe what test takers can do correctly, in general terms rather than for 
one or more speci�c items (Kolen, 2006; Kolen & Brennan, 2014). 

Scale anchoring is another type of content-based auxiliary scale, with the goal of pro-
viding general statements about what students obtaining di�erent scale scores would 
know and are able to do (Kolen, 2006). Item maps are a �rst step to scale anchoring. 
Additional steps involve choosing a set of scale score points across the score scale range, 
where items that map at or near these points are chosen to represent these points. �en 
subject ma�er experts review the items mapping near each point and produce state-
ments presenting the skills of test takers scoring at these points, assuming test takers 
also know and are able to do all of the skills in the statements at or below the given 
score level. Scale anchoring has been used in NAEP (Allen et al., 1999) and in ACT 
(2001). �e Binet–Simon (Binet & Simon, 1916) test described in the Scaling Perspec-
tives section can also be viewed as a test with sets of items speci�cally anchored to di�er-
ent scale scores. Item-mapping and scale-anchoring procedures have raised questions 
about whether their outcomes actually facilitate score interpretations (Forsyth, 1991). 
�e content-based labeling produced with scale anchoring appears to be the result of 
overly subjective and confusing judgmental processes (Pellegrino et al., 1999) that may 
not be supported by statistical analyses (Haberman, Sinharay, & Lee, 2011; �urstone, 
1925) or by items that are su�ciently discriminating (Dorans, 2018). 

Summary of Primary and Auxiliary Scales 
Reporting scales should be viewed as infrastructure in need of monitoring and possi-
ble repair (Dorans, 2002). For the primary scaling approaches reviewed in the Scaling 
section, potentially important checks for primary scales include checks for excessive 
accumulations at the top, middle, or bo�om parts of the scale; checks that the score 
means do not excessively depart from the midpoint of the scale; and other checks that 

https://nces.ed.gov
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properties like distribution shapes, CSEM values, etc., are established and maintained 
as intended. As described in the Scales for Exams with Cut Scores section, primary scales 
can also be established and monitored in terms of cut scores of interest, including distri-
butions resulting from pass/fail decisions and CSEMs at or near those cut scores. �ese 
possible checks suggest di�erent types of monitoring for primary scales established in 
di�erent testing contexts. In admissions testing where testing companies develop tests 
for users to employ di�erent parts of a relatively long scale, monitoring should focus 
on the entire score range. In K-12  and certi�cation and licensure programs, the focus 
is primarily on classi�cations at one or very few cut points, and the monitoring of 
scale scores would likely focus on pass/fail distributions, classi�cation accuracies, and 
CSEMs at speci�c cut scores. Scale maintenance for large-scale survey assessments 
like NAEP might focus on the estimation of population and subpopulation scale score 
distributions and classi�cations over time. In each of these contexts, scales established 
in special studies should be checked to ensure that their results will accurately apply 
beyond these scaling studies and to the intended testing population. �e auxiliary 
scales that might be established and reported for a particular testing program should 
also be monitored for potential changes due to testing population changes and other 
potential changes in content-based descriptions. �e equating procedures described 
in the Equating section are needed for preserving established primary and auxiliary 
scales. 

EQUATING 

For a large-scale testing program, the establishment of a reporting scale as described in 
the Scaling section usually comprises only an initial step for a single test form (Y ). Usu-
ally Y  is the �rst of many test forms to be developed and administered. Additional work 
is needed to develop, administer, and report scores for the subsequently developed test 
forms for that testing program. Equating is used to address unintended di�culty di�er-
ences in the scores of these alternate forms, so that the previously established reporting 
scale is maintained (Holland & Dorans, 2006; Kolen & Brennan, 2014). �is section 
describes equating in an updated version of the discussion from Holland and Dorans 
(2006), which itself was a continuation of previous discussions from Petersen et al. 
(1989), Ango� (1971), Flanagan (1951), and others. 

�e Distinguishing Equating From Other Forms of Linking section describes some gen-
eral concepts about equating and its distinctions from other types of linking based on 
goals, interpretations, and computational procedures. Equating history and require-
ments are covered in the History of Equating and Equating Requirements sections. �e 
data collection designs used in di�erent types of equating are described in the Data 
Collection Designs section. �e �nal section covers Methodological Implementations of 
Equating. �e di�erent equating approaches covered in these discussions are summa-
rized in Table 11.2 in terms of the equating de�nition, method(s), assumptions, and 
likely data collection designs. 
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Table 11.2 Summary of Types of Equating 

Definition of Equating Method(s) Assumptions Data Collection 
Design(s) 

Align the means and standard 
deviations of observed scores 
of alternate test forms (com-
mon population) 

Linear scale 
alignment 

Tests measure the same construct; 
population invariance; equity 

Randomly equiva-
lent groups; single 
groups; counterbal-
anced 

Align the distributions of 
observed scores of alternate test 
forms (common population) 

Equipercentile 

Align the means, standard 
deviations, and/or distribu-
tions of observed scores of 
alternate test forms (di�erent 
populations) 

Tucker, Braun– 
Holland; frequency 
estimation/ 
poststrati�cation 

Tests measure the same construct; 
population invariance in the con-
ditional test-given-anchor distribu-
tions; equity 

NEAT 

Chained linear; 
chained 
equipercentile 

Tests measure the same construct; 
population invariance in the two 
chained functions; equity 

NEAT 

Levine observed 
score; modi�ed fre-
quency estimation 

Tests and anchors are congeneric; 
population invariance in the condi-
tional Test-given-tA  distributions; 
equity 

NEAT 

IRT observed score Items measure the same construct; 
the IRT model �ts the data; IRT 
parameter estimates for all items 
are on the same scale and invariant 
across administrations; equity 

NEAT (this method 
is also used with 
randomly equivalent 
groups, single group, 
and counterbalanced) 

Align the means and standard 
deviations of true scores of 
alternate test forms (di�erent 
populations) 

Levine true score Tests and anchors are congeneric; 
true score results can be applied to 
observed scores; equity 

NEAT 

Link true scores via an 
expected test-given-ability 
relationship based on an IRT 
model 

IRT true score Items measure the same construct; 
the IRT model �ts the data; IRT 
parameter estimates for all items 
are on the same scale and invariant 
across administrations; true score 
results can be applied to observed 
scores; equity 

Randomly equivalent 
groups; single group; 
counterbalanced; 
NEAT 

Score test takers using item 
parameter estimates obtained 
and linked in previous admin-
istrations 

IRT ability 
estimation 

Items measure the same construct; 
the IRT model �ts the data from 
the previous calibrations; param-
eter estimates are invariant across 
administrations with minimal 
context and order e�ects; equity 

Pre-equating 

Note. IRT = item response theory; NEAT = nonequivalent groups with anchor test. 
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Distinguishing Equating From Other Forms of Linking 
Equating is one type of linking procedure for transforming the scores of one test form 
to another (Holland, 2007; Holland & Dorans, 2006; Pommerich, 2016). Speci�cally, 
equating adjusts the scores of test forms constructed and administered in the same way 
for unintended di�culty di�erences. Within a linking hierarchy, equating is the stron-
gest among several types of linking, distinguished in terms of interpretations and com-
putational methods (Ango�, 1971; Flanagan, 1951; Holland & Dorans, 2006; Mislevy, 
1992; Petersen et al., 1989). 

Di�erent categories of linking can be used to achieve di�erent goals and support 
particular interpretations of the linked scores. When equatings of alternate forms of 
the same test are produced (X  and Y ), the expected result is interchangeability in the 
reported scores, meaning that when form X is equated to form Y , the resulting X -to-Y 
scores can be used in place of Y ’s scores for any purpose, as if those scores came from 
the same test (Dorans, 2013; Pommerich, 2016). For other types of linking involving 
di�erent tests (i.e., X and Y  are di�erent tests), weaker and more limited results are 
expected. One alternative goal is comparable scales (Ango�, 1971; Kelley, 1923; Pom-
merich, 2016), which is one component of interchangeability that can be de�ned as 
the result of a symmetric alignment of scale score distributions that facilitates compari-
sons of the resulting scores. In the absence of interchangeability, comparability is group 
dependent (see the Linking section). 

Another goal of linking is “best” prediction, which is an asymmetric conversion from 
the scores and scales of one test to another, such that prediction error is minimized. 
Predictions are distinguished from interchangeability and comparability in that predic-
tions are o�en group dependent and always asymmetric (i.e., for given X scores, the 
best prediction from X  to Y does not equal the best prediction from Y  to X ). 

Scale-Aligning Computations 

Scale-aligning methods are one type of computation used in test linking, including 
equating (Holland & Dorans, 2006). �ese methods can be described as score transfor-
mations that result in the scores of two test forms having the same distribution (Kelley, 
1923). For example, consider test Y  as a form for which a scale score transformation 
has been established, sc ( )Y , and X is another test form whose scores are intended to 
be transformed to align to the same scale. �e transformation of X to the scale of Y  may 
be achieved through matching the marginal distributions of these forms obtained from 
test takers representing target population T (Holland & Dorans, 2006, p. 202, de�ned T 
as the source of the equating data and also presented other perspectives on target pop-
ulations in equating). An equipercentile X -to-Y  transformation produces Y  scores with 
percentile ranks that equal those of every X score for X and Y test takers from the tar-
get population T. �e equipercentile linking is produced through computing percentile 
ranks at each score of X  (Equation 11 for score x  on the distribution of X , F xT ( )) and 

obtaining the inverse of Equation 11 on the distribution of Y (i.e., GT 

-1
[ ]y ) in T, 
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eY T, ( )x = GT 

−1
[ FT ( )x ]. (15) 

Equation 15 produces a symmetric X -to-Y conversion that equals the inverse of the Y 

-to-X  conversion at the same x  scores, e 
-
X T,

1
( )y  at x . �e X -to-Y  scores have a distribu-

tion on X  that approximately equals the distribution of the Y  scores in population T. 
Simpler versions of Equation 15 can also be produced by using a version of Equation 
9 to solve for X -to-Y  scores that match the mean and standard deviation of Y  but not 
other aspects of Y ’s distribution, 

σ 
lY T, ( )x = µY T, +(x − µX T, ) Y T, , (16)

σ X T, 

where m
XT,  and m

X T,  denote the population means of X  and Y in T, and sX T,  and sY T, 

denote the population standard deviations. Equations 15 and 16 establish compara-
bility through symmetric transformations that match the score distributions (Ango�, 
1971; Holland & Dorans, 2006; Kelley, 1923; Pommerich, 2016). Once the results are 
obtained from either Equation 15 or Equation 16, X -to-Y  scores can be transformed to 
the reporting scale by applying one of the sc Y( )  scale transformations described in the 
Scaling section. 

Projecting and Predicting Computations 

Projecting and predicting are types of linking procedures that di�er from scale-aligning 
approaches like equating. Rather than aligning the scores of form X  and form Y  to have 
comparable score distributions for a particular group of test takers, these methods are 
used for the goal of producing an asymmetric, best prediction of scores or a projection 
of score distributions for one test to those of another. Predictions and projections can 
also be produced for the IRT-based thetas from di�erent tests (Holland & Hoskens, 
2003; �issen et al., 2015). One example of a projected distribution is the percen-
tile rank of Y = y  for a subgroup of test takers obtaining a speci�c score on X(= x) , 
F y xT ( |  ) . Another example is the prediction of the means of Y  given X  using a linear 
X -to-Y  regression, 

σ Y T,
regY T, ( )x = µY T, +( x−µX T, ) ρXY T, , (17)

σ X T, 

where rXY T,  is the XY  correlation. �e prediction shown in Equation 17 is a linear 
regression that provides an expectation of Y given X that minimizes prediction error, 
the variance of Y reg- Y T, ( )x , an essential supplement to Equation 17’s point estimates 

(�issen et al., 2015). Unlike some computational methods for scale aligning, project-
ing and predicting functions require data collection designs where test takers take both 
X  and Y . Also unlike scale-aligning functions, predicting functions are not symmetric, 

meaning that reg 
-1

( )  at x  is not equal to reg x( ) .X T, y Y T, 
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Some results are of special interest for situations in which there is a perfect one-to-one 
relationship in X  and Y . For linear functions, this situation means that the correlation 
between X  and Y  is 1 and the X -to-Y  regression in Equation 17 produces the same 
results as the X -to-Y  scale alignment in Equation 16. �is result has several uses. 
One use is de�ning a situation in which a regression can be used to align scales. For 

i 1|θ, a bi = Y ( )θexample, consider the second half of Equation 6, ∑w Pr Vi ( = i , ,  c i) τ , 
i 

which can be described as a regression of IRT-implied true scores on q  (Lord & Novick, 
1968, p. 386), such that these true scores have a perfect and functional (not statistical) 
nonlinear relationship with q  under the IRT model. When same-scale IRT parameter 
estimates are available for the items of tests X  and Y , the IRT-based true score regres-
sions of X  and Y  can be combined to produce a scale alignment of the true scores of X 

−1 -1
and Y , τ τ


 ( )θ 


 , where τ ( )θ  denotes the inverse of the θ -to -τ X  function (i.e., Y  X  X 

tX -to-q , Lord, 1980). In addition to these IRT applications, perfectly correlated X  and 
Y  true scores might also be assumed and used to produce scale alignments of tX and 
tY based on classical congeneric theory (see the Equating Requirements section; Kolen 
& Brennan, 2014; Levine, 1955). Another use of the relationship of Equations 16 and 
17 is to describe the strength of a linking of tests with scores that are not perfectly cor-
related. For example, in concordances of di�erent tests (see the Concordances section), 
the correlation has been used as a measure to diagnose the strength of the resulting 
concordances (see the Correlations and Prediction Error section), such as by describing 
the extent to which a scale alignment might be used to produce score predictions that 
approximate the accuracy of projection or prediction functions (Dorans, 1999; Moses, 
2014a). 

History of Equating 
�e origins of equating date to the early 20th century, when an intelligence test known 
as the Army Alpha was developed for selection into the military for World War I (Yoa-
kum & Yerkes, 1920). Alternate test forms were developed by randomly assigning items 
to the forms, to prevent cheating and to establish forms of approximately equal di�-
culty. �e di�culties of the alternate forms were subjected to empirical evaluations, 
and for the subset of forms surviving these evaluations, the unadjusted observed scores 
were treated as interchangeable. �e linear linking function (Equation 16) was recom-
mended over the nonsymmetric regression function (Equation 17) for establishing 
comparable measures on the basis of approximating scale score distributions (Otis, 
1922; �orndike, 1922). Kelley (1923) provided more discussions of linear linking 
functions and an introduction of the equipercentile method (Equation 15). Neverthe-
less, “the need, or at least the desire, to equate scores on alternate forms of the same test 
probably arose decades a�er the invention of scaling methods and of the two standard 
methods for equating—the linear and equipercentile methods” (Holland & Dorans, 
2006, p. 196). 
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Equating was described in general and in practice for the Cooperative Achievement 
Tests by Flanagan (1939, 1951). �ese discussions covered equating for the data 
collection designs currently referred to as the single group, randomly equivalent groups, 
and counterbalanced designs (see the Data Collection Designs section). Other emphases 
were on form construction and linear and equipercentile methods. Test equating for 
nonequivalent groups with an anchor test (the NEAT design, see the Data Collection 
Designs section) has been traced to the SAT, which administered two editions in 1938 
and employed anchor equating in 1941. For this SAT application, a method a�ributed 
to Tucker and eventually named Tucker equating (Ango�, 1971) was used to imple-
ment a linear scale alignment (Equation 16) with regression-based predictions of the X 
and Y  means and standard deviations for a hypothetical target group (Gulliksen, 1950; 
Holland & Dorans, 2006; Lord, 1950). 

