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Few wish to assess others,

Even fewer wish to be assessed,

But everyone wants to see the scores
(Paul Holland, quoted in Dorans, 2018)

There are many ways that a testing program can assign and report scores that reflect test
performance. Score reporting can be based on performance standards set by content
experts; on relative standing with respect to one or more test-taker groups; on perfor-
mance, strengths, and weaknesses across a set of tests contained in a test battery; or
on performance for a particular age group or grade level in a scale constructed to track
growth in age- or grade-appropriate tests of increasing difficulty. It would be difficult
to overstate the importance of reported scores for a large-scale testing program. As a
testing program’s most visible and widely used products (Dorans, 2002; Kolen, 2006;
Zenisky et al., this volume), it is essential to understand and document how reported
scores are produced, maintained, and, at times, related to the scores reported by other
testing programs. This chapter focuses on procedures for producing, maintaining, and
linking testing programs’ reported scores.

This chapter is an updated version of prior writings on scaling, equating, and linking.
The attempt is to build on the seminal and foundational work of the chapters in previ-
ous volumes of Educational Measurement (Angoff, 1971; Flanagan, 1951; Holland &
Dorans, 2006; Kolen, 2006; Petersen et al., 1989). Extensive reviews of these chapters
are, regrettably, not possible here, but are strongly encouraged. The major goal of the
current chapter is to provide a “point-in-time” description of how issues and problems
in the current testing field engage with, challenge, and build on prior chapters’ discus-
sions and frameworks for scaling, equating, and linking a testing program’s reported
scores.

« Scaling focuses on the theory and practice of establishing a testing program’s
reporting score scales.

« Equating focuses on the definition, requirements, history, and methodological
practices of equating for maintaining a testing program’s reporting score scales.

« Linking types are summarized with historical and recent examples for how a
testing program might relate its reported scores to other scales.

In addition to the scaling, linking, and equating chapters in previous Educational
Measurement volumes, the current chapter reflects two major influences. First, the
testing program from which reported scores are produced represents a system of
test production, administration, scoring, using, and interpreting test results, in mul-
tiple testing sites, and repeating in cycles over multiple points in time (Dorans,
2011; Holland, 1994, 2008). Understanding reported scores requires an under-
standing of the testing program’s system, especially test specifications and devel-
opment, administration conditions, and scoring procedures. The second influence
pertains to the interpretations of reported scores. Testing standards emphasize
that reported scores should be produced and maintained in ways that encourage
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appropriate interpretations and discourage misinterpretations (American Educa-
tional Research Association [AERA] et al., 2014; Kolen, 2006; Petersen et al., 1989).
The discussions in this chapter are intended to specify and elaborate on what this means
and on ways to most effectively reflect “the overarching consideration . . . that users
be given appropriate guidance about score interpretation and use” (Brennan, 2007, p.
175).

SCALING

The purpose of scaling is to establish the reporting scale(s) for the individual measures
of a new or redesigned testing program. Scales are produced in the context of several
activities of a testing program, such as the development of a test or measure from an
established set of specifications for the content, construct, and individual items. Scaling
is used in several testing contexts, including:

« admissions testing, where testing companies develop tests with relatively long
scales for use in admissions decisions;

« K—12, where testing companies develop content-based tests associated with
specific curricular standards adopted by policy makers to classify students at one
or very few cut points for school and educator accountability, high school exit
requirements, and instructional decisions;

« certification and licensure programs, where test content is determined with
extensive input from practitioners and test takers are classified at cut points that
indicate sufficient knowledge and skills to qualify for professional practice; and

« large-scale survey assessments developed by policy makers, educators, measure-
ment and content experts, and other stakeholders for use in the estimation of
trends in scale score distributions and classifications of populations and subpop-
ulations over time.

Scaling activities also involve the administration of the developed test to test takers
from a defined testing population under specific administration conditions, the scor-
ing of test takers’ test items, and the conversion of test takers’ item scores into overall
test scores or ability estimates. The data collection design for a test-taker sample from
population p who take test form Y is shown in the first row of Table 11.1 (the terms and
other designs in Table 11.1 are described throughout this chapter). The task in scaling
is to develop a transformation that assigns numbers or ordered indicators to the test
performance data.

The scaling process reflects the tests and their intended measurement, interpretations,
and perspectives reviewed in the “Scaling Perspectives” section. Consider Y as a test form
and a set of performance values test takers might receive, such that specific performance
values are denoted y =0,1,2,.... The ys can reflect sums of correct item scores,
weighted summed scores, summed predicted probabilities of item-level models, or other
indicators as described in the Basic Unit of Scaling section. Scale score transformations of

SA37



738 EDUCATIONAL MEASUREMENT

Table 11.1 Summary of Data Collection Designs for Scaling, Equating,

and Linking
Description Design Table
Scaling/norming for Population Sample Y
a single test P 1 N
Single group Population Sample X Y
P 1 J V
Randomly equivalent groups Population Sample X
P 1 N
P 2 N
Counterbalanced Population Sample X, Y, X, Y,
P 1 v v
P 2 v
NEAT Population Sample X A Y
P 1 V V
Q 2 V| A
Common-item equating to a Population Sample X, X yow
calibrated pool
P 1 N
Section pre-equating Population Sample X, X, Y, Y,
P ! J J | d
P 2 v
Item pre-equating Population Sample X New
P 1 v v

Note. NEAT = nonequivalent groups with anchor test. Depending on the context, X and Y can refer to alternate forms of a single test (equating) or to distinct

tests (linking). For all but the NEAT design, P is assumed to be the target population for the test (T').

test performance are developed to produce reported scale scores that reflect increasing
levels of achievement or proficiency, sc(Y), that encourage specific interpretations. Two
types of scales might be developed from the inputs, primary and auxiliary. Primary scales
refer to reporting scales and test performance indicators that underlie the psychometric
operations of a test (Kolen, 2006; Petersen et al., 1989), including the equating of scores
from alternate test forms (see the Equating section) to the primary scale. Methods of
establishing primary scale scores are described in the section Scaling Methods for Primary
Scale Scores. Auxiliary scales are developed to facilitate interpretations and convey mean-
ing in primary scales, and are described in the section Auxiliary Scales.
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Scaling Perspectives

Early antecedents for educational and psychological testing and scaling include Horace
Mann’s efforts in 184S to standardize oral exams of test-taker placement to control for
the influence of different topics, examiners, and other efforts in psychophysics to apply
scientific methods to study relationships between psychological sensations and phys-
ical stimuli (Briggs, 2022; Mislevy, 2018). Efforts to establish scales for nonphysical,
psychological measures reflected these antecedents, as well as aspirations that mea-
sures and scales of nonphysical attributes might exhibit the measurement and scaling
properties of physical attributes. The Binet—Simon Intelligence Test, released in France
in 1905 by Alfred Binet and Theodore Simon, was an attempt to identify children in
need of special services in ways that would be objective and free of teacher judgment
and variations in the terminology, evidence, and reasoning used at that time (Binet &
Simon, 1916; Cronbach, 1949). In the Binet-Simon test, test takers between ages 3 and
13 completed a series of 10 to 30 age-specific tests and were given a scale score designat-
ing an age and “intellectual level” corresponding to the test they were able to complete
(Becker, 2003; Cronbach, 1949):

The fundamental idea of this method is the establishment of what we shall call
a measuring scale of intelligence. This scale is composed of a series of tests of
increasing difficulty, starting from the lowest intellectual level that can be observed,
and ending with that of average normal intelligence. Each group in the series cor-
responds to a different mental level. (Binet & Simon, 1916, p. 40)

In another early example of scaling and measurement, Thorndike (1910) proposed a
scale for handwriting quality by obtaining rankings of subsamples of handwriting sam-
ples of children in the fifth to eighth grades from competent judges and averaging these
rankings to produce a scale for the entire sample. Thorndike (1910) described his scale
of handwriting quality as one that ranged from “better than which no pupil is expected
to produce, down to a quality so bad as to be intolerable, and probably almost never
found, in school practice in the grammar grade” (p. 89). He also considered his scale of
handwriting quality a way to assess educational outcomes similar to physical and scien-
tific measures in other disciplines:

In general, the experience of constructing this scale gives great encouragement
to the hope that for many educational facts, units and scales may be invented
that shall enable us to think quantitatively in somewhat the same way that we can
about facts of physics, chemistry or economics. (Thorndike, 1910, p. 150)

Scaling, measurement processes, and models were developed beyond the work of
Binet and Simon (1916) and Thorndike (1910). For the Binet—Simon tests (i.e., items
or questions) that were designed to be taken by children of specific ages, Thurstone
(1925) developed a method to place the statistics of all Binet-Simon tests onto a single,
continuous, normally distributed ability scale. This scale allowed Thurstone to evaluate
and critique the a priori age groupings of the tests: “The questions are unduly bunched
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at certain ranges and rather scarce at other ranges” (Thurstone, 1925, p. 448). Thurstone
(1926, 1927) also provided a rationale and more fully developed theory of Thorndike’s
(1910) scale in his law of comparative judgment (Coombs et al., 1970). This allowed
for scales to be produced from any process of pairwise comparisons through modeling
averages of pairwise differences and assuming they followed normal distributions. Gut-
tman (1944) proposed a scaling approach that predicts an individual’s agreement/dis-
agreement with an ordered set of unidimensional attitude statements in a deterministic
model asserting that individuals who agree/disagree with a stronger/milder statement
of attitude will also agree/disagree with all milder/stronger statements. Rasch (1960)
proposed a scaling procedure based on a statistical logistic item response model of the
probability of an individual’s response to an item based on one parameter for each item’s
difficulty and one parameter for an individual’s ability (see the IRT Ability Estimates
section; Wright, 1977).

Despite the methodological differences in previously described scaling approaches,
comparative summaries have pointed out several similarities. The scaling approaches of
Thorndike (1910) and Thurstone (1926, 1927) reflect an assumed “monotonicity prop-
erty” in the nonphysical variables being scaled, implying consistency in judgments and
subjective differences between stimuli (Coombs et al., 1970, p. 42). Thurstone’s, Gutt-
man’s (1944), and Rasch’s (1960) approaches assume invariant comparisons in scales
intentionally constructed to be unidimensional (Andrich, 1988). Engelhard (1984)
compared the item calibration approaches of Thurstone (1925) and Rasch (1960) and
another approach from Thorndike (1919), showing that these approaches produce
similar empirical results and that they all attempt to eliminate the effects of samples
and groups and thus achieve invariance. These scaling approaches can be described as
giving increasingly greater emphasis to a particular model over data (Engelhard, 1984,
p- 35). An implication of these approaches’ emphases on models is that uses and inter-
pretations of the scales occur “only after a scale is developed that adequately fits the
model” (Kolen & Brennan, 2014, p. 373).

Scaling has been addressed in fundamental definitions of what constitutes a measure
and its scale. Early work was based on a classical perspective of discovering or estimating
quantities and numerically representing them (Campbell, 1928; Holder, 1901; Michell,
2008). From this perspective, attributes are established as quantitative and fundamen-
tal measures to the extent that they exhibit numerical properties that have a physical
analogue, like length and concatenation (the adding or laying of objects end to end,
Coombs et al., 1970; Hélder, 1901; Mislevy, 2018). An implication of these arguments
is that measurement can be established only in the physical sciences. Psychophysical
variables could not be established as measures because psychophysical variables would
not exhibit concatenation operations or invariant relationships with established physi-
cal measures (Campbell, 1928; Ferguson et al., 1940).

Stevens (1946) provided a general typology of scales achieved through rules of
assignment of numerals to a wide range of objects or events. By focusing on assign-
ment rules rather than on requisite conditions for measurement (e.g., Campbell, 1928),
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Stevens’s (1946) scaling approach is more encompassing, alternatively described as
paraphrasing (Stevens, 1946), circumventing (Mislevy, 2018), shifting (Briggs, 2022),
or deflecting (Michell, 2008) the emphasis of earlier arguments on classical measure-
ment and quantitative measures. For Stevens, scales are achieved in an operational-
ist (vs. classical) process of following (vs. discovering) rules for assigning numerals
to objects according to their assumed level of measurement (vs. attributes of objects
that must first be established as measurable; Briggs, 2022). The objects and measure-
ments for which scales can be established include nominal (categorical labels), ordinal
(ordered labels), interval (ordered labels that have equal intervals), and ratio (interval
scales with a natural zero). In Stevens’s arguments, the meaning and interpretation of
scales depends on using admissible transformations for types of measurement (i.e., a
monotonically increasing transformation for ordinal, linear transformations for inter-
val) and on using permissible statistics for specific types of scales (e.g., medians for
ordinal scales, means for interval scales). Stevens’s scaling theory was further developed
in subsequent work (Coombs et al., 1970; Krantz et al., 1971; Suppes & Zinnes, 1963 ).

Other approaches re-emphasized the classical focus on quantitative (interval or
ratio) measurement through conditions other than concatenation (Coombs et al.,
1970), including conjoint measurement (Luce & Tukey, 1964). One condition of con-
joint measurement is double cancelation, which refers to a variable that consistently,
additively, and noninteractively increases or decreases with two other variables (see the
Ability Estimates From Rasch and Other 1PL IRT Models section).

Scaling approaches used in practice and described in measurement theory have been
nearly separate pursuits in educational and psychological testing: “The axiomatic anal-
ysis of measurement models does not always provide feasible methods for constructing
scales” (Coombs et al., 1970, p. 31). Binet and Simon (1916) described inconsistencies
in the actual and aspirational measurement properties of their Binet-Simon test, simul-
taneously arguing for treating the scale of their test as equal to a quantitative measure
even as they acknowledged that it reflected an ordinal scale of ordered, discrete classes:

This scale properly speaking does not permit the measure of intelligence, because
intellectual qualities are not superposable, and therefore cannot be measured as
linear surfaces are measured, but are on the contrary, a classification, a hierarchy
among diverse intelligences; and for the necessities of practice this classification
is equivalent to a measure. We shall therefore be able to know, after studying two
individuals, if one rises above the other and to how many degrees, if one rises
above the average level of other individuals considered as normal, or if he remains
below. (pp. 40-41)

Another argument for treating ordinal measures as though they reflected interval scales
in scaling practice appealed to pragmatics and usefulness over formal measurement
properties:

Although, formally speaking, interval measurement can always be obtained by
specification, such specification is theoretically meaningful only if it is implied
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by the theory and model relevant to the measurement procedure. At various
times in this book however, we shall treat a measurement as having interval scale
properties, although it is clear that the measurement procedure and the theory
underlying it yield only a nominal or, at best, an ordinal scale . . . from a pragmatic
point of view, the only meaningful evaluation of this procedure is one based on
an evaluation of the usefulness of the resulting scale. (Lord & Novick, 1968, pp.
21-22)

Some objections have been expressed about Stevens’s (1946) arguments concern-
ing levels of measurement and permissible statistics, such as Lord’s (1953) argument
that statistical operations seemingly reserved for interval scales could be appropriate
even for nominal scales like numbers on football players’ jerseys. Connections of
measurement theory and scaling practice have been considered in terms of the statis-
tical and probabilistic Rasch models and conjoint measurement (Embretson & Reise,
2000; Karabatsos, 2001; Perline et al., 1979). However, noted limitations in the fit of
the Rasch model have raised questions about the inconsistencies of pursuits to estab-
lish scales that reflect measurement theory versus those that fit actual test data (Briggs
et al., this volume; Embretson, 2006; Embretson & Reise, 2000; Thissen & Orlando,
2001; Wright, 1994).

The perspectives taken in describing the practice of establishing reporting scales for
educational tests in the first four volumes of Educational Measurement make specific
references to, and departures from, previous discussions of scaling and measurement
(Angoff, 1971; Flanagan, 1951; Kolen, 2006; Petersen et al., 1989). Most of the Edu-
cational Measurement chapters present a basic definition of scaling similar to Stevens’s
(1946), one of assigning numerals or numbers to a test taker’s test performance. Inter-
pretation and meaning are less about requirements for measurement, statistics, or scal-
ing transformations and more about the scale properties that might be desirable for
other criteria and interpretations (described in the Scaling Methods for Primary Scale
Scores and Auxiliary Scales sections). All of the Educational Measurement volumes dis-
cussed scale score interpretations in terms of scale score distributions on relevant test-
ing populations (norms). Discussions of interval scales and other measurement issues
either appear in other nonscaling chapters (e.g., Lorge, 1951) or are described in terms
of their limited usefulness for scaling and psychological measures due to the absence
of operational definitions that are agreed on by experts (Angoff, 1971) and the lack
of a complete theory and definition for the psychological and educational constructs
in need of scales (Kolen, 2006). Finally, perspectives on scaling for educational tests
emphasize a starting point that differs from the one implied in measurement definitions
and models. Petersen et al. (1989), Kolen (2006), and Brennan (personal communi-
cation, September 17, 2020) have distinguished educational measurement from other
types of measurement because the starting point in educational measurement, that is,
test content and specifications, comes from an external entity (e.g., one of the testing
contexts summarized in the beginning of Scaling). They argue, consistent with Lind-
quist (1953), that
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the objective is handed down . . . by those agents of society who are responsible
for decisions concerning educational objectives, and what the test constructor
must do is to attempt to incorporate that definition as clearly and as exactly as
possible. (p. 35)

For educational measurement, content, test development, and measurement models
influence the development of a test’s reporting scale in choices for the basic unit used in
scaling (see the Basic Unit of Scaling section), transformations of test performance mea-
sures to a reporting scale with desired properties (see the Scaling Methods for Primary
Scale Scores section), and maintenance of the scale in subsequently developed forms
through equating (see the Equating section).

Basic Unit of Scaling

The Scaling Perspectives section described fairly different views on scaling. These differ-
ences are apparent in the options for defining the basic unit of test performance used
to establish a testing program’s score scale. This section covers choices and implications
for representing test performance, including different types of observed test scores that
summarize observed test performance, and the latent abilities estimated using some
item response theory (IRT) models. For other summaries of these options, including
descriptions of approaches for scoring different types of items, see Kolen (2006) and
Dorans (2018).

Observed Test Scores

Test performance indicators can be established as different types of observed scores.
For test form Y that contains i = 1 to I items that are not distinguished with respect to
content area or item format, the most common observed score is the sum of the i = 1
to I item scores, V,,

Y=>wy, (1)

where w,=1 for all I items. With this option, a test taker’s score reflects equally
weighted contributions from each item in the test. Other options involve the summing
of differentially weighted item scores, where the item score weights might be chosen to
maximize some measure of test reliability or validity (Gulliksen, 1950; Lord & Novick,
1968). Although these reliability and validity measures for maximization are defined
by Gulliksen (1950) and Lord and Novick (1968), many issues concerning reliability,
true score variance, and error variance for scaling procedures are, at best, imperfectly
understood. Other texts should be consulted for comprehensive discussions of reli-
ability (Brennan, 2001; Haertel, 2006; Lee & Harris, this volume). Different options
suggested in Equation 1 can be used to summarize test takers’ test performance on a
specific set of test items.