Since the early SAT equatings, additional discussions and uses have been provided, 
including Flanagan’s (1951) comprehensive treatment of test development methods in 
equating, computational methods, data collection designs, a de�nition of comparabil-
ity in equating, and, notably, a warning about likely population sensitivities and group 
dependences in linking results (p. 748). Lord (1950) provided a statistical overview 
of linear equating procedures and standard errors for various data collection designs. 
Ango� (1971) provided another comprehensive discussion of equating, computational 
methods and data collection designs, which, in contrast with Flanagan (1951), empha-
sized the goal of equating to produce results that are relatively group invariant (p. 563). 
Ango� also described situations where a linear equating function approximates the 
equipercentile function (i.e., when the shapes of the X  and Y  distributions are simi-
lar) and recommended linear functions for these situations (p. 564). Ango� ’s (1971) 
chapter has been a foundational and in�uential reference for decades of practice and 
literature on equating, scaling, and linking. 

Updates to the statistical aspects of equating were provided by Holland and Rubin 
(1982), including a discussion of the mathematical properties of commonly used 
equating methods (Braun & Holland, 1982) and section pre-equating (Holland & 
Wightman, 1982). Interspersed in this history, proposals were made to describe and 
implement equating based on measurement theory, including classical true score the-
ory (Levine, 1955), IRT (Lord, 1980; Lord & Wingersky, 1984), and other works 
focusing on theoretical properties such as equity of equating results with respect 
to true scores (Hanson, 1991; Morris, 1982) and IRT (van der Linden, 2011). �e 
IRT developments were especially important for providing alternative theoreti-
cal and practical implementations for equating, including proposals for item-level 
pre-equating and IRT-based adaptive testing (Lord, 1980). Discussions and updates 
have continued, including the chapters in the third and fourth editions of Educational 
Measurement (Holland & Dorans, 2006; Petersen et al., 1989), subpopulation invari-
ance evaluations (Ango� & Cowell, 1986; Dorans & Holland, 2000; Harris & Kolen, 
1986), several texts (Dorans et al., 2007; Holland & Dorans, 2006; Kolen & Brennan, 
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2014; Linn, 1993; Livingston, 2004; Mislevy, 1992; von Davier, 2011; von Davier et 
al., 2004a), and so�ware packages (Brennan, 2004; Brennan et al., 2009; Gonzalez & 
Wiberg, 2017). 

In practice, equating has been implemented using di�erent data collection designs 
for di�erent testing programs, including programs that equate with randomly equiv-
alent groups designs (ACT and the 2016 redesigned SAT) and others that use anchor 
tests to equate through nonequivalent administration groups designs (the SAT prior 
to the 2016 redesign). Other programs use designs suited for small samples (Puhan 
et al., 2009), and for pre-equating (CLEP or College-Level Examination Program, 
Gao et al., 2012). �ese implementations of test equating are summarized in Table 
11.2. 

Equating Requirements 
In discussions of linking frameworks (Holland & Dorans, 2006), equating is described 
as the strongest form of linking and is subject to the strictest requirements. �ese 
requirements were listed by Holland and Dorans (2006) as a culmination of several 
previous discussions of equating (Ango�, 1971; Dorans & Holland, 2000; Flanagan, 
1951; Kolen & Brennan, 2014; Linn, 1993; Mislevy, 1992; Petersen et al., 1989). �e 
equating requirements are summarized in this section, including updates and clari�ca-
tions from Brennan (2010), Dorans and Walker (2007), and Kolen (2007). 

An equating can be used to align the scales of X  and Y , such that X -to-Y  and Y  scores 
can be used interchangeably, thereby maintaining a testing program’s reporting scale. 
For an X -to-Y  transformation to be considered an equating, the X  and Y  test forms and 
the X -to-Y  transformation must satisfy the following requirements: 

a. �e equal construct requirement: Test forms X  and Y  should measure the same 
constructs. 

b. �e equal conditions of measurement requirement: �e same administration and 
measurement conditions should be used for X  and Y . 

c. �e equal and high reliability requirement: �e reliabilities of X  and Y , rel X T,  and 
relY T, , should be equal and high. 

d. �e equity requirement: �e X -to-Y  equating should make it a ma�er of indi�er-
ence whether test takers take X  or Y , for test takers at every given ability level. 

e. �e (sub)population invariance requirement: �e X -to-Y  equating should be pop-
ulation invariant, in that the choice of (sub)population used to estimate it does not 
ma�er. 

f. �e symmetry requirement: �e X -to-Y  equating function should be the inverse 
of the Y -to-X  equating function. 

Discussions of the equating requirements describe them as aspirational concepts 
(Brennan, 2010; Dorans & Moses, 2023) that provide an intuitive theory of test equat-
ing (Holland & Dorans, 2006). �ese requirements are not likely to be perfectly met 
in practice, sometimes prompting criticisms for being vague, impractical, stringent, 
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unnecessary or impossible (Dorans & Holland, 2000; Livingston, 2004; Lord, 1980). 
Nevertheless, the equating requirements specify the goals of the test development, 
administration, scoring, and linking processes that are useful for producing 
interchangeable scores that maintain the reporting scales of a testing program for a tar-
get population of test takers. As described in Linking, the equating requirements are 
also useful for characterizing nonequating types of linking. 

Equating requires that the test forms being equated are assembled according to the 
same content and statistical speci�cations, such that they exhibit the same measure-
ment properties (Requirement a). Equating Requirement b emphasizes consistency in 
administration conditions for tests that are equated (Kolen, 2007). In describing condi-
tions of measurement, Kolen (2007) listed aspects under the control of the test devel-
oper such as that tests X  and Y  are administered with the same instructions, layout, 
timing, scoring procedures, aids, and modes (computer or paper–pencil). Other mea-
surement conditions that are not under the direct control of the test developer can also 
a�ect the quality of equating outcomes, including stakes for test performance, reasons 
test takers take the test, and type of test preparation activities. 

Requirement c, that the test forms are highly and equally reliable, has received ongo-
ing and updated clari�cations. �e equal reliability aspect of this requirement re�ects 
earlier recommendations, meaning that the test forms being equated must have the 
same measurement precision. �e requirement that forms’ reliabilities be high is a more 
recent addition, which conveys that equating requires scores that are precise and close 
re�ections of their true scores, that support high correlations and prediction accuracy, 
and that make subpopulation invariance (Requirement e) and equity (Requirement 
d) more likely (Brennan, 2010; Dorans & Walker, 2007; Flanagan, 1951; Holland & 
Hoskens, 2003; Kolen, 2004; Lord, 1980). 

As stated in the Scaling section, many issues concerning reliability, true score vari-
ance, and error variance are, at best, imperfectly understood. �ey are also increas-
ingly complex when reliability and equating are considered in greater detail and 
in relation to other equating requirements. �e reliability requirement depends 
on consistently following test development procedures and speci�cations for test 
length, content, items, administration, and scoring procedures (Requirements a and 
b). Test forms developed from di�erent sets of items that meet the same speci�ca-
tions could be assumed to be parallel in the classical test theory sense (equal reli-
abilities, equal true scores, and errors with equal variances). In practice, assembled 
forms can be imperfectly or nominally parallel (Lord & Novick, 1968) and might 
have unintended di�erences, such as di�erences in their mean scores a�ributable 
to their unique samples of items. Equating can be described as the application of 
scale-aligning adjustments that address errors a�ributable to forms’ item samples, 
errors that are realized in �xed di�culty di�erences of the speci�c form(s) being 
equated (Li, 2023; Moses & Kim, 2015). Equating does not address the reduction of 
relative errors (i.e., interactions of test takers and items, as well as other unspeci�ed 
sources of error; Li, 2023).1 
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Forms’ error variances can also be considered conditional on test-taker ability, 
variances that are assumed to be equal according to Equity Requirement d. One 
proposal based on equity applies conditional, ability-speci�c scale-aligning adjust-
ments (van der Linden, 2011, 2013), which could be interpreted as an a�empt to 
adjust scores for IRT-implied relative errors, with the forms’ items and parameters 
being treated as �xed. As described in the Local, Ability-Speci�c Test Linking sec-
tion, these local adjustments likely violate other equating requirements concerning 
consistency in scoring rules for a given form (Requirement b) and subpopulation 
invariance (Requirement e). 

Di�erent score models and associated reliability measures have equating implications 
and provide unique representations of reliability and error, including model-implied 
error variances based on �xed items (commonly used IRT models), score models that 
treat items as random samples, and more complex score models that account for errors 
across a range of admissible measurement conditions. �ese issues illustrate the lack of 
a single framework for measurement error and other types of equating error, the need 
for greater speci�city in reliability and equating, and the importance of test form reli-
abilities that are high and equal in some sense for reducing the impact of these ambigu-
ities on equating results. 

Equity Requirement d states that the conditional distributions of Y  and X -to-Y 
equated scores are equal for test takers at speci�c values of a latent ability based on 
a particular measurement model (Brennan, 2010; Hanson, 1991; Lord, 1980; Mor-
ris, 1982; van der Linden, 2011). Equity was originally de�ned in terms of IRT mod-
els, qs, and q-conditional frequency distributions (Lord, 1980). Equity is commonly 
expressed based on q-conditional cumulative distributions (Kolen & Brennan, 2014; 
van der Linden, 2011), 

F eq [ Y T, ( )x ]= Gq [ ]y for all q , (18) 

where the q  subscript indicates conditioning on q . 
Equity discussions based on classical test theory have focused on relationships among 

equating functions of observed scores, true scores, and equating requirements (Hol-
land & Dorans, 2006; Hanson, 1991; Kolen & Brennan, 2014; Morris, 1982). Holland 
and Dorans (2006) a�ributed an equity theorem to Hanson (1991) and synthesized 
several equating requirements. To summarize, assume that X  and Y  measure the same 
construct and follow a congeneric model (i.e., their true scores are perfectly and linearly 
related) and the functional relationship of the true scores, tX  and tY, can be expressed 
as a scale aligning function, 

σ rel Y T, Y T,
τY = l

τ (τX )= µY T, + (τX −µX T, ) . (19)
Y σ rel X T, X T, 
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Substituting observed X  scores into true score conversions like Equation 19, l x( )tY 

Y 
( )  =satis�es �rst-order equity where the conditional mean of l XtY 

( )  given lt tX tY 

equals the conditional mean of Y given tY  for all ts. Hanson (1991) showed this �rst-or-
der equity result in Levine true score equating for observed scores (see the True Scores 
section) with the nonequivalent groups with anchor test (NEAT) design (see the Data 
Collection Designs section). Holland and Dorans (2006) additionally stated that when 
X  and Y  are equally reliable, l ( )x  equals lY T, ( )x  in Equation 16 and satis�es sec-tY 

ond-order equity where the conditional variance of l X t ( )tX =( )  given l t equals tY Y Y 

the conditional variance of Y  given tY  for all ts. Brennan (2010) provided a related 
discussion that considered quadratically represented curvilinear equating functions, 
showing that curvilinear equating functions are more likely to satisfy �rst- and sec-
ond-order equity if the reliabilities of X  and Y  are not only equal, but also high (nearly 
linear equating functions are also helpful, but less realistic). Altogether, these results 
connect several equating requirements, such that X  and Y  are assumed to measure 
the same constructs (Requirement a), are administered under the same conditions 
(Requirement b), with scores that have equal and high reliabilities (Requirement c), 
and where the equating is a symmetric scale alignment of the forms’ observed scores 
(Requirement f ) that approximates the functional relationship of their true scores and 
achieves �rst- and second-order equity (Requirement d) (Holland & Dorans, 2006). 
�e results represent one of the most general theories of equating available, including 
all but one equating requirement (i.e., the subpopulation invariance requirement is 
out of scope, since the results are based on a �xed target population, T; Holland & 
Dorans, 2006). 

Equating Requirement e emphasizes that the same X -to-Y  linking results should be 
obtained if estimated in T and in subpopulation Tg , 

e , (x) = e (x for each Tg . (20)Y Tg  Y T, ) 

�e subpopulation invariance requirement is more likely met when X  and Y  are con-
structed to be similar and of high reliability (Dorans & Holland, 2000; Flanagan, 1951; 
Kolen, 2004). �e invariance requirement of equating has been especially important 
for use in the empirical evaluations of nonequating types of linking (see the Linking 
section) and also for linkings intended to be used as equatings. Indices for quantifying 
the extent to which equating functions vary by subgroup are summarized in the Subpop-
ulation Invariance Evaluations section. 

Requirement f indicates that asymmetric prediction and projection functions cannot 
be used as equating functions because asymmetric functions mean that it is not a ma�er 
of indi�erence which form test takers take. Symmetric functions like Equations 15 and 
16 can be described as a computational realization of comparable scales (i.e., compara-
ble scale score distributions; Holland & Dorans, 2006; Kelley, 1923). 
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Data Collection Designs 
Data collection designs for test equating are summarized in Table 11.1 and described 
in detail in several texts (Ango�, 1971; Dorans, 2018; Dorans et al., 2010; Holland & 
Dorans, 2006; Kolen & Brennan, 2014; Kolen, 2007; Petersen et al., 1989; von Davier 
et al., 2004a). Each design is an approach to obtaining test data such that an equating 
of the forms’ scores will estimate di�erences in test di�culty and other characteristics, 
where the estimates (a) control for the abilities of the test-taker groups taking both X 
and Y and (b) re�ect target population T. Successful data collection designs are essen-
tial for obtaining data from which accurate equating and other scale alignment and pro-
jection functions can be estimated. 

�e simplest test equating design shown in Table 11.1 is the single group design, 
where one sample of test takers from population P (=T)  takes both X  and Y . �is 
design can use relatively small samples to produce statistics that accurately re�ect their 
population values. �e necessary conditions for this design are that it must be realistic 
for test takers to take both tests and that the resulting data are not adversely a�ected by 
timing issues, testing fatigue, learning, or order e�ects. Scale-aligning, predicting, and 
projecting methods are all possible with the single group design, but satisfying the nec-
essary conditions can be challenging. One advantage of this design is that a correlation 
between the two tests can be estimated to enable a direct check on Requirements a and 
c, provided that Requirement b is also met. 

Another design shown in Table 11.1 is the randomly equivalent groups design, 
where two independent samples of test takers from population P (=T)  are randomly 
assigned to take X  or Y . In large-scale testing, the random assignment is usually imple-
mented with spiraling, where X and Y are alternated in their delivery, resulting in sys-
tematically assigned test forms to the test-taker groups. Groups end up being more 
equivalent than would be expected with simple random sampling (von Davier et al., 
2004a). Because independent samples are used, the randomly equivalent groups design 
requires larger sample sizes to produce statistics for test forms X  and Y  with the same 
precision as obtained with the single group design. When test-taker sample sizes are 
large and the test forms can be reused and readministered without security problems, 
the randomly equivalent groups design has advantages in that it avoids order e�ects 
that can arise with the single group design. Scale-aligning methods are used with the 
randomly equivalent groups design. 

In the counterbalanced design shown in Table 11.1, independent samples are drawn 
from population P (=T) , one where test takers take form X and then Y , and another 
where test takers take Y  and then X . �is implementation combines the single group 
and randomly equivalent groups designs, allowing for order e�ects to be estimated 
based on the di�erences in test linking results for data re�ecting each testing order. To 
the extent that order e�ects are observed, various choices can be made for linking forms 
X  and Y  with the counterbalanced data (von Davier et al., 2004a), including the use of 
all available data to represent both testing orders, the use of only subsets of the data that 
do not re�ect order e�ects (where some test takers take X  �rst and other test takers take 
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Y  �rst), and other weighted combinations of these. Usually a counterbalanced design 
is implemented in a special study where the estimation of order e�ects is of interest, 
rather than in a typical test administration where testing orders are �xed. As with the 
single group design, Requirements a and c can be checked, as can Requirement b. 

Another data collection design shown in Table 11.1 is less direct, where X  is linked 
to Y  through scores on an anchor test, A. �is is the NEAT design (Holland & Dor-
ans, 2006), which is also referred to as the common-item nonequivalent groups design 
(Kolen & Brennan, 2014). Samples from two di�erent populations take X  or Y , and 
both samples take A. Because the samples represent di�erent populations, estimates of 
population di�erences are needed for the X -to-Y linking, and the groups’ performance 
on A provides these estimates. �e NEAT design contains two single group designs. In 
practice, A can be a set of items common to X and Y (an internal anchor) or a test or 
set of items that is separate from X  and Y  (an external anchor). �e quality of the �nal 
linking results based on internal or external anchors re�ects the extent to which A is 
representative of X  and Y . Accordingly, data collections and procedures are encouraged 
that strengthen the anchor test (Dorans et al., 2011; Holland & Dorans, 2006). 

�e NEAT design is more complex than the single group, randomly equivalent 
groups, and counterbalanced designs. Speci�cally, the NEAT design requires invari-
ance assumptions for estimating test-taker group performance on the test that test tak-
ers do not take (assumptions about the unobserved Sample 1 from population P on Y 
and about the unobserved Sample 2 from population Q  on X ). Invariance assumptions 
must be made to produce an equating that applies to the target population. Two major 
approaches and their associated assumptions involve chaining through A and estimat-
ing X  and Y  distributions by projecting from A for a synthetic population de�ned as a 
combination of P and Q  (described in the Approaches to NEAT Equating section). 

An approach similar to the NEAT design involves assembling X  using items from an 
item pool that have IRT parameter estimates on the same scale, XA , along with other 
newly administered items, XNew . In this common item equating to a calibrated pool 
design (Table 11.1, Kolen & Brennan, 2014), the XA  items are used as an anchor to 
obtain scaled IRT parameter estimates for the XNew  items that expand the item pool. 
�en, as described in the IRT and Distinguishing Equating From Other Forms of Linking 
sections, an IRT conversion to the q  scale, to Y , or to any other form that might be assem-
bled from the item pool, is produced for the scores of the complete X  form ( XA  and XNew ). 
Parameter estimates for the item pool and the equating results should all apply to pop-
ulation P (=T) . Common item equating to a calibrated pool is more �exible than the 
NEAT designs with respect to the source of the anchor items, but it requires an IRT 
implementation and the meeting of IRT assumptions (Kolen & Brennan, 2014). 

�e �nal rows in Table 11.1 present two pre-equating designs for linking X  to Y  using 
data from previously administered sections or individual items to equate X  before it is 
ever administered as an intact test. Section pre-equating involves the administration 
of a complete old form, Y , composed of two mutually exclusive sections ( Y1 and Y2 ) 
and one of two mutually exclusive sections of new form X  ( X1  or X2 ) to randomly 
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equivalent samples of population P (=T) . �e statistics for the complete X  form 
could be estimated using data from the administration of the X1  or X2  sections, and 
these estimated statistics could be used to link X  to Y  (Holland & Wightman, 1982). 
�e use of two sections is the simplest case for this design. In their discussion of section 
pre-equating, Petersen et al. (1989) presented implementations with three and four 
sections of X  and Y  administered to three and six random samples of P. 

Pre-equating can also be implemented in individual items rather than test sections. 
�e �nal row of Table 11.1 presents an implementation of item pre-equating that is 
similar to common item equating to an item pool except that the new items, New, do 
not contribute to the equating and scoring of X  (Kolen & Brennan, 2014). �at is, X  is 
assembled from items from a calibrated item pool rather than one speci�c form and is 
pre-equated and scored using the IRT parameter estimates from these calibrated items 
prior to the administration of X . �en, in a subsequent step a�er the administration of 
X , scaled IRT parameter estimates are obtained for the New items using X  and these 
are added to the item pool for assembling and pre-equating additional forms. Param-
eter estimates for the item pool and the pre-equating results for other forms assem-
bled from the item pool should all apply to population P (=T) . A more complex item 
pre-equating design involving multiple tests and populations is presented by Petersen 
et al. (1989), and is a basis of adaptive testing and linking (see the Linking Adaptive Tests 
section). 

Pre-equating designs are relatively complex and require stronger assumptions than 
the other designs described, namely, that the test, section, and item statistics estimated 
in a pre-equated administration are accurate when used to produce equating and other 
linking functions. Inaccuracies can result from population di�erences or from context 
and order e�ects where the pre-equating administration involves administering the 
items and subsections of X  in di�erent orders and contexts than those from the actual 
administration of the intact form X  (Davey & Lee, 2011). In addition, for implemen-
tations where a typical IRT model is used that assumes test-taker ability is unidimen-
sional, pre-equating could introduce biases when pre-equated IRT statistics based on 
unidimensionality assumptions are used to approximate a linking for the full multidi-
mensional test (Kolen & Brennan, 2014). Estimates of X  from pre-equating could be 
biased re�ections of the actual X , resulting in inaccurate equating results that might be 
corrected with “postequating” using actual administration data and one of the tradi-
tional designs in Table 11.1. 

Methodological Implementations of Equating 
�is section provides a summary of research, discussions, and studies on the method-
ological issues in equating. �e methodological issues covered here pertain to mate-
rial covered in the following sections: Data Use and Smoothing, Continuization, Choices 
Among Data Collection Designs, Approaches to NEAT Equating, True Scores, IRT, and 
Accuracy Evaluations. Many of these procedures can and should be implemented using 
open-source computational programs that provide critical supports for transparency 
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and for the independent replication of results (Brennan, 2004; Brennan et al., 2009; 
Gonzalez & Wiberg, 2017). In addition to the methodology covered in this section, 
important aspects of equating implementations include checks that test that develop-
ment and administration practices are standardized and similar, that quality control 
procedures are implemented to ensure administration conditions are followed, and 
that tests, items, and answer keys are all working and displayed as intended. �e impli-
cations of altered questions and answer keys are covered by Kolen and Brennan (2014, 
pp. 331–336). 

Data Use and Smoothing 

Equating procedures are statistical operations performed on sample data. Ideally, the 
sample data should come from an established data collection design and should be a 
large and su�ciently representative sample that can produce precise adjustments for 
the test linking. �e question How large? depends on the data collection design and 
can be addressed based on standard errors of equating for the speci�c design (Kolen & 
Brennan, 2014). �e question How representative? might be answered in terms of data 
or sample selection procedures, such as exclusion procedures for test takers who are not 
part of the target population (e.g., from nonrepresentative grades) or who are nonnative 
English speakers or exam repeaters (Dorans et al., 2011). 

Once equating data are obtained, there are additional choices about how to use the 
data to produce the test-linking results. �e most direct choice is simply to use the sam-
ple data as originally collected to compute test-linking results, A long-standing inter-
est in the test-equating �eld is the extent to which equipercentile linking results can 
be improved by smoothing the test data. �e goal of smoothing is to reduce statisti-
cal sampling error while not substantially inducing bias. Early methods based on hand 
smoothing and moving averages of frequencies (Ango�, 1971; Flanagan, 1951) have 
been replaced with methods that are more accurate, formalized, and e�cient. 

One smoothing method for equipercentile linking is log-linear presmoothing (Hol-
land & �ayer, 2000). �is smoothing method is based on ��ing log-linear models to 
the distributions of the test scores to be linked. �e model ��ing process produces �t-
ted distributions that match a user-speci�ed number of moments of the unsmoothed 
data. �e process smooths out irregularities and provides plausible nonzero probabili-
ties and frequencies at all possible scores. Log-linear models can be applied to the uni-
variate distribution of the scores of a single test, to the bivariate distribution of two 
tests, and to the complex structure of a bivariate distribution of a test, an internal anchor 
and its impossible scores (i.e., structural zeros; H. Kim et al., 2017). Log-linear models 
can also be used to model other complexities that occur with bivariate distributions 
of weighted composite scores (Moses, 2014b). Because log-linear models have sta-
tistical implementations, they have associated model �t indices including chi-square 
statistics (e.g., likelihood ratio) and information criteria (Akaike information criterion, 
Bayesian information criterion, etc.) that lend themselves to statistical selection strat-
egies (Moses, 2011; Moses & Holland, 2010). Finally, estimated variance–covariance 
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matrices for the smoothed distributions are an output of the modeling that can be used 
to estimate standard errors of equating and other linking functions that explicitly re�ect 
the smoothing results (Moses & Holland, 2008; von Davier et al., 2004a). 

Another smoothing method used in equipercentile equating is known as cubic 
spline postsmoothing (Kolen, 1984). �e “post” in postsmoothing indicates that this 
smoothing is implemented a�er an equipercentile X -to-Y  equating is computed in 
order to directly smooth the equating function. �e postsmoothing produces adjacent 
and connected score-level cubic functions that are numerically solved to produce the 
smoothest possible function that re�ects the unsmoothed equipercentile function up 
to a user-speci�ed smoothing constraint. �e implementation, special procedures for 
the highest and lowest scores, and other procedures for approximating symmetry in 
the postsmoothed results are described by Kolen and Brennan (2014). Studies have 
demonstrated that cubic spline postsmoothing and alternatives are useful for reducing 
error in equipercentile equating functions (Cui & Kolen, 2009). Alternative strategies 
for selecting postsmoothing parameters have been considered (C. Liu & Kolen, 2018). 

Both pre- and postsmoothing introduce bias into equating results. �e logic behind 
both smoothing procedures is to reduce random error without substantially intro-
ducing bias. �ere is no de�nitive answer to the question, Which is be�er? It is clear, 
however, that presmoothing introduces bias before subsequent equating steps are per-
formed, whereas postsmoothing does so when conducted a�er other equating steps are 
performed. Also, presmoothing can be automated if one adopts certain prespeci�ed 
equating criteria, but doing so can be risky without examining smoothed plots before 
proceeding with equating. By contrast, postsmoothing involves somewhat subjective 
judgments about smoothing degrees. 

In equating practice, data screening, presmoothing, and postsmoothing are import-
ant tools for improving the accuracy of equipercentile linking and equating functions. 
Reasonably large sample sizes are another important ma�er for ensuring accurate 
equating results (Dorans et al., 2011; Kolen & Brennan, 2014). When equating data are 
collected using small sample sizes, equipercentile functions must rely on models that 
make additional assumptions (e.g., pre-equating data collection designs and assump-
tions that work under some situations but not others; see Livingston & Kim, 2011). 

Continuization 

Equating functions based on scale alignment produce a set of “in between” scores that 
re�ect plausible estimates of the di�culty di�erences between test forms, but that 
are in fact impossible to obtain. For example, if test X  was to be equated to Y  and X  was 
easier than Y , then converting number-correct points that adjust for the easiness of X 
might result in X -to-Y  scores that are lower but in between the scores that could actu-
ally be obtained (e.g., a score of 28 on X  might convert to 27.6). �e process of treating 
discrete test scores as if they are continuous is referred to as “continuizing” (von Davier 
et al., 2004a). �e  percentile rank function shown in Equation 11 is one approach 
to continuizing based on the assumption that the in between scores are uniformly 
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distributed within boundaries for each score (the score ± half of the score interval). 
�e linear scale-aligning function (Equation 16) is another approach to continuization 
based on standard deviation units. �e continuization process in equating is described 
in detail by von Davier et al. (2004a), who showed that the traditional continuization 
approach based on percentile rank functions produces continuous distributions that 
can be irregular and can imprecisely re�ect the original discrete distribution (i.e., over-
estimate variance by 1/12). 

Von Davier et al. (2004a) described and developed an alternative continuization 
for equating based on Gaussian kernel smoothing (i.e., kernel equating; Holland & 
�ayer, 1989). Kernel equating is smoother, is more accurate with respect to variance, 
and approximates equipercentile, linear, and compromises of these functions through 
a user-speci�ed kernel smoothing parameter. Several alternative continuization 
approaches have also been considered, including those based on log-linear models (T. 
Wang, 2011), exponential families (Haberman, 2011), and alternative kernel functions 
(Lee & von Davier, 2011). When continuization approaches work to produce values in 
between two adjacent, a�ainable scores, di�erent approaches usually exhibit small dif-
ferences from each other. �ey can even be shown to be iterative versions of Equation 
11’s percentile rank computation (Moses & Holland, 2008). One exception is when 
these approaches are used to equate the highest and lowest scores of a test. Equiper-
centile equating based on percentile rank functions will connect the highest X  and Y 
scores to each other, whereas equatings based on kernel and linear continuizations may 
produce results that go further beyond the de�ned score ranges for the tests (Dorans et 
al., 2011; Kolen & Brennan, 2014; von Davier et al., 2004a). Another possible excep-
tion is scores with unequally spaced values because these are not completely suitable 
for Equation 11’s percentile rank calculations that assume scores with ranges of inte-
gers. Flexible continuization approaches could be especially appropriate for tests with 
unequally spaced score ranges. 

Choices Among Data Collection Designs 

Each design described in the Data Collection Designs section and Table 11.1 presents 
a particular trade-o� of advantages and disadvantages in test equating. �ese designs 
can be compared with respect to statistical precision, speci�cally the sample size of 
test takers needed to achieve a particular standard error of equating. For a given level 
of statistical precision, the randomly equivalent groups design and equipercentile 
equatings require more data than a single group design and linear equating (Kolen 
& Brennan, 2004). Designs can also be compared with respect to the complications 
and security concerns they introduce in test administrations (more complexity and 
security concerns for randomly equivalent groups designs than NEAT designs) and 
statistical assumptions (minimal assumptions for randomly equivalent groups, more 
stringent assumptions for NEAT and pre-equating designs; Kolen & Brennan, 2014). 
Based on the strengths of each design, a recommended ideal design is one in which 
large samples of test-taker data are collected in a securely implemented randomly 
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equivalent groups design with an external anchor test that is administered a�er the 
tests (Dorans et al., 2011; Holland & Dorans, 2006). �is design exploits the simplic-
ity of the randomly equivalent groups design, but also allows for increased statistical 
precision through use of the anchor test as a statistical covariate. Administering the 
anchor externally is advantageous in that only the anchor could be a�ected by context 
or order e�ects, and the anchor would not need to be used if these e�ects were found. 
Pre-equating designs are usually not recommended based on their complexity and 
strong assumptions about IRT parameter estimates holding across multiple contexts 
(Davey & Lee, 2011). However, pre-equating designs could be considered for situa-
tions where a test linking must be estimated before that test is actually administered 
(Kolen & Brennan, 2014). 