Test form Y may also be a “composite” or “mixed format” test containing items with
different content areas and/or item formats. When Y includes I multiple-choice (MC)
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items and ] constructed-response (CR) items, an approach to weighting the item type
scores and obtaining observed composite scores is

Y = wyc Zz‘Vi,Mc + Wwer ZjVj,CR' (2)

One option is to nominally weight the scores from the MC and CR items so that the
weighted scores reflect an intended number and percentage of composite score points. The
Advanced Placement exams provide several simple and complex examples of MC item
score weights and CR item score weights being set such that the weighted and summed
scores contribute desired numbers of points to the composite score (College Board,n.d.;
Moses etal.,, 2006). Another option is to determine effective weights such that the weighted
scores reflect a desired proportion of the composite’s observed score variance or true score
variance. A third option is to select weights for the scores summed from different item for-
mats such that some measure of composite score reliability is maximized.

The options for summing item scores produce measures of test performance with dif-
ferent implications. Sums of item scores that are equally weighted or weighted to reflect
intended numbers of composite score points are the simplest methods of reporting test
performance, associated with scoring rules that can be fairly easily communicated to
test takers (i.e., “To do as well as possible, answer every item”). Simple summed scores
can directly reflect expert judgments about the test as indicated by the numbers and
weights of different items described in test specifications. Other options weight items
based on statistics such as variances, maximized reliabilities, or validities and have inter-
pretations based on those criteria. In addition, the weights reflect population and sample
characteristics of those corresponding statistics. The scoring rules associated with these
options for weighted observed test scores are more complex and may be more difficult
to communicate to test takers depending on when these population-dependent weights
are derived (i.e., test takers may approach the test in a way that is suboptimal or incon-
sistent with item weights that may be derived before or after the test is administered).
Most of these observed score options should be understood to reflect an unspeeded
test where test takers have sufficient time to answer every item. Inadequate testing time
can elicit rushed or random responding that could result in unintended measurement
properties for those speeded items and the overall test. Equally or nominally weighted
item scores may be suboptimal with respect to test score reliability, especially if these
weights result in higher contributions from the scores of less reliable item types (i.e.,
higher contributions of CR scores relative to MC scores).

Observed test scores are direct indications of actual test performance and indirect
reflections of unobservable latent abilities. As such, potential uses of observed test
scores as estimates of latent abilities require supplemental measures of the reliability
or generalizability of the scores to other possible item samples, test administrations,
and admissible measurement conditions. When interpreted in terms of measure-
ment and scale properties, test scores are often described as ordinal scales for some
latent ability they are assumed to measure (Embretson & Reise, 2000). Alternatively,
observed test scores could be considered interval scales from a pragmatic perspective
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(Lord & Novick, 1968), or from a perspective where scores from a particular test form
are regarded as indices of test performance rather than estimated abilities, such that a
test form’s scores exhibit equal increases with additional correct responses to test items
(Mislevy, 2018, p. 316).

IRT Ability Estimates
Scales might be established on estimated latent abilities rather than on the test per-
formance observed for a set of test items. In theory, the item response data from a test
form might be modeled in ways that produce estimates of abilities that are independent
of the test form. In practice, this involves fitting IRT models to data from a test and its
fixed, specific set of items, such that the item characteristics require scaling procedures
to account for their sample effects (described by Kolen & Brennan, 2014). The result is
that test performance measures can be produced that may be regarded as estimates of
latent ability, but that are essentially computationally complex summaries of observed
item performance, in need of their own reliability estimates (Lee & Harris, this volume).
Assume test form Y contains dichotomously scored items with correct responses scored
1 and incorrect responses scored 0. Assume further that test takers’ responses to the I items
are conditionally independent given a latent and unidimensional ability, §, and that the
probability of a correct response follows a logistic model with up to three parameters, such
that the probabilities monotonically increase with 6. The item response probabilities from
the one-, two-, or three-parameter logistic models (1PL, 2PL, 3PL) can be expressed as

1
[T exp[—Da, (=) G)

Pr(Vi:1|0,ai, bi,ci): ci—i—(l—ci>

where a;, b,, and ¢, are discrimination, difficulty, and guessing parameters for item i
and D is a scaling constant that is sometimes 1 and other times set to 1.702 so that Equa-
tion 3’s logistic function approximates a normal ogive (Haley, 1952). This section sum-
marizes some approaches for estimating test takers’ abilities, /, based on test takers’ scored
responses to the items on test form Y, v}, v,, ... v, and on parameter estimates for all I
items on the test form that are treated as population values (not estimated). IRT ability
estimates reflect several choices for fitting IRT models to test data, including calibration
decisions, estimation software, and approaches for polytomously scored items and mixed
format tests (for additional discussions of IRT models, see Cai et al., this volume).

Three commonly used IRT ability estimates are the maximum likelihood estimate
(MLE), the Bayesian expected a posteriori (EAP), and the test characteristic curve
(TCC) estimate (for others, see Thissen & Orlando, 2001).

The MLE is obtained by solving for 6 using an iterative procedure to maximize,

LV, =v,V,=v,, ..V, =v,|0)
_ _ v _ (1-v) (4)
=[[Pr(V;=110, a;, b;, ¢;)" 1= Pr(V, =110, a;, b;,c;)] .
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The MLE can be described as the ability estimate with maximum information (i.e.,
precision) and inverse sampling variance. The MLE corresponds to an optimally

weighted observed score, Z Vi, fora particular IRT model (Lord, 1980; Yen & Fitz-
patrick, 2006).
The Bayesian EAP estimate,

f OL(V, =v,,V, =v,,...V, =v,|0)Pr ©)d6
EAP = ) (%)
feL(Vl:vl, V, =v, ...V, =v,|0) Pr(6)do

is the mean of a distribution of § obtained as the product of the likelihood and an
assumed prior distribution for test-taker ability, Pr(f). In practice Pr(f) is usually
represented as a discrete approximation of the standard normal distribution, though it
can also be obscure.

The TCC estimate is based on relating the IRT-expected summed scores given 0,
7y (0), to the observed summed score (Equation 1). Ignoring measurement error in
the scores of test form Y and making other adjustments to account for true scores that
are undefined in the IRT model, Equation 1 and a summed version of Equation 3 are set
equal to each other and 6 is estimated to preserve this equality:

Y = Zini = ZwiPr(Vi =1|6,a,b,c, ) =7,(0) (6)

Although the solution to ¢ in Equation 6 ensures that the IRT-expected summed score
matches the observed score, this application of true score relationships to observed
scores lacks justification (Kolen & Brennan, 2014, p. 201).

ABILITY ESTIMATES FROM RASCH AND OTHER 1PL IRT MODELS For the Rasch (1960)
(all as=1, all ¢s=0, and D=1) and other 1PL models (all g;s = constant, all
¢;s= 0, and D =1.702), ability estimates have a one-to-one relationship with the test
score summed from equally weighted items, all w;s = Da, , and the TCC and MLE esti-
mates are equal (‘Thissen & Orlando, 2001). When a uniformly distributed prior is used,
Pr(0), EAP ability estimates are also equal to those of MLE and TCC, except that the
highest and lowest summed scores have estimates from EAP but are undefined with MLE
and TCC. These results reflect a property of Rasch and 1PL models that the summed
test score with equal ws is a sufficient statistic that contains all information needed
for estimating 6 (Lord, 1980). Response probabilities from Rasch and 1PL models are
additive and consistently ordered for item difficulties (or test-taker abilities), regardless
of abilities (or items), always increasing as item easiness and test-taker ability increase.
This means that the Rasch and 1PL models exhibit double cancelation and could be said
to have a probabilistic relationship to conjoint measurement (Briggs et al., this volume;
Embretson & Reise, 2000; Mislevy, 2018; Perline et al., 1979). Although this relation-
ship has been the basis of attempts to establish quantitative measures with interval prop-
erties in test data, these attempts are challenging because of model-data fit limitations
(see the Scaling Perspectives section). The relationship also reflects inconsistencies in
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observed item responses, the probabilistic Rasch (1960) model of latent and estimated
item parameters and abilities, and the deterministic framework of observed variables in
conjoint measurement (Kyngdon, 2008; Mislevy, 2018; Perline et al., 1979).

As stated in the Scaling Perspectives section, Rasch models are more restrictive and
less likely to fit observed data than other IRT models. These model-fit limitations can
prompt calls to impose statistical consequences to the data or edit or remove nonfitting
responses (Wright, 1977). Examples include “reinterpreting or modifying the frame of
reference” (Andrich, 1988, p. 62) or reducing the intended scale:

The broader the domain of interest, the more difficult it will be to make targeted and
testable hypotheses. This would suggest that vertical scales could only be plausibly
supported for more narrowly defined latent variables. (Briggs, 2013, pp. 219-220)

Removal of test-taker data could potentially limit intended scale interpretations, such as
by narrowing the intended scaling population (i.e., changing P in Table 11.1). Removal
of nonfitting items could result in narrowing the construct defined in test specifications.

ABILITY ESTIMATES FROM 2PL AND 3PL IRT MODELS The 2PL (unique a;s and ¢s=0)
and 3PL (unique as and ¢;s >0) IRT models can be used to produce more com-
plex ability estimates with unique contributions from individual items. The MLE and
EAP estimates from 2PL and 3PL models reflect patterns of correct and incorrect
responses to individual items, such that they differ from and convey more informa-
tion than the TCC estimates. The MLE for the 2PL IRT model reflects item pattern
scores and an optimally weighted test score where item scores are weighted by their
discrimination, w; = Da,, and the resulting weighted test score is the sufficient sta-
tistic for . A TCC procedure usually based on equally weighted item scores differs
from the MLE, but can produce the MLE estimate when modified to sum optimally
weighted item scores (Lord, 1980). For the 3PL model, there is no sufficient statistic
for 0, and the MLE estimate reflects a test score summed using optimal weights defined

Pr(V,=1|6,a, b, c,)—c Da,

1—¢ Pr(Vlf:1|9, a, b, c) ’

as w, =

The MLE, EAP, and TCC ability estimates based on 2PL and 3PL IRT models have
unique properties (S. Kim & Moses, 2025; Kolen, 2006; Kolen et al., 2011; Thissen
& Orlando, 2001; Yen & Fitzpatrick, 2006). MLEs (Equation 4) are asymptotically
unbiased estimates of #, though for tests of realistic length they have conditional
biases that are positively correlated with 6 (Lord, 1983) and an overall variance that
is larger than that of 0. MLE estimates are unavailable for some response patterns,
such as those where the responses to the test items are all incorrect or all correct.
EAP estimates from Equation S have conditional biases that are negatively correlated
with @ (Lord, 1986), and they are less variable than the MLEs. The EAP estimates
reflect shrinkage to the prior distribution of 6, meaning that 6 values are overesti-
mated for test takers below the mean in the population and underestimated for test
takers above the mean. 6 estimates based on EAP are available for all item response
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patterns. Ability estimates based on EAP and MLE item pattern scores have smaller
standard errors than those using the usual TCC approach, though their similarity
with TCC estimates increases for longer tests with items that have smaller guessing
effects (Yen & Fitzpatrick, 2006).