Approaches to NEAT Equating 

Equating texts and studies have given extended a�ention to the complexities of equating 
using the NEAT design, considering aspects such as options and designs of the anchor 
test and computations based on assumptions made about the relationship of the test 
and anchor scores. One choice is whether the anchor will be internal or external to the 
tests being equated (Dorans et al., 2011; Holland & Dorans, 2006). External anchors 
are separately timed, and scores on them do not count toward the X  and Y  scores. 

External anchors or sections have considerable �exibility and multiple uses, such as 
equating, pretesting, or the tryout of new item types. Potential drawbacks of external 
anchors are that they must be su�ciently disguised so that test takers do not respond 
di�erently to the anchors than they respond to the tests. In particular, test takers should 
not be able to determine which set of items (or test) is an external anchor, because the 
goal is that test takers try as hard on the external anchor as they do on X or Y . If that 
is not true, then scores on the anchor test will almost certainly lead to biased equating 
results. Recommended practices for equating with external anchors are to use data-
screening procedures to identify and exclude test takers with anchor performance that 
is inconsistent with test performance. 

Internal anchors are administered and scored within X  and Y , which usually results 
in higher (anchor, test) correlations than external anchors, but also increases the risk of 
context and order e�ects. Recommended practices for equating with internal anchors 
are to administer the anchor items in similar positions on X  and Y  and to evaluate and 
possibly screen the anchor items for di�erential performance (i.e., di�erential item 
functioning). 

�e predominant recommendation is that external and internal anchors should be 
designed to be representative of the test, with similar average di�culties (though not 
necessarily equal di�culty spread; Sinharay & Holland, 2006a, 2006b). �e anchor(s) 
should also be relatively long and reliable (Moses & Kim, 2007), where the long-stand-
ing recommendation is for at least 20 items or 20% of the items on the test (Ango�, 
1971). Also, they should be administered and screened to reduce atypical test-taker 
performance, context, and order e�ects. Following these guidelines helps ensure that 
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the anchors will be as highly correlated as possible with the tests being equated, which 
supports accurate NEAT equatings. 

Once the NEAT data are obtained for a sample of population P that takes X  and A and 
a sample of population Q  that takes Y  and A (Table 11.1), di�erent options are available 
for using the anchor data to equate X  and Y  in T. Two major approaches involve chain-
ing scale-aligning functions through the anchor and computing scale-aligning func-
tions from test distributions estimated for a single hypothetical group on both X  and Y . 

�e chained approach involves computing a scale alignment function from X  to A in 
the P data and another scale alignment function from A to Y  in the Q  data and chain-
ing them together. �e assumption is that both scale alignment functions are popula-
tion invariant (i.e., apply to other populations, and speci�cally to target population T; 
Holland & Dorans, 2006). Expressed in equipercentile functions (Equation 15) with 
percentile rank functions for A in P and Q , H a  Q( ), and linear functions P ( ) and H a  
(Equation 16), the chained equipercentile and chained linear scale alignment functions 
are 

−1 −1 
eYT  ( )x =G H H FP x }) (21)
, Q ( {Q P [ ( )] 

and 

l ( )x = l [ l ( )x ], (22)Y T, Y Q, A P, 

where lY Q []  denotes the A-to-Y  linear function in the Q  data. , 

�e second approach (scale aligning) is referred to as frequency estimation or post-
strati�cation and involves projecting (see the Distinguishing Equating From Other Forms 
of Linking section) the X  and Y  distributions conditional on A for T. �e projection is 
based on assumptions that the conditional X A  distribution observed in population P| 
applies to population Q  and that the conditional Y A  distribution observed in popu-| 
lation Q  applies to population P. �e resulting X  and Y  distributions are estimated for 
a synthetic, combined group of P and Q  test takers that comprise the target population 
T w P w Q+  ( w + w Q  range from 0 to 1), = = 1 , and wP  and wP Q P Q 

Pr ( )x = Pr x |a Pr a( )  Pr ( | [ w Pr a  +( )[ ]= x a ) ( )  w Pr a( )] (23)T ∑ P T ∑ P P P Q Qa a 

and 

Pr ( )y = Pr  ( y a Pr a| )[ ( )  ]= Pr ( y a| )[ w Pr a( )  + w Pr a( )  ]. (24)T ∑ Q T ∑ Q P P Q Qa a 

�e X  and Y  distributions produced with Equations 23 and 24 are estimated for the 
same target population and can be used in percentile rank and scale-aligning functions 
like Equations 11 and 15. Di�erent linear scale-aligning functions based on poststrat-
i�cation are possible, such as those that use the means and standard deviations from 
the distributions obtained from Equations 23 and 24 in Equation 16 (Braun & Hol-
land, 1982). Another method a�ributed to Tucker (Ango�, 1971) makes assumptions 
that the conditional means of the tests are linear and invariant given anchor scores 
and that the conditional variances of the tests are constant and invariant given anchor 



778 EDUCATIONAL MEASUREMENT

 

 

 

 

scores, producing estimated means and variances of X  and Y  on T from anchor-to-test 
regression equations like Equation 17 (Gulliksen, 1950; Lord, 1950). 

�e chained and poststrati�cation approaches to equating tests with the NEAT design 
have been compared in several research studies. Von Davier et al. (2004b) showed that 
these methods produce identical results when the (anchor, test) correlations are perfect 
or when the anchor distributions are identical in the P and Q  samples. �ese results 
underscore the view that in ideal equating situations, such as those where (anchor, 
test) correlations are high and where administration groups are similar, di�erent equat-
ing methods can produce very similar results (Dorans et al., 2011). Studies have also 
considered situations where the chained and poststrati�cation methods give di�erent 
results, where a choice of equating method is more consequential for reported scores. 
Summaries of these studies indicate that the poststrati�cation approaches have smaller 
standard errors than the chained approaches and less overall equating error when group 
di�erences are small, whereas the chained approaches are less biased and have less over-
all equating error when group di�erences are not small (Dorans & Puhan, 2017; Kolen 
& Brennan, 2014; Kolen & Lee, 2011, 2012, 2014, 2016, 2018). 

True Scores 

�e equating of true scores is a long-standing theoretical interest. �is interest involves 
equating procedures based on theory and measurement models, especially classical 
test theory (see the Equating Requirements section, Equation 19; Ango�, 1971; Levine, 
1955). For the NEAT design, the test forms and anchors are usually assumed to follow 
a classical congeneric model, and versions of Equation 19 are used to compute linear 
t -to-tA  and t - to -t  functions that are chained together for a Levine equating of tXX A Y 

and tY  (Hanson, 1991; Kolen & Brennan, 2014; Levine, 1955), 

l t( ) = l l[ t( ,)]tY X tY At X (25) 

where l []  denotes the tA - to-t
Y  linear function. �e relationships of the true test tY 

and anchor scores are assumed to be population invariant (Holland & Dorans, 2006). 
Equating functions for true scores address theoretical interests while introducing 

conceptual di�culties for practice. �e main di�culty is that true scores are unobserved 
and unavailable in practice (Lord, 1980; Lord & Wingersky, 1984) so that true score 
equating functions like Equation 25 typically use observed scores, l ( )x . Although tY 

the interchangeability claims that true score equating functions support apply to true 
scores, the equity discussions described in the Equating Requirements section show that 
speci�c types of equity are achieved in observed score applications when test forms and 
anchors are classically congeneric. Still, such applications are inconsistent, lack compel-
ling reasons (Kolen & Brennan, 2014), and do not re�ect the measurement error in X 
that is unaccounted for when equating is a�empted with true score conversions (espe-
cially beyond the conditional means addressed in �rst-order equity). From the Equat-
ing Requirements section, the strongest connections in theory and practice are achieved 
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when the test forms and anchors are constructed and administered in the same way 
(re�ecting congeneric theories and �rst-order equity) and the test forms are equally 
and highly reliable (such that observed scores approximate true scores and l ( )xtY 

functions re�ect second-order equity). 
Another version of Levine linear equating is based on the same assumptions for X , 

Y , and A and their true scores as used in Equation 25, but equates the observed X 
and Y  scores in a hypothetical target population (de�ned with respect to true anchor 
scores) using frequency estimation and poststrati�cation assumptions about X  and Y 
scores given the true anchor scores (Holland & Dorans, 2006; Kolen & Brennan, 2014; 
Levine, 1955). Levine equating has been shown to perform well in some situations 
where administration group di�erences are large (Kolen & Brennan, 2014; Mroch et 
al., 2009), though these results depend on the accuracy of the Levine assumptions. 

Equipercentile scale-aligning functions based on true scores have been developed by 
Chen et al. (2011) and T. Wang and Brennan (2008). T. Wang and Brennan’s (2008) 
proposal is to modify the frequency estimation equipercentile procedure in Equations 
23 and 24 so that these equations are based on a projection from estimated true anchor 
scores (i.e., PrP ( |x 

t
A) ). Chen et al.’s (2011) approach generalizes chained and post-

strati�cation equipercentile approaches developed in the kernel equating framework so 
that these are based on true scores. 

IRT 

IRT can also be used to produce equating functions of observed or true test scores or q 
estimates. IRT applications require that the IRT assumptions hold and that parameter 
estimates for X  and Y  items are on a common scale. When these item parameters for 
the X  and Y  tests are estimated with a single population design such as the randomly 
equivalent groups data collection design (Table 11.1) using the same speci�cation of 
the q  scale, the parameter estimates can be interpreted as being on the same scale. When 
tests are administered to nonequivalent groups as in the NEAT design, procedures are 
needed to transform the parameter estimates to a common scale, either through special 
linear transformations based on the two sets of IRT parameter estimates for the anchor 
items or through concurrent calibrations of the X  and Y  test items and anchor items 
(Kolen & Brennan, 2014). 

For IRT observed score equating, an IRT-based recursive algorithm can be used to 
estimate probability distributions for X and Y given q , Pr x q , and Pr y (Lord ( | ) ( |q) 
& Wingersky, 1984). Once obtained, these conditional distributions are averaged over 
a target distribution of q; speci�cally, 

Pr ( )x = Pr x( |q )Pr (q)dq (26)T T∫ 
and 

Pr ( )y = Pr y |q Pr (  ) .  (27)T ∫ ( ) T q dq 
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Equations 26 and 27 can be described as IRT-based presmoothed distributions 
(Holland & Dorans, 2006), which can be used in equipercentile equating. IRT-based 
true score equatings can also be produced (see the Distinguishing Equating From Other 
Forms of Linking section). Finally, if a testing program’s scale scores are produced using 
q  as the test performance measure (see the Scaling Methods for Primary Scale Scores sec-
tion), equating procedures may be bypassed altogether and test takers’ qs  may be esti-
mated by applying IRT ability estimation procedures to their item-level performance 
(see the IRT Ability Estimates section) and scaling these estimates to the reporting 

scale, sc( )q . 

Accuracy Evaluations 

Once estimated, test equating functions should be evaluated for accuracy. Most of 
the accuracy evaluations reviewed in this section are comparative, where an equat-
ing function based on one method and associated assumptions is evaluated in com-
parison to one or more other equating functions based on di�erent methods and 
assumptions. For example, an equipercentile equating function might be of interest 
and evaluated in terms of how di�erent it is from a simpler equating approach, such as 
a linear equating, or the use of raw scores to consider whether equating is needed at 
all. In subpopulation invariance evaluations, equating functions obtained from sub-
group data are typically compared to a function based on the total group, usually 
for purposes of evaluating subgroup dependencies. �ese comparisons require the 
estimation of two or more plausible equating functions and evaluating whether their 
di�erences are “large,” based on material covered in the following sections: Di�er-
ences �at Ma�er, Standard Errors, Subpopulation Invariance Evaluations, Correlations 
and Prediction Error, and/or Evaluations and Recommendations for Dri� in Equating 
Chains. 

Differences That Matter 

Evaluations of the magnitude of equated score di�erences are based on whether those 
di�erences are big enough to alter test takers’ reported scores. Criteria for these dif-
ferences, known as “di�erences that ma�er” (Dorans & Feigenbaum, 1994), are tra-
ditionally de�ned based on the di�erences that are considered so large that they 
are not eliminated when reported scores are rounded, such as half of the integer of 
the equated scores (0.5 points for equatings based on raw summed scores) or half of the 
unit of the scale score interval. �ese values can provide benchmarks for evaluating the 
magnitude of equated score di�erences based on two equating functions, but because 
very similar equated scores can round to di�erent values, the di�erences-that-ma�er 
criteria should not be treated dogmatically (Kolen & Brennan, 2014). Clari�cations 
were provided by J. Liu and Dorans (2012), who proposed a procedure for evaluating 
whether test takers who take a test under altered conditions should be scored based on 
a conversion speci�cally produced to re�ect those altered conditions. Liu and Dorans’s 
procedure distinguished four categories of equated score di�erences, comprising a 2 
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× 2 table of rounded reported scores (are they the same or di�erent for two possible 
conversions?) and the magnitude of the di�erences in the unrounded scores (are they 
trivial or nontrivial?). Based on these distinctions, Liu and Dorans recommended that 
a separate equating for scores based on the altered test conditions should be considered 
only when more than half of the test takers whose reported scores are altered (when 
the separate conversion is applied) also have nontrivial di�erences in their unrounded 
scores. 

Standard Errors 

Standard errors of equating can be useful for evaluating the extent to which potential 
equating functions di�er by more than can be a�ributed to test-taker sampling errors. 
Standard errors of linear equating functions have a history that can be traced to Lord 
(1950), with updated discussions re�ective of equipercentile and kernel functions, dif-
ferent data collection designs, distributional assumptions, and log-linear presmoothing 
models (Ango�, 1971; Braun & Holland, 1982; Jarjoura & Kolen, 1985; Liou & Cheng, 
1995; Lord, 1982; Moses & Holland, 2008; Moses & Zhang, 2011; Ogasawara, 2001, 
2003; von Davier et al., 2004a). �e standard errors of equating are de�ned relative to 
the standard deviation of the distribution of equated scores produced from random 
samples of test takers from their respective populations, 

SEEY T, ( )x = s 

e Y T, ( )x 


. (28) 

Standard errors of equating are usually based on assumptions that the tests, their items, 
test-taker sample size(s), and other decisions made in the equating (e.g., smoothing) 
are �xed and not varied across replications of the test-taker sampling. Most of the cited 
sources present standard errors that are asymptotically derived, though standard errors 
can also be estimated through simulations and resampling approaches (Kolen & Bren-
nan, 2014). 

Standard errors for a single equating function might be used in evaluations of 
equated versus raw score di�erences, essentially questioning whether test score 
equating a�ects test scores more than can be a�ributed to statistical error from the 
test-taker sample(s). One application is estimating the test-taker sample size(s) 
needed to obtain a given level of equating precision (Kolen & Brennan, 2014, pp. 
273–276). Another application is the situation where a testing program might o�er 
di�erent editions of its test in which the items, item sets, and/or test sections appear 
in di�erent orders. �e extent to which order e�ects are observed in test scores can 
be evaluated through equating the scores of the alternate editions to each other and 
evaluating how di�erent the equated and nonequated test scores are. To the extent 
that the di�erences are “large,” the equating function used to evaluate the item order 
e�ects might also be used to adjust scores for the order e�ects. Standard errors for an 
equating function provide a basis for evaluating whether equated and nonequated 
scores di�er more than can be a�ributed to test-taker sampling. �ese ideas were used 
to evaluate order e�ects in the SAT (Dorans & Lawrence, 1990) and in Advanced 
Placement (Moses et al., 2007). 
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For questions about di�erences in equated scores from two plausible equating 
functions, each of which re�ects sampling error, standard errors of equating di�erences 
(SEEDs) have been developed (Moses & Holland, 2008; Moses & Zhang, 2011; Moses 
et al., 2010; von Davier et al., 2004a), 

SEEDY T, , 1 2, ( )x = s e Y T, , 1 ( )x −e Y T, , 2 ( )x  . (29)  

SEEDs can be used to evaluate di�erences between two equating functions, addressing 
several possible questions. Equated score di�erences of interest include curvilinear and 
linear kernel equating functions (von Davier et al., 2004a), traditional equipercentile 
and linear equating functions (Moses & Zhang, 2011), poststrati�cation equating func-
tions obtained from di�erent target populations (von Davier et al., 2004a), counterbal-
anced design equating functions based on di�erent weights of the samples taking the 
tests in di�erent orders (von Davier et al., 2004a), poststrati�cation equipercentile and 
chained equipercentile equating functions (von Davier et al., 2004a; Moses & Holland, 
2008), and poststrati�cation equating functions based on one or two anchor scores 
(Moses et al., 2010). 

Subpopulation Invariance Evaluations 

�e subpopulation invariance requirement of equating (see the Equating Requirements 
section; Equation 20) as described by Dorans and Holland (2000) prompted several 
empirical evaluations of the sensitivity of linking results with respect to subpopulations 
(Dorans, 2004a; von Davier & Liu; 2007). Recent studies indicate renewed interest 
in a long-standing question in test equating (Kolen, 2004), one that can be traced to 
Flanagan’s (1951) statements that group dependencies in equating are to be expected 
(p. 748) and to Ango� ’s (1971) statements that equating functions should be indepen-
dent of the individuals used to compute them (p. 563). �e inclusion of subpopulation 
invariance as a requirement for test equating corresponds to research and expectations 
for subpopulation invariance in equating. Empirical checks are important for deter-
mining whether test linkings exhibit desired equating properties and for evaluating 
intended equating results for tests that undergo transitions, such as in their speci�ca-
tions and possibly in their constructs ( J. Liu & Dorans, 2013). 

Consider the subpopulation invariance measure in Equation 20, for which Dorans 
and Holland (2000) developed two measures to quantify the lack of invariance in 
intended equating functions for an exhaustive set of mutually exclusive subpopulations: 

w e , ( )x − e ( )x  
2

∑Tg g  Y Tg Y T,  (30)RMSD( )x = 
sY T, 

and 

2 

Tg 
wg E  e , ( )x − eY T  ( )x  }∑ {  Y  Tg ,

R MSDE = , (31)
sY T, 
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where the E denotes an expected value and where wg is the proportional sample size 
for Tg  in T. �e basis of the RMSD( )x  and REMSD measures is quantifying the lack 
of subpopulation invariance in test equating functions of Tg from that of T, at the 
individual score level and also at an overall level. In their discussion of the RMSD( )x 
and REMSD measures, Kolen and Brennan (2014) suggested that these measures 
could mask other issues, such as the extent to which the test linking results for two 
subpopulations di�er from each other. �ey proposed several additional measures that 
could directly address this question based on examining 

( )  xeY T, 1 x -eY T, 2( ). (32) 

Additional measures of invariance can also be computed for speci�c subgroups of inter-
est ( J. Liu & Dorans, 2013), 

RESDTg = ∑ x 
PrTg( )x e , ( )x −eY T, ( )x  

2 
, (33)

 Y Tg  

where Pr x = .Tg( )  is the relative frequency at X x  for subgroup Tg 

Subpopulation invariance investigations were conducted using Equations 30–33 and 
other measures in Dorans (2004a), von Davier and Liu (2007), Kolen and Brennan 
(2014), J. Liu et al. (2010), and Yin et al. (2004). Standard errors for these measures 
were developed and studied by Moses (2008) and Rijmen et al. (2009). 

One suggestion for practice is to apply subpopulation invariance concepts to con-
duct population invariance evaluations that address invariance for populations that are 
intended applications of an equating function but not necessarily represented in the 
actual equating study. Experience suggests that some of the most serious problems with 
equating and linking results involve estimating linking functions in data from one group 
(e.g., special studies, small subgroups of an administration used for randomly equivalent 
groups designs, pre-equated conversions) and applying these linking functions to other 
groups, testing conditions, and administration data. �ese experiences led to recommen-
dations that equatings and linkings conducted in special studies with nonrepresentative 
scoring, administration conditions, and test-taker data should be regarded as limited in 
the score interpretations they suggest and subject to additional research to support their 
use and interpretations with the general testing population(s) (W. Lee & Brennan, 2021; 
Moses, 2022). �is additional research can include invariance investigations for di�erent 
groups as well as special data reviews that ensure that the test equating is working reason-
ably well for particular users and administration groups. �ese checks could be as simple 
as reviewing the scale score distribution(s) from applying an estimated equating function 
to the administration group and comparing it to historical distributions for that group. 

Correlations and Prediction Error 

Equating and other linking functions can be produced to support multiple purposes 
and interpretations, such as to align test scales based on score distributions and to 
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provide predictions of test takers’ scores. �e scale-aligning computations used to 
support interchangeability across alternate forms in equating, or comparability across 
distinct tests in concordance studies (see the Concordances section), might have other 
intended uses as predictions of test takers’ performance on those alternate forms or 
tests. To the extent that test correlations and reliabilities are high (see the Distinguish-
ing Equating From Other Forms of Linking section), scale-aligning functions are more 
likely to support both aligned scales and accurate predictions. As test reliabilities and 
correlations decrease, the di�erences between scale-aligning functions and prediction 
functions increase, such that the predictions from scale-aligning results are increasingly 
biased. If the scales of independent random numbers were aligned, the results would 
have no predictive utility because they would not re�ect the reliabilities and correla-
tions of the “scores” (Dorans, 2004b). 

When describing these issues, Dorans (1999) used a coe�cient of alienation based 
on the prediction error of regression functions, 

σ − σ 1 − ρ 
2

2Y T, Y T, XY T, 
= −  1−ρ . (34)

XY T,
σY T,

1 

In words, Equation 34 indicates the proportion that uncertainty is reduced from pre-
dicting Y  from using a linear X -to-Y  regression function compared to using the mean 
of Y . Dorans and colleague (Dorans, 1999; Dorans & Walker, 2007) argued that con-
cordances should only be produced when scores for tests X  and Y  are correlated at least 
.866, in which case Equation 34 indicates a 50% reduction in prediction uncertainty 
in standard deviation units using an X -to-Y  regression. For tests correlated less than 
.866, scale-aligning methods result in biased predictions and should be replaced with 
prediction or projection methods (Dorans, 1999, 2004b). Although the correlation in 
Equation 34 suggests the need for a data collection design where test takers take both 
X  and Y , Equation 34 can be used to evaluate equating results from other designs where 
X  and Y  are alternate forms assumed to be parallel. For the equating of alternate forms, 
the XY  correlation can be estimated from the test reliabilities (Gulliksen, 1950; Lord 
& Novick, 1968). 

�ese discussions were updated by Moses (2014a), who provided analogues to 
Equation 34 based on the prediction error from a linear scale-aligning function (Equa-
tion 16), 

σY T, − σY T, 2 1[ − ρ XY T, ] 1 [ − ρ , ]. (35)= − 2 1 XY T 
σY T, 

Equation 35 indicates that equatings, concordances, and other linkings produced from 
linear scale-aligning functions reduce prediction uncertainty by 50% when X  and Y 
are correlated at least .875. Results were provided by Moses (2014a) to compare linear 
regression and scale alignment functions in terms of prediction error, showing that these 
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functions are similar for high XY  correlations but that linear regressions are increasingly 
favored when correlations between X  and Y  are low. Additional insight can be obtained 
by decomposing prediction error variances for regression and scale alignment functions 
into their proportional contributions of true score and error variances (Moses, 2014a) 
and by using other related measures of proportional reductions in mean-square error 
(Dorans, 2022). 

EVALUATIONS AND RECOMMENDATIONS FOR DRIFT IN EQUATING CHAINS Established 
testing programs must produce several editions of a test that are developed, adminis-
tered, equated, and used to score test takers. �is history means that testing programs 
can have several previously administered and equated forms potentially available 
for the equating of additional test forms. Such programs would also have historical 
expectations about the reasonableness of scale score distributions for given adminis-
tration groups. An increasing number of test equatings back to the scale is expected to 
cause dri� due to the accumulation of random error (Kolen & Brennan, 2014). Large 
numbers of previous equatings also provide opportunities for monitoring historical 
equating results and for evaluating the consistency of current equating and scale score 
results. 

One way that testing programs can improve test equating accuracy is to conduct their 
equatings to link their tests back to two or more previously equated forms (Holland 
& Dorans, 2006; Kolen & Brennan, 2014). From 1994 to 2016, the SAT conducted 
external anchor equatings to link new forms back to four old forms. Multiple links to 
past forms provide ways to detect aberrant equating results and scale score conversions. 
Multiple links also make the �nal equating and scale score conversions less reliant on 
any one previously developed equating that may be problematic. 

Established testing programs can also monitor their current and historical equat-
ing results for evidence of scale score dri�. Modu and Stern (1975) monitored SAT 
scales from 1963 to 1973, �nding evidence that the verbal and mathematics sections 
had dri�ed. More recently, Haberman and Dorans (2011) delineated several contrib-
utors to scale score inconsistency, including anchors for the NEAT design, sampling 
errors (random and nonrandom), accumulated random error, and model mis�t. Some 
practices were noted to exacerbate scale dri�, such as continuous testing where more 
new forms are administered and equated with smaller groups of test takers (increasing 
standard errors and the accumulation of standard errors in chains of equatings). When 
equatings and raw-to-scale conversions are available for several administered forms, 
additional methods for evaluating dri� have been described, such as harmonic regres-
sion and time series analyses for evaluating seasonality e�ects in scale score conver-
sions (Y. Lee & Haberman, 2013) and quality control charts and time series methods 
to support continuous monitoring, adjustment of variations, identi�cation of abrupt 
shi�s, and the assessment of autocorrelation. More recent evaluations of scale stability 
in the SAT have also been conducted, such as studies of the extent to which dri� in 
equating chains is a�ected by di�erent degrees of postsmoothing (S. Y. Kim et al., 2020) 
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and the dri� due to the accumulation of random and nonrandom errors observed from 
readministering and re-equating an old form and comparing this to more recently 
equated forms (Guo et al., 2012). Another study evaluated the extent to which scale 
score dri� and variability in the SAT were controlled by equating back to two or three 
old forms rather than one ( J. Liu et al., 2014). �ese studies provide examples of how 
equating dri� might be assessed and potentially reduced. 

LINKING 

In the Equating section, equating was described as the strongest type of linking, subject 
to the strictest requirements, used to adjust the scores of alternate forms of a single 
test for unintended di�culty di�erences for the purpose of establishing interchange-
able scores. �e Linking section describes other types of linkings for the scores of tests 
that are distinct and not expected to meet all of the equating requirements of equal 
constructs, same test speci�cations, equal and high reliabilities, same administration 
conditions, etc. Linking e�orts might be undertaken to promote particular interpreta-
tions, such as appropriate comparisons or predictions from distinct tests. �ese goals 
are not as ambitious as the interchangeability goal of equating. Although the compara-
bility established in linking might be general in intention (e.g., score comparisons across 
di�erent tests and testing contexts), the results of linking distinct tests are nevertheless 
weaker (i.e., less precise) than equated results, with interpretations that must usually 
be quali�ed and limited in some way. For example, the score comparability achieved 
through scale aligning methods is considered to be “assured only for that speci�c group 
taking the tests under speci�c conditions (Ango�, 1971)” (Pommerich, 2016, p. 117). 
Predictions and regressions are also noted to be group speci�c (Linn, 1993; Mislevy, 
1992). 

�is section summarizes types of linking other than equating, their uses, and their 
limitations. �e linking types covered in earlier linking frameworks include those in the 
Concordances, Vertical Scaling , Ba�ery Scaling and Composites, and Predicting and Pro-
jecting sections, all of which are summarized in Table 11.3 based on a tabled version 
of Holland and Dorans’s (2006) linking framework. Some linking types described in 
previous discussions are omi�ed because of ambiguities and updates in terminology 
(calibration was part of earlier linking frameworks, but is avoided here because it some-
times refers to vertical scaling and other times to ��ing IRT models; Holland & Dorans, 
2006). Approaches described in the More Recent Linking Types section are also covered, 
including linking for exams administered in di�erent testing modes, linking subjectively 
scored tests, local linking, linking adaptive tests, linking exams administered to di�erent 
test takers using weak anchors, and linking state tests to NAEP (Table 11.4). 

Concordances 
Concordances are scale-aligning linkings for tests built from similar but not identi-
cal test speci�cations, where the tests have similar uses, lengths and reliabilities. One 
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Table 11.3 Summary of Nonequating Types of Linking 

Type of 
Linking 

What Is 
Dissimilar? 

What Is 
Similar? 

What Is 
Equal? 

Likely Data 
Collection 

Design 

Computation Interpretations 

Concor-
dance 

Constructs; 
reliability; 
di�culty 

Popula-
tion 

Single group; 
approximated 
counterbal-
anced 

Scale aligning Comparable scales for 
the overall concordance 
group, but not necessarily 
to subgroups 

Vertical 
scaling 

Di�culty; 
populations 

Constructs; 
reliability 

NEAT with 
common items 
or scaling test, 
or random 
groups 

Scale aligning Comparable scales that 
depict growth based 
on the methodological 
choices for how the 
vertical scales were estab-
lished 

Ba�ery 
scaling 

Constructs Popula-
tion 

Single group 
or randomly 
equivalent 
groups 

Comparable scales that 
indicate test takers’ rela-
tive performance across 
the test ba�ery 

Composite 
scales 

Popula-
tion 

Single group 
taking the indi-
vidual tests 

�e composite 
is a sum of the 
scale scores of 
the individual 
tests, which 
are main-
tained through 
scale-aligning 
equatings 

Composite scales are 
indirectly maintained to 
the extent that the scales 
of the individual tests 
are maintained and the 
intercorrelations of the 
individual tests do not 
change 

Predicting 
and project-
ing 

Popula-
tion 

Single group; 
counterbal-
anced 

Predicting and 
projecting 

Best prediction for a 
prediction group 

Table 11.4 Summary of Recent Linking Examples 

Type of Linking What Is 
Dissimilar? 