Ability estimates for 2PL and 3PL IRT models have implications for model-data fit,
theoretical measurement properties, and score interpretations. These IRT models fit
observed test data more closely than Rasch and 1PL models, but do so with added com-
plexity. From a theoretical measurement perspective, interval properties in ability esti-
mates from 2PL and 3PL IRT models are more difficult to defend than for Rasch models.
Item characteristic curves for given items can cross for higher and lower test-taker abili-
ties, and this nonadditivity means that 2PL and 3PL IRT models are not guaranteed to
meet the double cancelation condition or have a probabilistic relationship to conjoint
measurement. Ability estimates are nevertheless sometimes described as interval scales
because 2PL and 3PL IRT models produce probabilities that are invariant under dif-
ferent linear transformations of their parameters for a specified functional form and
population distribution (contrasting points are made about this description in Briggs
et al,, this volume, endnote 10, and Mislevy, 2018, pp. 316-317). Empirical research
on interval scales from these IRT models has been encouraged (Michell, 2008), and
statistical tests may be possible for the 2PL model (Kyngdon, 2011).

From an interpretational perspective, MLE and EAP ability estimates from 2PL
and 3PL models are more complex and more difficult to understand than those based
on simple sums of equally weighted item scores (i.e., the usual TCC). The weighting
ofindividual items in the scoring is likely to be less closely aligned to the intended test
content as determined by test developers and described in test specifications (Kolen,
2006). The complexity of ability estimates based on pattern scoring implies more
complicated scoring rules and increased difficulty in communicating, understanding,
and explaining scoring and advising on how test takers might maximize their perfor-
mance. For MLEs based on the 2PL model, items with higher discriminations make
greater contributions to test takers’ ability estimates, which creates fairness issues
when these differentially important items are not communicated to test takers (Dor-
ans, 2012). For the 3PL model, MLEs reflect differentially weighted items for differ-
ent test takers (i.e., for less able test takers, correct item responses tend to count less
and are more likely attributed to guessing; Lord, 1980, p. 75). This characteristic was
described by Mislevy (2012) as “unsettling” and tough to explain (p. 39). The fairness
of pattern scoring based on the 3PL model is questionable and has been described as
a challenge for establishing comparability in adaptive tests (Phillips, 2016, p. 258).
A complication with EAP estimates is that they reflect not only test performance in
item pattern scores, but also a test-taker ability distribution (Kolen, 2006).

ABILITY ESTIMATES FROM MORE COMPLEX MODELS Scoring approaches have been
developed and considered that are even more complex than those that have been previ-
ously described. These approaches are developed based on a range of motivations. One
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is to obtain scores on noncognitive traits assessed with faking resistant forced-choice
item formats using item parameter estimates obtained in previous administrations of
those items in formats that are not faking resistant (Drasgow et al., 2012; Stark et al.,
2005). Other efforts score tests composed of family-generated clone items using IRT
methods like Equations 4-6 based on parameters from the item families rather than
parameter estimates for the items test takers actually take (cautions provided in Drasgow
et al., 2006; Harris, 2023; Luecht & Burke, 2020; van der Linden & Glas, 2010). Other
efforts are being considered for measuring response processes like test-taking strategies,
thought processes, and behaviors like reading, interpretation, and strategy formulation
with response times, computer screen gazes, verbalizations, and other process infor-
mation (Ercikan & Pellegrino, 2017). Deep-learning neural network models might be
considered for automated scoring versions of subjective human scoring of test takers’
writing (Zesch et al., 2023).

For complex scoring approaches, test takers’ test performance measures might reflect
not only their performance on the test and items they take, but also other unspecified
aspects of the scoring procedures. Scoring based on item families can produce test-taker
scores that reflect errors in the IRT parameter estimates of items they may not actually
take. Complex scoring algorithms can be difficult to interpret and explain (Lottridge et
al,, 2023; Zesch et al., 2023), and the resulting test performance measures may reflect
reduced accuracy and fairness, or unrepresentativeness in the data used to train the mod-
els (Broussard, 2020; Hussein et al., 2019; W. Lee & Harris, this volume). Performance
measures that reflect test-taking processes can warrant validation efforts and attention to
the processes different test takers use to optimize their performance (Kane & Mislevy,
2017; Wise, 2017). These approaches to representing test performance are mentioned
here to illustrate recent trends for increased complexity and, likely, increased difficulty
in explaining, justifying, and defending scales for the resulting performance measures.

Scaling Methods for Primary Scale Scores
The approaches to representing test performance described in the Basic Unit of Scaling
section are usually considered inadequate for use as a testing program’s reporting scale
(Angoff, 1971; Kolen, 2006). Observed test scores represent test performance in ways
that are specific to a test form, its items, and its measurement characteristics (difficulty,
reliability, etc.). Under strong assumptions, IRT ability estimates may be regarded as theo-
retically independent of a test form and its items, but even if these assumptions are met in
practice, the ability estimates have their own interpretational difficulties because of their
similarity to standard normal variables, with means near zero, and small numbers with
decimals that can be negative or positive. Consistent with the scaling discussions from
earlier Educational Measurement volumes (Angoff, 1971; Flanagan, 1951; Kolen, 2006;
Petersen et al., 1989), scale scores established from untransformed observed scores,
sc(Y) = Y, or untransformed estimated IRT thetas, sc(é) -0 , are not recommended.
The task in scaling is to develop a numeric transformation of a measure of test
performance that assigns numbers or ordered indicators such that the scale scores,
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sc(Y), reflect monotonically increasing levels of achievement. For large-scale testing
programs, this task of establishing scale transformations is intended to be applied not
only to the scores of test form Y, but also to other alternate versions of Y developed,
administered, and equated (see the Equating section) to Y. Another goal of scaling is
that the scale scores be established to facilitate score interpretations and discourage mis-
interpretations. In this section, different scale score transformations are reviewed that
focus on the structure, normative, shape, measurement, and content aspects of report-
ing scales. In each subsection, methods and intended interpretations are described.

Reporting Scale Basics

Some aspects to be determined for a testing program’s reporting scale are structural, such
as the scale score range and number of possible points. Recommendations are usually
to establish the range of the scale scores in such a way that the scores cannot be easily
interpreted as observed test score performance (Dorans, 2002; Kolen, 2006; Livingston,
2004 ). For example, scale score ranges such as 100-200 (Praxis) and 200-800 (SAT) are
wide enough to impede unwarranted guesses about the relationship between the number
of items and scale score points. The GRE scale score range (130-170) and the ACT range
(1-36) are also not likely to be interpreted as simple transformations of raw scores.

Another aspect to consider in scale scores is the interval, or the number of possi-
ble scale score points reflected in the range of the scale scores. Most recommendations
are to establish the scale score interval such that it represents the available informa-
tion or precision of the test (Dorans, 2002; Flanagan, 1951; Kolen, 2006; Livingston,
2004). When intervals are too fine, the resulting scores could lead users to overinterpret
score differences, such as on pre-1970 SAT scales of 200-800 in integer units (Living-
ston, 2004). When scale score intervals are more coarse than test performance (e.g,
stanines), then the scale scores can result in lost information (Flanagan, 1951; Kolen,
2006) or test takers with very different test performance receiving the same scale score
(Dorans et al., 2010).

Scale score intervals might be established based on simple recommendations, such
as ensuring that the possible scale score points do not exceed the number of observed
score points on the test (Dorans, 2002) or establishing desired confidence intervals
for true scores or scale scores (Kolen, 2006). Kolen (2006) summarized two propos-
als for establishing scale score points that reflect desired confidence intervals for true
scores for the Iowa Tests of Educational Development (ITED, 1958) and more gener-
ally (Kelley, as cited in Kolen, 2006, p. 165). These procedures are based on assuming
that measurement error is normally distributed and constant across the scale, that the
reliability of test performance is known or well estimated in population P, and that the
scale score transformation is linear. With these assumptions, a scale score transforma-
tion that reflects true score confidence intervals could be established based on

60,0 = 6—— o)

zyJl—rely, ’
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where h is the width of the desired scale score interval, z;is the standard normal
z-score associated with the desired 7 100% confidence interval, rely ;, is the reliability
of Y in population P, Tre(y),p 18 the standard deviation of sc(Y) in P, and 60, ) p when
rounded, provides a reccommended number of distinct scale score points. For the ITED
implementation in Equation 7, the scale score units are set such that adding or subtract-
ing one scale score point establishes a 50% confidence interval for true scores (i.e, h=1

and zy R .6745 for 7=50% ). For Kelley’s implementation of Equation 7, the scale
score units are set such that adding or subtracting three scale score points establishes an
approximate 68% confidence interval (h=3 and z, ~1 for Y = 68%). From Kolen’s
(2006) summary of these proposals, Kelley’s rule generally leads to about twice as many
scale score points as the ITED rule. For both approaches, the number of recommended
scale score points decreases asreliability decreases. Equation 7 can be used with any mea-
sure of test performance for which a reliability estimate is available, including an IRT 6.
Once used, a linear scale score transformation is found that produces scale scores with
a range of units that is consistent with Equation 7.