Likely 
Data 

Collection 
Design 

Computation Interpretations 

Linking across 
conditions of 
measurement 

Conditions of 
measurement 

Various Scale aligning Comparable scales, with caveats about 
limitations when testing mode di�er-
ences are large 

Linking 
subjectively 
scored tests 

Scoring that dri�s Various Scale aligning Comparable scales, depending on high 
reliability and procedures to account for 
trends and rater dri� across administra-
tions 

(continued) 
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Table 11.4 (continued) 

Type of Linking What Is 
Dissimilar? 

Likely 
Data 

Collection 
Design 

Computation Interpretations 

Local, ability-
speci�c test 
linking 

A form’s scale 
alignments at dif-
ferent abilities 

Various Conditional scale 
aligning 

q-Conditional comparable scales 

Linking adaptive 
tests 

Forms and form 
di�culties at dif-
ferent abilities 

Pre-equat-
ing 

IRT ability estima-
tion 

Comparable scales at speci�c levels of 
adaption, in�uenced by the item pools, 
and the accuracy of the IRT models, 
scores and adaptions 

Linking tests 
using weak 
anchors 

Test-taker groups; 
collateral informa-
tion vs. the tests 

NEAT 
design 
without 
a suitable 
anchor 

Scale aligning on 
projected distribu-
tions 

Comparable scales for hypothetical 
groups de�ned by the weak anchor(s) 

Linking state 
tests to NAEP 

State tests and 
NAEP 

Single 
group or 
counter-
balanced 

Scale aligning or 
projecting 

Comparable scales or projected results 
are more supported within states than 
across them 

Note. IRT = item response theory; NAEP = National Assessment of Educational Progress; NEAT = nonequivalent groups with anchor testing. 

example is the concordance of the SAT and ACT reporting scales. Other concordance 
discussions and examples involve the ACT and ITED tests (Yin et al., 2004), and, 
arguably, those described in the Linking State Tests to NAEP section. Concordances are 
intended to align the tests’ scales using scale-aligning functions and support additional 
desires to use the resulting concordance tables as surrogates for test takers’ scores on the 
test they did not take. 

Early arguments about concordances for the ACT and SAT were summarized by 
Pommerich (2007), including concordance table proposals for avoiding excessive test-
ing in schools and arguments from Ango� (1962) and Lindquist (1964, February) 
against concordance tables because of problems in these proposals and possible misuses 
of their results. Since these early arguments, several ACT/SAT concordances have been 
produced (College Board/ACT, 2018; Dorans, 1999; Dorans et al., 1997; J. Liu et al., 
2010; Marco & Abdel-Fa�ah, 1991). �ese ACT/SAT concordance studies are based on 
obtaining data from test takers taking the ACT and the SAT at least once, in either order, 
selecting the ACT and SAT scores to use for the test takers who take either test more 
than once and screening the test-taker data to avoid large time di�erences between ACT 
and SAT testings. Linking results are produced from the screened data as equipercentile 
conversions for some combinations of ACT and SAT tests (e.g., the ACT Summed score 
and the SAT Total scores in 2018, the ACT Summed score and the SAT Verbal + Math 
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score in 2010). Decisions about which ACT and SAT tests to concord are usually based, 
in part, on the size of their correlations (see the Correlations and Prediction Error section; 
Dorans, 1999). Content similarities and political issues o�en inform these decisions as 
well. �e usual data collection design is a single group design that ignores testing order. 
In some ACT/SAT concordance studies, testing order is accounted for by weighting 
data for each order similar to a counterbalanced design, but for nonequivalent groups 
(College Board/ACT, 2018; Marco & Abdel-Fa�ah, 1991). Other statistical weighting 
procedures have also been used to improve the representativeness of the concordance 
data and resulting concordances for the test-taker populations of each test, who do not 
necessarily take both tests (College Board/ACT, 2018). 

Because of di�erences in the speci�cations of the tests in concordance studies, con-
cordance results are not expected to provide interchangeable scores. In fact, concor-
dance tables are expected to be group dependent. For example, the concordance of the 
ACT Summed score and the SAT Verbal + Math score di�ers for females and males 
and across di�erent race/ethnicity groups. �ese di�erences can be a�ributed in large 
part to the fact that math content contributed 25% to the ACT Summed score and 50% 
to the SAT Verbal + Math score (Dorans, 2020). In addition, concordances produced 
from very specialized conditions of measurement, scoring, or with restricted samples 
or in special studies may not generalize to entire testing populations and may warrant 
additional studies to update results (Dorans & Moses, 2023; W. Lee & Brennan, 2021; 
Moses, 2022). 

Vertical Scaling 
Vertical scaling is used to establish “developmental” scales for reporting performance 
on versions of a test that are appropriate for speci�c ages or grade levels represented in 
schooling, and usually K–12 testing (Kolen, 2006; Kolen & Brennan, 2014). In Holland 
and Dorans’s (2006) linking framework, vertical scaling involves the linking of tests 
that measure similar constructs at similar reliabilities, but that di�er in di�culty and in 
the test-taker populations. �urstone (1925, 1938) proposed vertical scaling methods 
for item di�culties and then modi�ed them for summed scores (later described as a 
method of absolute scaling for age and grade-based scales; Flanagan, 1951; Gulliksen, 
1950). Rasch IRT models were considered for vertical scales in the 1970s and 1980s 
(Briggs & Weeks, 2009). More recent vertical scales include CTB/McGraw–Hill’s Terra 
Nova (CTB/McGraw–Hill, 2001), the Iowa Test of Basic Skills (Hoover et al., 2003; 
Kolen 2006; Petersen et al., 1989), the ACT scales (Brennan, 1989), tests of English 
acquisition and English as a second language (ETS, 2005; J. Wang & Smith, 2003), and 
the 2016 redesigned SAT Suite (Y. K. Kim et al., 2016). Typically, a separate vertical 
scale is established for each test in an overall testing ba�ery, serving as potential inputs 
to ba�ery scaling (see the Scales for Test Ba�eries and Composites and Ba�ery Scaling and 
Composites sections). �e resulting developmental scales and scores are used to provide 
a means by which students’ growth is measured, observed, and used to plan instruc-
tion and instructional support across schooling. Because the tests being linked in the 
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vertical scale di�er in di�culty, length (usually), timing, content, and other aspects, 
vertical scaling results do not produce interchangeable scores across levels (Kolen & 
Brennan, 2014). 

Several issues a�ect the production and results of vertical scales (Kolen, 2006), 
including de�nitions of growth, grade-based testing content, data collection designs, 
linking methodologies, and implementation choices in an IRT model, scoring, and 
estimation. 

How Growth Is Defined 

Vertical scalings can re�ect di�erent de�nitions of growth, such as grade to grade, where 
growth is de�ned over the test content appropriate to particular grades (usually two 
adjacent grades), and domain, referring to growth over all content in the domain (Kolen 
& Brennan, 2014). 

Grade-Based Testing Content 

For subject ma�er areas closely tied to a school curriculum, students tend to exhibit dif-
ferent amounts of growth depending on the content areas on which students are tested. 
For example, if division by whole numbers is taught in Grades 3 and 4, then growth 
in the third and fourth graders is expected to be greater in this area than growth in 
��h and sixth graders (Kolen & Brennan, 2014). Di�erent vertical scaling results might 
result from conducting the scaling on either grade (Holland, 2007, p. 18). Growth rates 
would be di�erent across vertically scaled tests measuring domains that are di�eren-
tially associated with school curriculum. Vertical scaling results can also be a�ected by 
how well the di�culty levels are represented in tests for earlier and later grades (Kolen, 
2006, p. 178). 

Data Collection Designs 

�ree designs are usually contrasted for vertical scaling (Kolen & Brennan, 2014). 
For vertical scales established with the NEAT design, adjacent grade-based tests are 
taken by students from those corresponding grades, and the blocks of items represent-
ing overlapping content for those two grades serve as the anchor test. �e randomly 
equivalent groups design can also be used, where test takers in each grade are randomly 
assigned to take either a grade-speci�c test or a test designed for an adjacent grade. �e 
NEAT and equivalent groups designs both involve the chaining of test linkings for tests 
administered to adjacent grades, and both designs re�ect a grade-to-grade de�nition of 
growth. 

A third data collection design is the scaling test design, which is similar to the NEAT 
design where an external “scaling” test that is built to re�ect content from the entire 
domain and represent all of the grades of interest is used as the anchor. Typically, the 
scaling test is administered to students along with the grade-speci�c tests to be scaled. 
�e scaling test design re�ects a domain de�nition of growth. �e scaling test design 
has been used with the Iowa Test of Basic Skills, ACT, and SAT testing programs. 
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Linking Methodologies 

Vertical scales can make use of methods based on several measures of test perfor-
mance (Kolen, 2006). For summed scores, Hieronymous scaling involves the linking of 
summed score medians across tests. �urstonian scaling is based on linking grade-based 
summed score distributions a�er they are transformed into normal distributions. �e 
untransformed raw scores could also be vertically scaled, such as through chained 
equipercentile procedures (Y. K. Kim et al., 2016). IRT scoring methods can also be 
used to establish vertical scales. 

IRT Implementations 

�e use of IRT for vertical scaling involves choices of an IRT model, estimation choices, 
and the IRT-based scores to use (Briggs & Domingue, 2013; Briggs & Weeks, 2009; 
Kolen, 2006). IRT models such as the Rasch, 2PL, or 3PL models could be used. Test 
items’ IRT parameter estimates could be obtained through calibrations conducted sep-
arately for each grade-speci�c test, items, and test-taker data or concurrently for the 
tests, items, and test takers from all grades. Vertical scales could be established from 
di�erent pro�ciency estimators, including MLE (Equation 4), EAP (Equation 5), or 
TCC approaches (Equation 6). 

�e test score linkings resulting from vertical scales have been characterized as a 
“folding ruler” and as a “ruler that bends” (Yen, 2007, pp. 274–275). What causes verti-
cal scales to fold and bend? As noted previously, the grade-speci�c tests can show more 
growth for content that is speci�cally taught in the curriculum for those grades (per-
haps suggestive of grade-to-grade growth). Reviews of vertical scales from the 1980s 
describe a shrinkage phenomenon where the scores from several types of vertical scales 
tended to have standard deviations that shrunk from earlier to recent tests and grades 
(Briggs, 2013; Kolen, 2006; Yen, 2007). Shrinkage was most o�en shown in vertical 
scales established with IRT, potentially a�ecting the ordering of schools based on their 
gain scores (Briggs & Domingue, 2013). Shrinkage in IRT scales results in a depic-
tion of growth that di�ers from the growth depicted in vertical scales established with 
non-IRT approaches, where shrinkage suggests more rapid growth for lower achiev-
ing students who catch up to higher achieving students (Briggs, 2013; Hoover, 1984). 
Although the source of the scale shrinkage in vertical scales from the 1980s was never 
de�nitively established, suggested explanations point to early IRT estimation methods 
(i.e., joint maximum likelihood estimation), multidimensionality within and across the 
tests, and a failure to establish interval scales. Vertical scales since the 1980s have gen-
erally not exhibited shrinkage (Yen, 2007), coinciding with updates in IRT procedures. 

Additional in�uences on vertical scales have been elaborated (Briggs & Weeks, 2009), 
including the chosen IRT model (scales based on 3PL models result in greater scale 
score variability than those based on Rasch models), IRT estimation (MLE results in 
greater score variability than EAP), and calibration (concurrent calibration decreases 
scale variability vs. separate calibration). IRT limitations can also a�ect vertical scales, 
such as strong and potentially unrealistic assumptions that item parameter estimates 
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�t item response data and are invariant across ages and grades, as well as assumptions 
that items and test-taker abilities can be modeled as unidimensional. Multidimensional 
approaches that account for changes in constructs measured across grades can show 
limitations with unidimensional approaches (Weeks, 2018). For these and other issues 
described in the cited sources, vertically scaled scores across grade- and age-speci�c tests 
can produce inconsistent estimates of test takers’ growth, estimates that re�ect choices 
in methodology, test development, and administrations. Altogether, these results indi-
cate that scores from di�erent tests in the vertical scale are not interchangeable. 

Battery Scaling and Composites 
Ba�ery scaling can be described both as an approach to establishing scales (see the 
Scales for Test Ba�eries and Composites section) and as an indirect way to link the scores 
of a ba�ery of tests designed to measure di�erent constructs that are administered to 
a common population of test takers (Holland & Dorans, 2006). �e purpose of estab-
lishing the scales in a similar way for all the tests in a ba�ery is so the resulting scales 
can facilitate interpretations about relative performance and strengths and weaknesses 
across the ba�ery. Examples include an early proposed ba�ery scale for di�erent scoring 
methods for handwriting (Kelley, 1914) and for establishing scales for recent versions 
of the SAT and ACT ba�eries (Brennan, 1989; Dorans, 2002; Y. K. Kim et al., 2016). It 
is likely and expected that the linkings of test scores produced in ba�ery scaling do not 
produce interchangeable test scores. One way that this lack of interchangeability can be 
observed is in subpopulation dependencies, such as for subgroups of test takers who do 
relatively be�er (or worse) on a mathematical measure and also do worse (or be�er) on 
a verbal measure. 

Composite scores are usually derived from individual tests in a ba�ery, making the 
comparability of composite score scales indirect and di�cult to maintain. To illustrate 
some challenges with composite score scales, consider a situation where the scales of 
two tests are established and maintained through equating, and let these two tests for 
which alternate forms would be developed be represented as Y1  and Y2 . A composite 
score is also of interest, de�ned here as the sum of the two scale scores, sc Y  = ( )1( )  sc Y 
+ sc( )Y2 . For this situation, the distribution of sc Y( )  is a function of the scale score 
distributions of sc( )Y  and sc Y  and also the joint distribution of [ sc Y sc Y( )( )  ( ,) ].1 2 1 2 

Speci�cally, the mean of sc Y( )  can be obtained as the sum of the means of both 
tests’ scale scores, the variance of sc Y( )  is obtained as the sum of the variances of 
both tests’ scale scores plus two times their covariance, and the skewness and higher 
moments re�ect higher moments in sc Y  and ( )  and in the joint distribution ( )1 sc Y2 

of [ sc Y sc Y) ( ) ]. �ese relationships indicate that except for its mean, the distribu-( ,1 2 

tion of the composite scale scores sc( )Y  is a function of the sc( )Y ( )1  and sc Y2  scale 
scores that would be maintained through equatings of the Y1  test forms to each other 
and the Y2  test forms to each other, as well as the covariance and higher moments of 
the joint distributions of [ sc( ,Y sc Y1) ( 2 ) ]that would not be maintained through the Y1 

equatings and the Y2  equatings. Examples of composites produced from multiple tests 



793 Scaling, Equating, and Linking

  

 

 

include those reported by ACT, SAT, and other programs. Kolen and Brennan (2014) 
summarized how a change in composite score standard deviation coincided with the 
change in intercorrelations of separate ba�ery tests’ scale scores and recommended 
speci�c checks for composite score comparability: “When composites are created for 
tests in a ba�ery, it is important to check whether the composites are also comparable” 
(p. 425). Analogous results have been shown in linking situations involving latent com-
posites (Dorans et al., 2014; Weeks, 2018). An implication is that composite score 
scales are best maintained directly rather than linked through indirect reliance on 
equated ba�ery tests. 

Predicting and Projecting 
Predicting and projecting are the oldest and earliest examples of test linking (Holland 
& Dorans, 2006). Although these linkings are not symmetric like scale-aligning func-
tions, various applications have been described in the psychometric literature. Predic-
tions and projections have been recommended because of their increased prediction 
accuracy versus scale-aligning functions, such as when there are low correlations in the 
scale scores for which a concordance is desired (Dorans, 1999; 2004b), or in the IRT 
thetas of distinct measures intended to be linked (Holland & Hoskens, 2003; Schalet et 
al., 2021). Other uses are for establishing auxiliary scales, such as reports of normative 
growth using conditional norms (i.e., relative growth rather than the absolute growth 
intended to be shown in vertical scales). Conditional growth norms might be used to 
forecast how younger test takers obtaining speci�c scores on an earlier test are expected 
to perform on a later test (Betebenner, 2009; Castellano & Ho, 2013). For example, 
PSAT-to-SAT prediction tables are descriptions of expected growth at the student 
and school levels (Y. Kim et al., 2018a, 2018b). As described in Holland and Dorans’s 
(2006) linking framework (also Linn, 1993; Mislevy, 1992), predictions and projec-
tions are the least restrictive type of linking in terms of requirements. �ey do, however, 
require a sample of test takers who took both tests. �e usefulness and accuracy of pre-
diction and projection tables are higher when the tables are applied to test takers who 
are most similar to the test takers used to produce the tables (Holland & Dorans, 2006). 
In other situations, the group dependences noted in prediction and projection tables 
can make them unstable, inaccurate, and “precarious” (Mislevy, 1992, p. 63), such as in 
applications to nonrepresentative groups or to groups over time (�issen, 2007). 

More Recent Linking Types 
Since Holland and Dorans (2006) presented their test linking framework, di�erent 
types of linking have been proposed and developed. Some prominent examples are 
summarized in this section and in Table 11.4. A focus of this discussion is the extent 
to which these more recently proposed linking types di�er from those in the Equating 
Requirements section. Several of these proposals are based on desires to o�er tests in more 
speci�c ways to test takers by o�ering tests in an increased number of administration 
modes (see the Linking Tests Across Conditions of Measurement section), supporting tests 
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with subjective scoring procedures (see the Linking Subjectively Scored Tests section), or 
developing the tests or the intended linking function tailored to speci�c test takers (see 
the Local, Ability-Speci�c Test Linking, and Linking Adaptive Tests sections). Additional 
proposals expand on methods for linking across nonequivalent groups (see the Linking 
Tests Using Weak Anchors section) and the Linking State Tests to NAEP section. 

Linking Tests Across Conditions of Measurement 

Testing programs might allow test takers to take their tests in di�erent administration 
modes, such as translated into di�erent languages, with modi�cations and accommo-
dations for special populations, and in multiple delivery systems that include paper– 
pencil tests and computerized tests delivered online. When o�ering alternative editions 
of their tests that are administered under di�erent conditions, the testing program can 
be faced with two choices. One choice is to ignore administration e�ects and treat the 
scores from a test given in di�erent administrations in the same way. �is choice could 
raise fairness concerns and result in an unknown degree of comparability in scores 
across measurement conditions (Pommerich, 2016). �e other choice is to conduct 
linking studies to estimate and apply score adjustments that account for administration 
e�ects on scores (i.e., mode comparability studies). �is choice may be possible for 
evaluating score e�ects from computerized versus paper testing modes, but is less feasi-
ble for tests administered with and without accommodations or in di�erent languages 
where standard data collection designs may be less available (�issen, 2016). 

Mode comparability studies and linkings produced in these studies do not meet the 
equating requirement for equal conditions of measurement (see the Equating Require-
ments section) and are not expected to produce interchangeable scores. However, these 
studies might improve or at least inform the fairness of score reporting. Some reviews 
of paper–pencil versus computerized mode comparability studies suggest that scores 
from these modes are comparable more o�en than not (Pommerich, 2016), whereas 
other studies suggest that computerized testing can favor some subgroups over others 
(Kolen & Brennan, 2014). �e mixed �ndings could be due to challenges in conducting 
mode comparability studies with traditional data collection designs (see the Data Col-
lection Designs section) and the extent to which the administration modes di�er. 

Traditional data collection designs can be challenging to implement with mode com-
parability studies (Kolen, 2007). Mode comparability studies with randomly equiva-
lent groups designs require that test takers be randomly assigned to an administration 
mode (paper–pencil, computerized, etc.), an assignment that can di�er from the typi-
cal administrations of tests and modes by a testing program. A NEAT design implemen-
tation would require that test takers take an anchor test given in a single administration 
mode that may di�er from the mode in which they take their actual test. Single group 
and counterbalanced designs can produce scores with order e�ects (Eignor, 2007). 
Traditional designs have been implemented in special studies for large-scale assessments 
like NAEP, the Programme for International Student Assessment (PISA), and the 
Trends in International Mathematics and Science Study (TIMSS; Jia & Xi, 2021) and 
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have found that digitally administered items in mathematics and reading (NAEP) and 
math and science (TIMSS) were more di�cult for fourth and eighth graders. Other 
studies have assessed mode e�ects in paper–pencil and online administrations of cre-
dentialing, licensure, and placement exams, using a variety of methods to account 
for test-taker nonequivalence and �nding mixed results ( Jones et al., 2022; S. Kim & 
Walker, 2021; Moses et al., 2021; Puhan & Kim, 2022). 

A major question is how di�erent the tests are when administered in each mode, such 
as in terms of their display of items and other test material, the test administration(s) 
(�xed, adaptive, etc.), and the extent of proctoring for the computerized administration 
(proctored at test centers vs. unproctored or online administrations). Discussions of 
these issues suggest that mode comparability linkings are most dissimilar with equat-
ings that produce interchangeable scores across testing modes when the computerized 
test is adaptive and unlikely to exhibit equity with the paper–pencil scores (Eignor, 
2007). In summarizing the transitions many admissions and placement programs made 
to online testing in e�orts to continue administering tests in the COVID-19 pandemic, 
Camara (2020) noted that online administrations with especially large di�erences 
from paper–pencil tests risked the integrity, accuracy, reliability, validity, and fairness of 
the resulting scores and would “likely mean score trends and comparability cannot be 
maintained” (p. 13). 

Altogether, the challenges with data collections and with potentially large di�erences 
in administration modes make mode comparability studies challenging in their imple-
mentation and their interpretation. �issen (2016) provided a general discussion of 
testing and linking across di�erent translations, grade levels, accommodations, and 
paper–pencil versus computerized modes, concluding that empirical investigations of 
fairness are needed for tests and linkings across conditions of measurement: 

Continued vigilance is required. There is no way to guarantee that a use of a 

test is fair. All that can be done is to catalog carefully the ways in which compari-

sons could be unfair, and then check, with either statistics or reasoned judgment, 

whether unfairness exists. (Thissen, 2016, pp. 212–213) 

Linking Subjectively Scored Tests 

Tests that are composed of CR items present challenges for linking, such as tests that 
usually contain a small number of items and data collection designs that do not work 
the same way as for tests containing MC questions (Kolen & Brennan, 2014). �e use 
of human raters to score tests containing a small number of CR questions can reduce 
reliability. Automated essay scoring approaches may avoid reliability reductions from 
human rater scoring, but they can also introduce their own challenges for score inter-
pretability and fairness (see the Ability Estimates From More Complex Models section). 
�e previously described issues about unreliable scores having less utility and produc-
ing linkings with less equity indicate that linkings for tests with CR items are not likely 
to produce interchangeable scores. Tests with small numbers of questions can also result 
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in inadequate coverage of the content domain, such that alternate forms may measure 
di�erent constructs. Low reliability and inadequate content coverage can make equat-
ing and score interchangeability less likely for tests with CR questions. 

When tests containing CR questions must be linked using a NEAT design, linking 
accuracy depends on a number of factors and procedures. A crucial issue with NEAT 
designs for CR tests is what to use for the anchor test. When the anchor contains CR 
questions, the scores from these anchors can re�ect a particular type of bias due to 
leniency/stringency di�erences in human raters from the two administration groups 
(Tate, 1999, 2000; S. Kim et al., 2010a, 2010b). Trend scoring procedures are recom-
mended for these biases, where the responses to a set of CR questions from a single 
group of test-takers are scored by raters in both administrations. A scale-aligning trans-
formation for the sets of scores from these administrations is produced to account for 
the unintended di�erences in rater leniency/stringency across administrations and to 
produce scores that can be used more e�ectively as an anchor for linking the tests. �e 
use of trend scored CR questions as an intact anchor, or as part of an anchor with MC 
question scores for mixed format tests, improves accuracy when linking mixed format 
tests with the NEAT design (S. Kim et al., 2010a, 2010b). Another choice available for 
mixed format tests is to use anchor tests composed only of MC items. �is approach is 
most e�ective when the administration groups are similar to each other on the MC and 
CR sections, when the correlations of the MC and CR scores are high and similar across 
forms, and when the number of score points a�ributable to MC scores is large (Kolen 
& Lee, 2011, 2012, 2014, 2016, 2018). 

Local, Ability-Specific Test Linking 

If an equating satis�es equity, then it is a ma�er of indi�erence whether test takers at 
every given ability level take form X  or Y  (see the Equating Requirements section; Lord, 
1980). Consider Lord’s original de�nition of equity, de�ned over every ability level (q 
value from an IRT model), and emphasize “each” ability level (van der Linden, 2011, 
p. 209; van der Linden, 2013, p. 262). A set of X -to-Y  linking functions could be de�ned 
to satisfy this interpretation of equity at speci�c values of q: 

e ( )x = G
−1
[ F x( )  ] such that F e ( )x = G y[ ] for each q. (36)Y, q q q q [ Y, q ] q 

�e goal of Equation 36 is to estimate each set of q -conditional X and Y distri-
butions (Lord & Wingersky, 1984) and use them to produce q -conditional X -to-
Y equipercentile functions. �is proposal contrasts with the usual recommended 
practice to average the conditional distributions of X  and of Y  given q  (Equations 26 
and 27) and conduct an equating for eY T, ( )x  on the averaged distributions (Kolen 
& Brennan, 2014). If test takers’ estimated qs were available from an IRT model, 
a set of equating functions at each estimated q  value could be used to evaluate 
lack of equity in the equated scores, eY, q ( )x -eY,T ( )x , rather than in distributions 
(Equation 18), analogous to evaluations of subpopulation invariance (Equation 20; 
Dorans & Holland, 2000). 
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One proposal is to use Equation 36 to produce and report q-conditional scores to 
test takers, to satisfy equity and address equating bias a�ributable to q-conditional 
measurement error (van der Linden, 2011, 2013). �is proposal has been criticized 
for theoretical reasons and practical issues (Dorans, 2013; Holland, 2013). Some ques-
tions are discussed next to elaborate both perspectives, the proposal for q-conditional 
procedures and counterarguments. 

• Does the target population for equating, T, contain test takers at all q  values or is 
it q-conditional? One perspective is that there are multiple q-conditional target 
populations (van der Linden, 2011, p. 209). Another perspective de�nes T in 
terms of all test takers taking a test in a data collection design from Table 11.1 
(i.e., test takers at all q  values). From the perspective that T contains test takers 
at all q  values, q-conditional linking functions that di�er from eY T, ( )x  are an 
indication that the subpopulation invariance requirement is violated (Require-
ment e, Dorans, 2013). A q-conditional interpretation would consider these 
di�erences to re�ect di�erent populations. 

• Should administration conditions like scoring rules be applied in the same way 
to test takers at all qs or should di�erent scoring procedures be applied to test 
takers at di�erent qs? Unique scoring rules might be applied to test takers at 
speci�c q  values or consistently to test takers at all q  values. Note, however, that 
q-conditional linking functions would imply that the equal measurement con-
ditions requirement of equating is not satis�ed (i.e., test takers with di�erent q 
values who take test X are scored di�erently from each other and likely from Y). 
Psychometricians have usually argued for the use of uniform scoring for all test 
takers taking a given test form (Livingston, 2004; Petersen, 2007). 

• What are the implications of q-conditional linking functions for score compa-
rability? From one perspective, q-conditional equipercentile functions correct 
for q-conditional measurement errors (van der Linden, 2011, 2013). Another 
perspective is that q-conditional equipercentile functions result in di�erential 
treatment of test takers (Dorans, 2013; Holland, 2013) and q-conditional score 
interpretations that would be contradictory to interchangeability across di�erent 
q  values (i.e., score comparisons across q  values are not supported). 

• Is equating an adjustment for the estimated di�culties of X and Y in T or an 
adjustment for q-conditional measurement error? One perspective is that the 
equating of observed scores involves adjusting for q-conditional measurement 
errors (van der Linden, 2011, pp. 213, 223). �e perspective of most other works 
cited in the Equating section is that equating involves adjusting test form scores 
for unintended di�erences in overall di�culty (see the Equating Requirements 
section), where the test forms involved are equally and highly reliable. 

Rather than use Equation 36 to report q-conditional linking functions to test takers, 
the recommendation in this chapter is to re-emphasize high reliability as a requirement 
for equating. �is means that a single X -to-Y  conversion applied to all test takers of X 
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would re�ect less measurement error, would be a closer approximation of the equity 
requirement, and would have small di�erences from q-conditional X -to-Y  functions. 
�e requirement for high and equal reliability in test forms being equated means Lord’s 
(1980) theorem that only perfectly reliable true scores can be equated is more closely 
approximated. �is perspective makes use of Equation 36 not as a score reporting strat-
egy, but as one possible check for equating adequacy, namely, a check on the extent to 
which q-conditional measurement error and (in)equity a�ect equating accuracy. 

Linking Adaptive Tests 

Adaptive testing is based on the premise that a test can be more precise when it is con-
structed so that its di�culty is matched (“tailored,” Lord, 1980, p. 150) to test-taker 
ability. �is matching of test-taker ability and test di�culty implies increased e�ciency, 
in that a matched test can be shorter but measure at a precision that is similar to or 
higher than that of a longer test that may be too easy or too di�cult for an unmatched 
test-taker group. Adaptive tests are usually IRT based in their scoring, linking, and scale 
scores, relying on a large pool of available test items with IRT statistics obtained from 
pretest and pre-equating data collections and using computer-based algorithms to 
administer the tests (van der Linden & Glas, 2010). 

When the test is administered, a computer program implements sophisticated algo-
rithms to obtain preliminary IRT-based ability estimates as a test taker takes test items. 
�en the computer program selects and administers subsequent test items with di�-
culties that match test takers’ ability estimates. �e computer might stop the test when 
the test taker’s ability estimate reaches a predetermined level of precision. Additional 
procedures are needed to ensure that the item pool is adequately maintained, that items 
are not being overly selected or exposed so as to raise security concerns, that content 
speci�cations are met, and that items’ IRT parameter estimates are not dri�ing during 
repeated use. Adaptive testing could be implemented at the item level (i.e., every subse-
quent item a test taker takes is based on his/her ability estimated from previously taken 
items). Adaptive testing could also be implemented at a small number of stages where 
test takers are routed to collections of items of di�ering di�culty (i.e., multistage tests, 
MSTs). Several examples of item-adaptive tests and MSTs are described by van der Lin-
den and Glas (2010). 