Another structural aspect of scale scores is the level of truncation, where recom-
mendations are for the range of minimum and maximum reported scale scores to be
narrower than the actual scale score range (i.e., the working range, Dorans, 2002). Trun-
cation of the maximum scale scores has been recommended because it avoids interpre-
tational difficulties such as conveying perfect test performance on test forms that differ
in difficulty and have different untruncated scale scores (Livingston, 2004 ). Truncation
also helps make the resulting scale scores more resistant to shifts in score distributions
due to changes in the population or in the difficulties of the test forms (Dorans, 2002).
Establishing a minimum reported scale score that is higher than what is suggested by
the scale score transformation can be useful for avoiding meaningless distinctions at
test performance levels lower than theoretical guessing levels where measurement is
less precise (Livingston, 2004).

Finally, consider that a reporting scale can be established to specify the scale score that
should correspond to one or more specific observed scores of Y. The situation of inter-
est is one for which a scale score transformation is established such that two observed
scores of test Y, ¥ and ¥,, will have prespecified scale scores, sc(y,) and sc(y, ) :

)sc(yz) —sc(y,)

Y2 =N

se(y) = sc(y) +(y =y (8)

This transformation has been described as a basis for a scale score range of 100-200 on
Praxis (Livingston, 2004).

Normative
When establishing scale scores, a common desire is for the scale scores to represent a
test-taker group of interest in terms of one or more statistics (i.e., statistics of a reference
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group or sample of population P taking test Y; Table 11.1). Scale score conversions
might involve transformations of the observed test performance on Y to a specified
scale score value. One commonly used linear transformation converts the mean and
standard deviation of test performance in population P, fiy, and oy, to desired scale
score values, (i ) p and 0 ) p:
SE9) = oy + = iy p) DL ©)
Oy p

Equation 9 can be used to establish raw-to-scale score transformations that satisfy
several scaling criteria. For example, to satisfy a reccommendation that the scale score
mean be set at the center of the possible scale score range (Dorans, 2002), Equation 9
might be used to set the mean test performance for a test-taker group to be sc(y) =500
for a 200-800 range (SAT; Dorans, 2002) or 18 for a 1-36 range (ACT; Brennan,
1989). Also, Equation 9 might be used to produce a set of viable raw-to-scale score
transformations that vary in how they satisfy different criteria for numbers of distinct
scale score points (Equation 7) and how far the actual scale scores extend below and
above a truncated range of scale scores, as well as to establish the means and standard
deviations for nonlinear raw-to-scale score transformations (reviewed next).

Another example of a linear scale score transformation that reflects the normative
information for a group of test takers is to establish a desired scale score standard devi-
ation and a conversion of one particular score, y,,to sc(y,),

)Usc(Y),P .

se(y) = sc(y) +(y—y (10)

Y,P

where 0,y is the intended standard deviation of the sc(y)s in population P. Lin-
ear raw-to-scale transformations such as Equations 9 and 10 establish scale scores as
linearly increasing indications of test performance, retaining the shape (skewness and
kurtosis) of the raw scores in the scale scores.

Nonlinear Transformations

Nonlinear transformations can be used to establish scale scores that encourage interpre-
tations based on scale score basics (see the Reporting Scale Basics section), distribution
shape, or measurement precision. Rounding scale scores to integers or other units can
establish scale scores that convey an intended range of possible scale score points. Trun-
cating the lowest and highest possible scale score values to intended values also helps
to consistently maintain the structural aspects of scale scores. Nonlinear raw-to-scale
score transformations might also be developed to satisfy other criteria. These might be
subjected to an additional linear transformation like Equation 9 to reflect aspects such
as the intended range and number of possible scale score points.

One nonlinear transformation involves establishing scale scores that are approxi-
mately normally distributed. The resulting scale scores can then be described as sym-
metric and reflective of a shape that is familiar to test users (Dorans, 2002; Petersen et
al,, 1989). Normally distributed scale scores can be established by first obtaining the
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percentile ranks or “percent at and below” for a measure of performance on test Y (Kolen
& Brennan, 2014). For this discussion, consider the measure of test performance to be
the raw scores obtained as the sum of I items, y,, k=1 to I, where the actual scores
range from O to y,. A continuized version of the scores is assumed where each individ-
ual score, y,, ranges from y, —.5 to y,+.5 and the entire set of continuized scores
ranges from —.5 to y; +.5. The percentile ranks for these continuized scores can be
computed as

Gp(yy) = 100{> Pry(y)+

yi<y*

[)’k—(y* —~5)]P’”p(y*)}a—.5§yk<y,+.5 (11)
— 0, yk <_.5
= 100, y, >y, +.5,

where Pr,(y,)is the relative frequency at score y, for population P and where y* is
the closest integer to y, such that y"'—.5 <y, <y" +.5. Values of the standard normal
distribution are found, z,, such that their cumulative distribution values, @(z,), equal
a function of the percentile ranks of the ys,

2
—w /2
d

Gp(y,)/100 = P(z,) = w. (12)

1 f Zk
— e
VarJoe
In Equation 12, w is a variable that assumes values ranging from — 00 to z, in the inte-

2k
gration denoted by f ...dw . The resulting z; s can be linearly transformed to have

an intended mean and C;?:andard deviation (Equation 9) and rounded and truncated to
have the intended range of possible scale scores. The normal transformation was used
to establish recentered SAT scales in 1995 based on the 1990 reference group of grad-
uating seniors (Dorans, 2002). Other examples provided by Kolen (2006) and Kolen
and Brennan (2014) illustrate that the normal transformation is approximate and that
its closeness to the normal distribution depends on the distribution of the raw scores.

Another motivation for nonlinear transformations is producing scale scores that pro-
vide a stabilized version of conditional measurement error. That is, testing standards call
for reporting conditional standard errors of measurement (CSEMs) for several scores if
CSEMs differ across the score range (AERA et al,, 2014). For most psychometric models,
the CSEMs of scores are small for the highest and lowest unscaled true scores and large for
true scores in the middle of the range (Lord & Novick, 1968). Kolen (1988) proposed an
arcsine transformation developed by Freeman and Tukey (1950) for use as a scale score
transformation of number-correct true scores. Assuming that the errors of number-cor-
rect true scores follow a binomial, compound binomial, or IRT model (Kolen, 2006), scale
scores having approximately equal CSEMs across their range can be produced as

| } (13)

.S
-1

+1
+sin J

I+1

I+1
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The resulting scale scores can be reported and described as reflecting a single standard
error of measurement (SEM) value across the range of true scores (Kolen et al., 1992).
They can also be further transformed to have an intended mean and standard deviation
(Equation 9) and rounded and truncated to have an intended range of possible scale
scores. Arcsine transformations have been used to establish scales for the ACT (Bren-
nan, 1989) and the 2016 redesigned SAT (Y. K. Kim et al., 2016).

Nonlinear transformations to achieve normal distributions or to stabilize CSEMs
can have interpretational difficulties. Both types of transformations can result in
extreme stretching of the highest and lowest scale scores, exaggerating scale score
results and creating gaps (missing scale scores) for the highest and lowest levels
of test performance. These methods can also produce scale scores with inconsis-
tent properties, such that arcsine transformations can result in more skewness (less
symmetry) in the scale score distributions. A conceptual issue with CSEM stabi-
lization is that the scales are established for true scores and applied to observed
scores.

To produce a scale score transformation that could achieve symmetry with less
extreme conversions of the highest scale scores, Moses and Golub-Smith (2011) pro-
posed a cubic transformation of raw scores,

sc(y) =8+ 6,y + 8,y +6,y) (14)

where the §s are derived to achieve a desired mean, standard deviation, skewness, and
kurtosis in the scale scores (and also to satisfy a constraint that the scale scores are
monotonically increasing). This procedure can be used to approximate the normal
distribution, but to varying degrees that produce less extreme transformations and
fewer gaps at the highest and lowest scale score regions. This procedure was used to
set the scales of the revised GRE (Golub-Smith & Moses, 2014). Another version of
the cubic transformation was proposed by Moses and Kim (2017) to produce scale
scores that would stabilize an inputted set of CSEMs. This procedure was used to set
one of the scales of the 2016 redesigned SAT (Y. K. Kim et al., 2016). Moses and Kim
(2017) also showed how cubic transformations could be established that satisfy a
set of scaling criteria to varying degrees, such as by making scale score CSEMs more
similar while also targeting scale score symmetry. Finally, because CSEMs are inputs
in developing the scale score transformation, the cubic transformation can also tar-
get stabilizations for a limited number of scores involving consequential decisions
(i.e., cut scores; Lord, 1985) or for different measures of test performance, such as
CSEMs at IRT s or at true scores and test performance measures for mixed format
tests. Another situation where the flexibility of the cubic transformation might be uti-
lized is stabilizing true score intervals for a specified range of observed scores (Lord
& Novick, 1968), an application that would likely produce different scaling results
than those produced to stabilize CSEMs given true scores. Finally, the cubic trans-
formation could be extended to fit even higher moments in a targeted distribution
(Headrick, 2002).
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Interval Scales
Some discussions of psychological measures (Michell, 2008) and vertical scales (Briggs,
2013) have taken issue with claims that psychological and educational measures can be
interpreted as quantitative and as having interval properties. A recommendation from
these perspectives is that assumptions for the treatment or interpretation of variables as
quantitative should be explicitly acknowledged or, better yet, should prompt empirical
evaluations such as empirical tests of whether the variables meet conjoint measurement
conditions (see the Scaling Perspectives and Basic Unit of Scaling sections, Michell, 2008).
As suggested in the Basic Unit of Scaling section, most available measures of test perfor-
mance are difficult to establish as quantitative scales for the above notion of “quantita-
tive” Some apparent consequences have been described in the context of vertical scaling
(Briggs, 2013), where the intent is to establish a scale where growth across grades can be
measured and interpreted with respect to interval interpretations (see the Vertical Scaling
section). Claims about vertical scales exhibiting interval properties might be made by test
publishers, claims that have been discussed as inconsistent with growth rates observed to
vary across lower versus higher grades or across lower versus higher parts of the scale score
distribution (Briggs, 2013; Hoover, 1984). Empirical evaluations for the existence of
intervals in vertical scaling results have been suggested by Briggs and Domingue (2013).
The starting point for establishing a scale with interval properties is a measure of test
performance with interval properties. From the Basic Unit of Scaling section there are at
least three possibilities:

« operationalist or pragmatic perspectives of the observed test scores as inter-
val-based indices of performance for a specific test form

« Rasch ability estimates from test data shown to fit a Rasch model, specifically
with empirically demonstrated double cancelation and conjoint measurement
conditions

« ability estimates from 2PL or 3PL models, based on arguments about the spec-
ification and invariance of the probabilities from these models under different
linear transformations

Following Stevens (1946), linear scale transformations (Equations 8, 9, and 10) of these
test performance measures would retain the established, or argued-for, interval proper-
ties, whereas nonlinear transformations would not. Note that the linear transformation
would apply to one of the three possibilities but not to all three, because the three possi-
bilities cannot coexist because of inconsistencies in the assumed model (Rasch vs. 2PL
or 3PL) and nonlinear relationships in observed test scores and IRT-based abilities.

Scales for Exams With Cut Scores

For K—12 and certification and licensure tests, the interest is in reporting performance
for a limited number of performance categories rather than on the entire range of a
score scale. For example, test takers might be placed into Proficient and Nonproficient
categories or into levels of certification, achievement, or competence. The performance
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reporting for these types of tests would be oriented more to classification results and
less to the properties of an entire range of scale scores. Cut scores and classifications
would have increased importance, such that representing test performance relative to
cut scores involves a classification problem with unique implications for measurement,
CSEMs (Lord, 1985), and other properties of the classifications.

Some proposed procedures for cut scores are adaptions of what was described in the
Reporting Scale Basics section. For tests with a long range of reported scores, Dorans
(2002) recommended scale scores centered at the midpoint of the scale, with a working
range that extends beyond the reporting range and with scale score units that do not
exceed the number of possible raw score points. For tests with a small number of cut
scores, Dorans et al. (2010) recommended that scales be established that are centered
near the cut score(s), with score points not exceeding the number of raw score points,
and with working ranges wider than reporting ranges, all of which would accommodate
shifts in test difficulty and potential additions of new cut scores. For both types of tests,
the score scale should be regarded as infrastructure likely to require repair and correc-
tive action. Recommendations are for test assembly and scaling procedures that focus
on the cut scores of interest. Also, CSEMs that are equal across the entire range of a
test’s scores might be less important than ensuring that the CSEMs are small near a cut
score of interest (Lord, 1985).

Other procedures for establishing scale scores for tests with cut scores are content
based and not data, sample, or population based as described in Table 11.1. The most
well known of these are standard-setting procedures (Hambleton & Pitoniak, 2006;
Ferrara et al,, this volume), which begin with a statement of what competent test tak-
ers know and are able to do and then search for potential cut scores judged to reflect
these statements. Various standard-setting methods can be used to ask a set of judges
to work with or produce statements for what they think test takers should be able to do
at a specific performance level and then identify through judgmental processes the test
questions and performance that correspond to these statements. Although the basis of
standard-setting procedures is primarily judgment and test content, the process is often
supplemented with test performance data, such as item and test performance, and results
indicative of the impact of cut score recommendations on scale score distributions.

Scales for Test Batteries and Composites

For a battery of tests covering different content areas, scales might be established using
the same scaling methods with all tests in the battery, as taken by the same test-taker
group. The resulting scales for each test in the battery can facilitate similar interpretations
for scores in each of the tests, such that test takers’ strengths and weaknesses are revealed
in their scores on the battery. One of the earliest examples of battery scaling was proposed
by Kelley (1914, 1923) for establishing comparable units (i.e., same means and standard
deviations in the reference population) for the handwriting scoring method proposed by
Thorndike (see the Scaling Perspectives section) and another scoring method. From a dis-
cussion of alternative proposals for establishing comparable scores from the two scoring
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methods of handwriting, Kelley proposed establishing comparable measures as standard
scores similar to Equation 9. More recent examples of battery scaling are the recentered
SAT (Dorans, 2002), where the SAT Math and Verbal scales were both established based
on normal distributions with means of 500 and standard deviations of 110. The 2016
redesigned SAT also targeted similar Math and Evidence-Based Reading and Writing
(ERW) Section score means and standard deviations (Kim et al., 2016). The ACT resca-
ling targeted means of 18 with constant SEMs (Brennan, 1989), but different scale score
standard deviations. The scale scores for each of these batteries can encourage different
types of interpretations, such that test batteries for normalized scales might facilitate ref-
erences to percentiles of the normal distributions, those established with similar means
and standard deviations might facilitate references to standard deviation units, and those
established based on stabilized SEMs might encourage SEM-based score distinctions
rather than distinctions based on standard deviation units (Kolen, 2006).

Composite scores might be formed based on linear combinations of the scores on
each test in the battery. For example, the Total score of the 2016 redesigned SAT is
the sum of the Math and Evidence-Based Reading and Writing Section scores, and the
ACT Composite score is the average of the math, science, English/writing, and reading
test scores. Both examples are reflections of nominally weighted scores. Other weight-
ing procedures such as those based on effective weights and the proportional contri-
bution of test score variances to the composites can produce different composite score
scales, to the extent that the test scales have different standard deviations and the tests
have different correlations with each other (Brennan, 1989; Kolen, 2006). The scaling
characteristics of batteries and composites of multiple tests are affected by the scaling
results for the individual tests, the scale score standard deviations of the individual tests,
and the intercorrelations among the scale scores of the tests. Because scales are usually
set and maintained on individual tests, the scale score characteristics for batteries and
composites are more difficult to establish and maintain. The Battery Scaling and Com-
posites section provides further discussion and an example of these issues.

Auxiliary Scales

After one or more primary scales are set, additional procedures and methods can be
used to convey enhanced interpretations of the primary scale scores. For auxiliary
scales, the goal is less about building interpretations directly into the scales themselves
and more about supplementing the primary scales with additional interpretive infor-
mation. Two categories of interest are based on normative information and on content.

Auxiliary Scales Based on Norms

Norms refer to the statistical information that could be provided and used to describe
performance associated with different scale scores, such as the scale score mean, stan-
dard deviation, and percentile ranks (Equation 11 applied to sc(Y) ) for one or more
test-taker groups. Norms might be determined for groups sampled from particular
populations. Sometimes the group used to establish norms is the same sample from

BVEVAS.



38

EDUCATIONAL MEASUREMENT

population P used to establish the scale scores, in which case the norms of sc(Y) are
consistent with the statistics (i.e., means, standard deviations) directly established in
the distribution of sc(Y). Previous volumes of Educational Measurement have listed
options for norms groups and reporting (Angoff, 1971; Flanagan, 1951; Kolen, 2006;
Petersen et al., 1989), presented here with an update.

+ National norms: Describe test performance from nationally representative test
takers at the age or educational level for which the test was designed.

« Local norms: Describe test performance from test takers from specific educa-
tional or geographic units.

« User norms: Describe test performance from test takers who take the test during
a given time period.

« Convenience norms: Describe test performance from test takers who are avail-
able at the time a test is constructed.

 Group-level norms: Describe aggregated test performance from groups, such as
average performance for schools, districts, or states.

« Item-level norms: Describe the performance on specific items for a norm group.

« Skill-level norms: Describe the performance on sets of items measuring a partic-
ular skill for a norm group.

«  Growth norms: Describe test performance for a group of students (e.g., K—8)
that takes at least two tests at different grades, usually where separate sets of
norms on the second test are reported for subgroups of students obtaining differ-
ent scale scores on the earlier test (Betebenner, 2009; Castellano & Ho, 2013).

Typically, national norms that describe test performance for nationally representative
test takers need the most technically elaborate norming studies. National norming
studies require that the national population of interest is precisely defined in terms of
students, schools, etc. A sampling plan is developed to include test takers for whom
norms will produce accurate estimates of the population norms. National norming
studies may use several sampling approaches to increase the representativeness of
the test takers and resulting norms, including simple random sampling, random sam-
pling within defined strata of student characteristics (e.g., geographic region, school
type), cluster sampling of test-taker groups (e.g., schools), or systematic random
sampling that reflects the ordering of a variable related to the test scores of interest in
the norms study. Often, national norming studies use a combination of sampling and
statistical weighting procedures to obtain schools and test takers and increase their
national representativeness. Approaches to national norming studies by the National
Assessment of Educational Progress (NAEP, https:// nces.ed.gov) and by ACT were
compared in terms of their methods, complexity, and practical challenges by Kolen
(2006). Other types of norms (user, convenience, etc.) might be produced using less
elaborate procedures (e.g., test takers available at the time the norms are produced).
Such norming groups may be less stable and more likely to change (Petersen et al.,
1989).
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Auxiliary Scales Based on Content

Some auxiliary scales are attempts to supplement primary score scales with content-based
descriptions of specific scale scores. One example involves item mapping, or finding a set
of items that represents various scale score points. In the case of NAEDP, these items “help
to illustrate what students know and can do in NAEP subject areas by positioning descrip-
tions of individual assessment items along the NAEP scale at each grade level” (https: //
nces.ed.gov). For item mapping, the scores of individual items are regressed on scale
scores using logistic regression or an IRT model. Then a response probability is adopted
to divide test takers into groups with “higher” and “lower” probabilities of success on test
items. The actual values used to divide the higher and lower probability groups could be
.5/.5,.8/.2, or other probabilities for dichotomously scored items. In NAEP, these groups
are divided using probabilities based on 74% for MC items and 65% for CR items. These
response probability values were obtained based on work by Huynh (1998), who showed
that these values correspond to the maximum IRT-based information provided by a cor-
rect response to MC or CR items. The result of item mapping is a list of test questions that
represents various scale score points, with content-based descriptions that take the form
of phrases that describe what test takers can do correctly, in general terms rather than for
one or more specific items (Kolen, 2006; Kolen & Brennan, 2014).

Scale anchoring is another type of content-based auxiliary scale, with the goal of pro-
viding general statements about what students obtaining different scale scores would
know and are able to do (Kolen, 2006). Item maps are a first step to scale anchoring.
Additional steps involve choosing a set of scale score points across the score scale range,
where items that map at or near these points are chosen to represent these points. Then
subject matter experts review the items mapping near each point and produce state-
ments presenting the skills of test takers scoring at these points, assuming test takers
also know and are able to do all of the skills in the statements at or below the given
score level. Scale anchoring has been used in NAEP (Allen et al., 1999) and in ACT
(2001). The Binet-Simon (Binet & Simon, 1916) test described in the Scaling Perspec-
tives section can also be viewed as a test with sets of items specifically anchored to differ-
ent scale scores. Item-mapping and scale-anchoring procedures have raised questions
about whether their outcomes actually facilitate score interpretations (Forsyth, 1991).
The content-based labeling produced with scale anchoring appears to be the result of
overly subjective and confusing judgmental processes (Pellegrino et al., 1999) that may
not be supported by statistical analyses (Haberman, Sinharay, & Lee, 2011; Thurstone,
1925) or by items that are sufficiently discriminating (Dorans, 2018).

Summary of Primary and Auxiliary Scales

Reporting scales should be viewed as infrastructure in need of monitoring and possi-
ble repair (Dorans, 2002). For the primary scaling approaches reviewed in the Scaling
section, potentially important checks for primary scales include checks for excessive
accumulations at the top, middle, or bottom parts of the scale; checks that the score
means do not excessively depart from the midpoint of the scale; and other checks that
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properties like distribution shapes, CSEM values, etc., are established and maintained
asintended. As described in the Scales for Exams with Cut Scores section, primary scales
can also be established and monitored in terms of cut scores of interest, including distri-
butions resulting from pass/fail decisions and CSEMs at or near those cut scores. These
possible checks suggest different types of monitoring for primary scales established in
different testing contexts. In admissions testing where testing companies develop tests
for users to employ different parts of a relatively long scale, monitoring should focus
on the entire score range. In K—12 and certification and licensure programs, the focus
is primarily on classifications at one or very few cut points, and the monitoring of
scale scores would likely focus on pass/fail distributions, classification accuracies, and
CSEMs at specific cut scores. Scale maintenance for large-scale survey assessments
like NAEP might focus on the estimation of population and subpopulation scale score
distributions and classifications over time. In each of these contexts, scales established
in special studies should be checked to ensure that their results will accurately apply
beyond these scaling studies and to the intended testing population. The auxiliary
scales that might be established and reported for a particular testing program should
also be monitored for potential changes due to testing population changes and other
potential changes in content-based descriptions. The equating procedures described
in the Equating section are needed for preserving established primary and auxiliary
scales.

EQUATING

For a large-scale testing program, the establishment of a reporting scale as described in
the Scaling section usually comprises only an initial step for a single test form (Y). Usu-
ally Y is the first of many test forms to be developed and administered. Additional work
is needed to develop, administer, and report scores for the subsequently developed test
forms for that testing program. Equating is used to address unintended difficulty differ-
ences in the scores of these alternate forms, so that the previously established reporting
scale is maintained (Holland & Dorans, 2006; Kolen & Brennan, 2014 ). This section
describes equating in an updated version of the discussion from Holland and Dorans
(2006), which itself was a continuation of previous discussions from Petersen et al.
(1989), Angoff (1971), Flanagan (1951), and others.

The Distinguishing Equating From Other Forms of Linking section describes some gen-
eral concepts about equating and its distinctions from other types of linking based on
goals, interpretations, and computational procedures. Equating history and require-
ments are covered in the History of Equating and Equating Requirements sections. The
data collection designs used in different types of equating are described in the Data
Collection Designs section. The final section covers Methodological Implementations of
Equating. The different equating approaches covered in these discussions are summa-
rized in Table 11.2 in terms of the equating definition, method(s), assumptions, and
likely data collection designs.
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Table 11.2 Summary of Types of Equating

Definition of Equating

Align the means and standard
deviations of observed scores
of alternate test forms (com-
mon population)

Align the distributions of
observed scores of alternate test
forms (common population)

Align the means, standard
deviations, and/or distribu-
tions of observed scores of
alternate test forms (different
populations)

Align the means and standard
deviations of true scores of
alternate test forms (different
populations)

Link true scores via an
expected test-given-ability
relationship based on an IRT
model

Score test takers using item
parameter estimates obtained
and linked in previous admin-
istrations

Method(s)

Linear scale
alignment

Equipercentile

Tucker, Braun—
Holland; frequency
estimation/
poststratification
Chained linear;
chained
equipercentile
Levine observed
score; modified fre-
quency estimation

IRT observed score

Levine true score

IRT true score

IRT ability
estimation

Assumptions

Tests measure the same construct;
)
population invariance; equity

Tests measure the same construct;
population invariance in the con-
ditional test-given-anchor distribu-
tions; equity

Tests measure the same construct;
population invariance in the two
chained functions; equity

Tests and anchors are congeneric;
population invariance in the condi-
tional Test-given- 7, distributions;
equity

Items measure the same construct;
the IRT model fits the data; IRT
parameter estimates for all items
are on the same scale and invariant
across administrations; equity

Tests and anchors are congeneric;
true score results can be applied to
observed scores; equity

Items measure the same construct;
the IRT model fits the data; IRT
parameter estimates for all items
are on the same scale and invariant
across administrations; true score
results can be applied to observed
scores; equity

Items measure the same construct;
the IRT model fits the data from
the previous calibrations; param-
eter estimates are invariant across
administrations with minimal
context and order effects; equity

Note. IRT = item response theory; NEAT = nonequivalent groups with anchor test.

VLR

Data Collection
Design(s)
Randomly equiva-
lent groups; single
groups; counterbal-
anced

NEAT

NEAT

NEAT

NEAT (this method

is also used with

randomly equivalent

groups, single group,

and counterbalanced)
NEAT

Randomly equivalent
groups; single group;
counterbalanced;
NEAT

Pre-equating
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Distinguishing Equating From Other Forms of Linking

Equating is one type of linking procedure for transforming the scores of one test form
to another (Holland, 2007; Holland & Dorans, 2006; Pommerich, 2016). Specifically,
equating adjusts the scores of test forms constructed and administered in the same way
for unintended difhculty differences. Within a linking hierarchy, equating is the stron-
gest among several types of linking, distinguished in terms of interpretations and com-
putational methods (Angoff, 1971; Flanagan, 1951; Holland & Dorans, 2006; Mislevy,
1992; Petersen et al., 1989).

Different categories of linking can be used to achieve different goals and support
particular interpretations of the linked scores. When equatings of alternate forms of
the same test are produced (X and Y), the expected result is interchangeability in the
reported scores, meaning that when form X is equated to form Y, the resulting X-to-Y
scores can be used in place of Y’s scores for any purpose, as if those scores came from
the same test (Dorans, 2013; Pommerich, 2016). For other types of linking involving
different tests (i.e, Xand Y are different tests), weaker and more limited results are
expected. One alternative goal is comparable scales (Angoff, 1971; Kelley, 1923; Pom-
merich, 2016), which is one component of interchangeability that can be defined as
the result of a symmetric alignment of scale score distributions that facilitates compari-
sons of the resulting scores. In the absence of interchangeability, comparability is group
dependent (see the Linking section).

Another goal of linking is “best” prediction, which is an asymmetric conversion from
the scores and scales of one test to another, such that prediction error is minimized.
Predictions are distinguished from interchangeability and comparability in that predic-
tions are often group dependent and always asymmetric (i.e., for given X scores, the
best prediction from X to Ydoes not equal the best prediction from Y to X).

Scale-Aligning Computations

Scale-aligning methods are one type of computation used in test linking, including
equating (Holland & Dorans, 2006). These methods can be described as score transfor-
mations that result in the scores of two test forms having the same distribution (Kelley,
1923). For example, consider test Y as a form for which a scale score transformation
has been established, sc (Y), and Xis another test form whose scores are intended to
be transformed to align to the same scale. The transformation of X to the scale of Y may
be achieved through matching the marginal distributions of these forms obtained from
test takers representing target population T (Holland & Dorans, 2006, p. 202, defined T
as the source of the equating data and also presented other perspectives on target pop-
ulations in equating). An equipercentile X -to-Y transformation produces Y scores with
percentile ranks that equal those of every X score for X and Y test takers from the tar-
get population T The equipercentile linking is produced through computing percentile
ranks at each score of X (Equation 11 for score x on the distribution of X, F,.(x) ) and

obtaining the inverse of Equation 11 on the distribution of Y (i.e.,, G T y])in T,
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eyr (x) = Gy [Fr(%)] (15)

Equation 15 produces a symmetric X-to-Y conversion that equals the inverse of the Y
-1
-to-X conversion at the same x scores, ey 7 (y) atx. The X-to-Y scores have a distribu-

tion on X that approximately equals the distribution of the Y scores in population T.
Simpler versions of Equation 15 can also be produced by using a version of Equation
9 to solve for X-to-Y scores that match the mean and standard deviation of Y but not
other aspects of Y’s distribution,

O-Y,T
)

ZY,T(x) = Hyr +(x — NX,T) (16)

Oxr

where iy and fiy - denote the population means of X and Y'in T, and 0y and oy ;
denote the population standard deviations. Equations 15 and 16 establish compara-
bility through symmetric transformations that match the score distributions (Angoff,
1971; Holland & Dorans, 2006; Kelley, 1923; Pommerich, 2016). Once the results are
obtained from either Equation 15 or Equation 16, X -to-Y scores can be transformed to
the reporting scale by applying one of the sc(Y) scale transformations described in the
Scaling section.