Computer-adaptive tests present several challenges for score linking. �e adaptive 
tests are highly dependent on the item pools, such that systematic changes in the item 
pool through item reduction or the use of di�erent exposure controls can result in test 
scores that are not interchangeable because of increased measurement error, violations 
of second-order equity, and changes in the distribution of reported scores (T. Wang & 
Kolen, 2001). Even when alternate item pools are built to be very similar, they might 
produce scores that are di�erent enough to warrant additional linking beyond what is 
provided in the adaptive test (Segall, 1997). Adaptive tests rely on assumptions that 
scoring parameters are correct and item order and context e�ects are either minimal or 
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can be controlled. More thoughtfulness has been encouraged about these assumptions 
(Harris, 2023), and special research has been prompted to assess pretested items admin-
istered in varied positions (Davey & Lee, 2011). Importantly, the design of an adaptive 
MST will re�ect one of several possible trade-o�s of adaption and the extent to which 
content speci�cations are met: 

More modules per stage may make a test more adaptable to a wider range of 

examinee proficiency levels, but then, more easy items and hard items are needed 

to build the MST modules. The items must also be selected to simultaneously 

meet all requisite content specifications for any test route taken by the exam-

inee. This is often very challenging when the modules at a given stage must be 

matched on content and also span a fairly wide range of item difficulty. Similarly, 

fewer items per stage likewise encourages the use of more adaptation, but can 

result in routing decisions being made on smaller and smaller slices of the content 

domain. (Zenisky et al., 2010, p. 356) 

Adaptive tests have some resemblances to vertical scales (see the Vertical Scaling sec-
tion), in that they involve tests developed to di�er in di�culty and possibly in content 
being administered to test takers of speci�c estimated ability. Both linking types can fail 
to meet the equating requirement for content and di�culty (Requirement a, see the 
Equating Requirements section) and both raise comparability challenges. Similar to how 
di�erent vertical scaling results could be produced as students of di�erent ages and/or 
grades take the tests being vertically scaled, di�erent scores from computer-adaptive 
tests could be produced if test takers of higher and lower ability take one of several 
unique and adaptive tests di�ering in their di�culty and possibly content. �ese issues 
might be a ma�er of degree where, for example, simulations of MSTs that administer 
modules with relatively small di�erences in di�culty and content may not show large 
scoring errors in misrouted test takers (S. Kim & Moses, 2014). However, as the quote 
from Zenisky et al. (2010) suggests, it is possible that the adaption in adaptive testing 
could be more extreme, as is the case with item-level routing, such that tests targeted at 
speci�c ability levels di�er from those that target other ability levels in their di�culty 
and content coverage. Greater degrees of adaption and larger di�erences in the adaptive 
tests administered to test takers can reduce the comparability of scores across test takers 
of di�erent ability. 

When unidimensional IRT models are employed, it is virtually impossible for test-
taker scores to be successfully equated for adaptive “forms” because, by design, the 
adaptive routes di�er in di�culty and indirectly modeled content, at least in part, as 
well as the test-taker groups that take the di�erent routes. In e�ect, di�erent ability 
groups take di�erent test forms that are intentionally designed to be nonequivalent, 
which rules out equating as an a�ainable goal. (Similar statements apply to linking 
scores on paper–pencil and MST forms.) Just about all educational tests are multi-
dimensional by design and by content speci�cation. When a unidimensional IRT 
model is used and adaptions re�ect ability, di�culty, and incompletely modeled 
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multidimensional content, statements about scores for test takers who take di�erent 
test forms and routes being on the same scale are di�cult to defend. Linkings of some 
kind may be possible, but the characteristics of any linked scores can be ascertained 
only through empirical studies that consider the accuracies of the IRT parameters and 
scores, the item pool, the adaptive se�ings, test forms for higher and lower ability test 
takers, etc. �e strong claims supportable by an actual equating are not expected in 
such linkings. 

Linking Tests Using Weak Anchors 

Consider the situation where a linking is desired for tests X  and Y , but the test data are 
not collected in one of the recommended data collection designs (Table 11.1). If these 
test data were obtained in a manner similar to a NEAT design in which X and Y were 
taken by nonequivalent groups, but with no anchor score data, what linking approaches 
might be available? One example of this situation occurs when the data from a paper– 
pencil test were intended to be collected in a randomly equivalent groups design, but 
test book spiraling procedures failed. Another situation occurs when the administration 
of a common anchor to both groups is not feasible because of security concerns. Finally, 
testing programs might intentionally introduce this type of design by o�ering their test 
in di�erent administration modes and giving test takers the option to self-select into 
di�erent test administration modes. 

Two issues that determine the quality of linking are the similarity/dissimilarity of 
the administration groups and the representativeness of the available anchor(s), (A( )s ) 
for X  and Y  as indicated in the anchor, test correlations. An ideal situation occurs when 
the administration groups are samples from the same population. For this case, Hol-
land and Dorans (2006) described the role of the anchor as one of reducing random 
variability and improving statistical precision, even when the anchor does not represent 
the tests: 

When P Q , the NEAT design is called an EG [randomly equivalent groups] = 
design with anchor test. The two samples are drawn from a common population 

and the role of the anchor test changes. The anchor test becomes a covariate as 

in a randomized experimental design. It is used to gain precision in the estimation 

of the relevant parameters, rather than to adjust for group differences. For this 

special case, it is not necessary for A to measure the same construct that X and Y 
do, or even to be a test score. All that matters is for A to be correlated with both 

X and Y . When this is the case A is useful as a precision-increasing covariate. (p. 

199) 

For less than ideal situations where the populations of the administration groups can-
not be considered equivalent, the anchor must reduce bias and variability (Holland & 
Dorans, 2006). �e potential for greater linking error when administration groups are 
not equivalent means that it is especially important that the anchor be representative 
of, and correlated with, test scores. Although the use of inadequate anchors for a linking 
test administered to nonequivalent groups might improve linking accuracy, this use 
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may not su�ciently account for test-speci�c group di�erences or produce equatings 
that support interchangeable scores. 

Several linking methods have been considered for situations where the administra-
tion groups di�er and where multiple anchors and/or background variables might be 
available that could be incorporated into a test linking. Suggestions for using multiple 
scores were made by Ango� (1971) in a generalization of regression methods (Equa-
tion 17). Livingston et al. (1990) suggested propensity score matching as a way to 
incorporate multiple scores. Dorans and Wright (1993) showed that linking results 
obtained from matching administration groups based on a selection variable could 
be more accurate than methods based on matching groups with traditional anchors. 
Liou et al. (2001) described how demographic background variables might be used 
in test linking by making assumptions about the missing data and using correspond-
ing imputation methods. Moses et al. (2010) showed how frequency estimation 
based on projected distributions (see the Distinguishing Equating From Other Forms 
of Linking section), categorized propensity scores, and missing data imputation could 
all be used to produce similar linking results when these methods were used with two 
anchor scores. Studies of categorized propensity scores based on background variables 
(Livingston, 2014; Wallin & Wiberg, 2019) and linear scale alignments with linear 
regressions of multiple background variables (Bränberg & Wiberg, 2011) showed that 
these approaches can increase precision and reduce variability in test linking. Statisti-
cal weighting procedures based on log-linear models have also been described for test 
linking based on background variables (Haberman, 2015) and on test takers’ previous 
test scores (Y. Lee et al., 2019). 

Most of these methods produce scale-aligning results that are similar to those obtained 
from projecting test score distributions for hypothetical administration groups de�ned 
by one or more anchors and/or background variables. It is possible that the linking 
results based on using an anchor and/or background variable have improved accuracy 
compared to an inappropriate randomly equivalent groups approach. However, to the 
extent that the anchors and/or background variables do not represent (and correlate 
highly with) the tests being linked, and also do not account for administration group 
di�erences, the linking results will likely have inadequacies, such as insu�ciently con-
trolled group di�erences that preclude interchangeable scores. 

Linking State Tests to NAEP 

�e National Research Council published Uncommon Measures (Feuer et al., 1999) 
to address a debate in the late 1990s between those who favored voluntary national 
tests as a means of assessing the educational progress of students across the nation 
and those who believed that statistical linkages among existing tests could be used 
to achieve that purpose. �e Uncommon Measures report examined the feasibility of 
linking the results of commercial and state tests, such as by linking these tests to each 
other and to the NAEP scales to support comparisons of students’ achievement with 
national and international benchmarks and with students in other places. Feuer et al. 
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demonstrated that it was not possible to link state assessments for several reasons, 
including di�erences in the NAEP and state tests with respect to their content, format, 
margins of error, intended and actual uses of the tests, and the consequences a�ached 
to the test results. 

A�empts to link state tests to the NAEP scale have continued since Feuer et al.’s 
(1999) report (Dorans, 2020), prompting discussions and questions about the inter-
pretational value of the results. �issen (2007, 2016) discussed an approach based on 
projection methods (Williams et al., 1998), and listed concerns about lack of population 
invariance, indications that linking results were not stable over time, study cost, and 
the unknown levels and di�erences in motivation for students taking a standardized 
test versus the NAEP test, which is more of a survey that lacks direct personal conse-
quences for test takers. Other a�empts involve linking state standards to NAEP scales 
using equipercentile methods (Braun & Qian, 2007; McLaughlin, 2000; McLaughlin & 
Bandeira de Mello, 2002). �ese a�empts prompted concerns about whether the infer-
ences and interpretations were too strong, about potential instabilities of the results 
over time (Koretz, 2007), and about comparisons that may not be defendable for the 
states and state tests that di�er from NAEP with respect to content frameworks, imple-
mentation, and stakes (Ho & Haertel, 2007). 

In another a�empt to use the NAEP scale to connect disparate state assessment 
results, Reardon et al. (2021) reported linear scale-aligning linkings of school district 
means on state tests to the NAEP scale, based on statistically inferring the district 
means on the state tests from published passing rate distributions. Commentaries on 
Reardon et al.’s article by Bolt (2021), Davison (2021), Moses and Dorans (2021), 
and von Davier (2021) re-emphasized long-standing cautions about the large variation 
in blueprints used by di�erent state tests and other di�erences with NAEP in terms 
of content, administration conditions, stakes, and test-taker motivation. Moses and 
Dorans (2021) provided empirical demonstrations that state-based linkings of district 
means from one test to another are not invariant across states, even when correlations 
in the district means of these scores are very high (.98 or higher). �ese discussions 
suggest that cross-state invariance evaluations are needed to support cross-state com-
parisons of districts. 

DISCUSSION 

�e reporting scales for a large-scale testing program are the focus of �ve chapters of the 
previous editions of Educational Measurement (Ango�, 1971; Flanagan, 1951; Holland 
& Dorans, 2006; Kolen, 2006; Petersen et al., 1989). �e current chapter updated these 
discussions. �e Scaling section covered approaches to se�ing the scales for the test(s) 
of a large-scale testing program. �e Equating section covered equating approaches 
for alternative versions of the same test. �e Linking section discussed other linking 
approaches for relating the scores and scales of di�erent tests. In these discussions, 
scaling, equating, and linking activities were described and related to a wider context 
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of testing activities, including test speci�cations, test form assembly, test scoring, 
test administration conditions (including data collection designs), and the intended 
purposes and uses of the test(s). When testing activities are consistent and tests are sim-
ilar with respect to construction, administration, and purposes, the resulting scales are 
more likely to re�ect their intended interpretations. When testing activities are incon-
sistent or are altered in tests that are scaled and linked to each other, the resulting scal-
ing, linking, and equating procedures may not produce results that adequately support 
intended score interpretations. 

Recent testing trends create and increase the challenges in establishing, maintain-
ing, and relating the score scales of tests. Pursuits of alternative online administra-
tions have increased since the COVID-19 pandemic, with mixed administration 
e�ects on reported scores (see the Linking Tests Across Conditions of Measurement sec-
tion). �ere are also calls to revise testing in ways that address increasingly diverse 
testing populations, such as to develop and administer tests under less standardized 
conditions (Sireci, 2020), in ways that re�ect test takers’ sociocognitive backgrounds 
(Mislevy, 2018). In situations where testing programs compete for dwindling num-
bers of test takers, some programs have a�empted to link their tests to other tests 
using substandard linking methodologies (Dorans & Moses, 2023). In other cases, 
unlinked scores are released with the presumption, but not necessarily the commu-
nication, that scores are linked based on nonempirical and untestable assumptions 
(Baldwin & Clauser, 2022; Dorans & Middleton, 2012). Assessment approaches 
can make di�erent trade-o�s of standardization, reliability, and comparability versus 
validity, group �delity, and local uses (Brennan, 2006; Mislevy et al., 2025). Some of 
these trade-o�s prompt recommendations to limit unwarranted score interpretations 
and broad comparisons of test takers that can be unfair (Dorans & Haberman, 2022; 
Moses, 2022, 2025). 

As discussed in this chapter, large numbers of forms administered to smaller admin-
istration groups using weak data collection designs and li�le or no linking e�orts can 
simultaneously in�ate several types of error (random, systematic, violations of the 
equal construct requirement, etc.). �ey also raise concerns about the comparability 
of scores being released and used to make comparisons (Baldwin & Clauser, 2022; 
Moses, 2022). Experience indicates that these concerns have especially serious con-
sequences for test score users when testing organizations are not forthcoming in com-
municating the procedures they use, the assumptions they make with their procedures, 
and the extent to which comparability in their scores is (un)supported. For these and 
other challenges, the recommended practices described in this chapter include checks 
to monitor and ensure that reported scales continue to re�ect their intended interpre-
tations. Additional recommendations are for checks on equating and linking results, 
especially those produced under limited and unique study conditions that may warrant 
interpretations that are restricted to the conditions of those linking studies rather than 
generalized to uses in broader testing populations (W. Lee & Brennan, 2021; Moses & 
Dorans, 2021; Moses, 2022). 
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�e entity that produces reported scores has the ultimate responsibility for 
establishing and maintaining their reporting scales and for ensuring that the resulting 
scores and their interpretations are clearly communicated to test users (AE� et al., 
2014). It is crucial that reported scores have clear, useful, and defensible interpretations 
and explanations based on sound scaling, equating, and (if necessary) linking, along 
with other supporting information. �e ultimate goal is that reported scores, especially 
how they are produced and interpreted, should be integral and defensible evidence in 
support of validation arguments about test scores. It should be noted as well that this 
goal is unlikely to be a�ained without the active cooperation with and/or input from 
those who design, develop, administer, and market tests. Defensible scaling, equating, 
and linking is not simply the application of complex psychometrics to testing issues. 
All applied psychometrics involves assumptions, and the defensibility of results rests 
heavily on the credibility of these assumptions in the speci�c testing context under con-
sideration, with appropriate a�ention given to quantifying and communicating likely 
error in reported scores: 

Whether scores are equated, linked in some weaker sense, or rescaled, however, 

the overarching consideration in my opinion is that users be given appropriate 

guidance about score interpretation and use. Part of that guidance ought to be 

explicit indications of the amount of error in scores and in the likely uses made of 

scores, as well as admonitions about likely misinterpretations of scores. (Brennan, 

2007, p. 175) 
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NOTE 

1. �e variance of mean-score di�erences plus the relative error variance in 
classical test theory is the absolute error variance in generalizability theory 
(Brennan, 2001). 