Projecting and Predicting Computations
Projecting and predicting are types of linking procedures that differ from scale-aligning
approaches like equating. Rather than aligning the scores of form X and form Y to have
comparable score distributions for a particular group of test takers, these methods are
used for the goal of producing an asymmetric, best prediction of scores or a projection
of score distributions for one test to those of another. Predictions and projections can
also be produced for the IRT-based thetas from different tests (Holland & Hoskens,
2003; Thissen et al., 2015). One example of a projected distribution is the percen-
tile rank of Y =y for a subgroup of test takers obtaining a specific score on X(=x),
Fr(y|x). Another example is the prediction of the means of Y given X using a linear
X-to-Y regression,
_ Tyr
regy, (x)_/“LKT+(x_/1’X,T)_pXYjT) (17)
Oxr
where Pxyr is the XY correlation. The prediction shown in Equation 17 is a linear
regression that provides an expectation of Y given X that minimizes prediction error,
the variance of Y—reg ; (x), an essential supplement to Equation 17’s point estimates

(Thissen et al., 2015). Unlike some computational methods for scale aligning, project-
ing and predicting functions require data collection designs where test takers take both
X and Y. Also unlike scale-aligning functions, predicting functions are not symmetric,

—1
meaning that regy ;(y) atx is not equal to regy 1 (x).
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Some results are of special interest for situations in which there is a perfect one-to-one
relationship in X and Y. For linear functions, this situation means that the correlation
between X and Y is 1 and the X-to-Y regression in Equation 17 produces the same
results as the X-to-Y scale alignment in Equation 16. This result has several uses.
One use is defining a situation in which a regression can be used to align scales. For

example, consider the second half of Equation 6, ZwiPr (Vi=1|6,a,b,c,)=T7,0),

which can be described as a regression of IRT-implied true scores on § (Lord & Novick,
1968, p. 386), such that these true scores have a perfect and functional (not statistical)
nonlinear relationship with § under the IRT model. When same-scale IRT parameter
estimates are available for the items of tests X and Y, the IRT-based true score regres-
sions of X and Y can be combined to produce a scale alignment of the true scores of X

andY, 7, [ TX71(9) ] , where 7, 1(0) denotes the inverse of the §-to -7, function (i..,

Ty -to-0, Lord, 1980). In addition to these IRT applications, perfectly correlated X and
Y true scores might also be assumed and used to produce scale alignments of 7, and
Ty based on classical congeneric theory (see the Equating Requirements section; Kolen
& Brennan, 2014; Levine, 1955). Another use of the relationship of Equations 16 and
17 is to describe the strength of a linking of tests with scores that are not perfectly cor-
related. For example, in concordances of different tests (see the Concordances section),
the correlation has been used as a measure to diagnose the strength of the resulting
concordances (see the Correlations and Prediction Error section), such as by describing
the extent to which a scale alignment might be used to produce score predictions that
approximate the accuracy of projection or prediction functions (Dorans, 1999; Moses,
2014a).

History of Equating

The origins of equating date to the early 20th century, when an intelligence test known
as the Army Alpha was developed for selection into the military for World War I (Yoa-
kum & Yerkes, 1920). Alternate test forms were developed by randomly assigning items
to the forms, to prevent cheating and to establish forms of approximately equal diffi-
culty. The difficulties of the alternate forms were subjected to empirical evaluations,
and for the subset of forms surviving these evaluations, the unadjusted observed scores
were treated as interchangeable. The linear linking function (Equation 16) was recom-
mended over the nonsymmetric regression function (Equation 17) for establishing
comparable measures on the basis of approximating scale score distributions (Otis,
1922; Thorndike, 1922). Kelley (1923) provided more discussions of linear linking
functions and an introduction of the equipercentile method (Equation 15). Neverthe-
less, “the need, or at least the desire, to equate scores on alternate forms of the same test
probably arose decades after the invention of scaling methods and of the two standard
methods for equating—the linear and equipercentile methods” (Holland & Dorans,
2006, p. 196).
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Equating was described in general and in practice for the Cooperative Achievement
Tests by Flanagan (1939, 1951). These discussions covered equating for the data
collection designs currently referred to as the single group, randomly equivalent groups,
and counterbalanced designs (see the Data Collection Designs section). Other emphases
were on form construction and linear and equipercentile methods. Test equating for
nonequivalent groups with an anchor test (the NEAT design, see the Data Collection
Designs section) has been traced to the SAT, which administered two editions in 1938
and employed anchor equating in 1941. For this SAT application, a method attributed
to Tucker and eventually named Tucker equating (Angoff, 1971) was used to imple-
ment a linear scale alignment (Equation 16) with regression-based predictions of the X
and Y means and standard deviations for a hypothetical target group (Gulliksen, 1950;
Holland & Dorans, 2006; Lord, 1950).

Since the early SAT equatings, additional discussions and uses have been provided,
including Flanagan’s (1951) comprehensive treatment of test development methods in
equating, computational methods, data collection designs, a definition of comparabil-
ity in equating, and, notably, a warning about likely population sensitivities and group
dependences in linking results (p. 748). Lord (1950) provided a statistical overview
of linear equating procedures and standard errors for various data collection designs.
Angoff (1971) provided another comprehensive discussion of equating, computational
methods and data collection designs, which, in contrast with Flanagan (1951), empha-
sized the goal of equating to produce results that are relatively group invariant (p. 563).
Angoft also described situations where a linear equating function approximates the
equipercentile function (i.e., when the shapes of the X and Y distributions are simi-
lar) and recommended linear functions for these situations (p. 564). Angoff’s (1971)
chapter has been a foundational and influential reference for decades of practice and
literature on equating, scaling, and linking.

Updates to the statistical aspects of equating were provided by Holland and Rubin
(1982), including a discussion of the mathematical properties of commonly used
equating methods (Braun & Holland, 1982) and section pre-equating (Holland &
Wightman, 1982). Interspersed in this history, proposals were made to describe and
implement equating based on measurement theory, including classical true score the-
ory (Levine, 1955), IRT (Lord, 1980; Lord & Wingersky, 1984), and other works
focusing on theoretical properties such as equity of equating results with respect
to true scores (Hanson, 1991; Morris, 1982) and IRT (van der Linden, 2011). The
IRT developments were especially important for providing alternative theoreti-
cal and practical implementations for equating, including proposals for item-level
pre-equating and IRT-based adaptive testing (Lord, 1980). Discussions and updates
have continued, including the chapters in the third and fourth editions of Educational
Measurement (Holland & Dorans, 2006; Petersen et al., 1989), subpopulation invari-
ance evaluations (Angoff & Cowell, 1986; Dorans & Holland, 2000; Harris & Kolen,
1986), several texts (Dorans et al., 2007; Holland & Dorans, 2006; Kolen & Brennan,
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2014; Linn, 1993; Livingston, 2004; Mislevy, 1992; von Davier, 2011; von Davier et
al., 2004a), and software packages (Brennan, 2004; Brennan et al., 2009; Gonzalez &
Wiberg, 2017).

In practice, equating has been implemented using different data collection designs
for different testing programs, including programs that equate with randomly equiv-
alent groups designs (ACT and the 2016 redesigned SAT) and others that use anchor
tests to equate through nonequivalent administration groups designs (the SAT prior
to the 2016 redesign). Other programs use designs suited for small samples (Puhan
et al., 2009), and for pre-equating (CLEP or College-Level Examination Program,
Gao et al.,, 2012). These implementations of test equating are summarized in Table
11.2.

Equating Requirements

In discussions of linking frameworks (Holland & Dorans, 2006), equating is described
as the strongest form of linking and is subject to the strictest requirements. These
requirements were listed by Holland and Dorans (2006) as a culmination of several
previous discussions of equating (Angoff, 1971; Dorans & Holland, 2000; Flanagan,
1951; Kolen & Brennan, 2014; Linn, 1993; Mislevy, 1992; Petersen et al., 1989). The
equating requirements are summarized in this section, including updates and clarifica-
tions from Brennan (2010), Dorans and Walker (2007), and Kolen (2007).

An equating can be used to align the scales of X and Y, such that X-to-Y and Y scores
can be used interchangeably, thereby maintaining a testing program’s reporting scale.
For an X -to-Y transformation to be considered an equating, the X and Y test forms and
the X-to-Y transformation must satisfy the following requirements:

a. The equal construct requirement: Test forms X and Y should measure the same
constructs.

b. The equal conditions of measurement requirement: The same administration and
measurement conditions should be used for X and Y.

c. The equal and high reliability requirement: The reliabilities of X and Y, rely ;. and
rely; , should be equal and high.

d. The equity requirement: The X-to-Y equating should make it a matter of indiffer-
ence whether test takers take X orY, for test takers at every given ability level.

e. The (sub)population invariance requirement: The X-to-Y equating should be pop-
ulation invariant, in that the choice of (sub)population used to estimate it does not
matter.

f. The symmetry requirement: The X-to-Y equating function should be the inverse
of the Y-to-X equating function.

Discussions of the equating requirements describe them as aspirational concepts
(Brennan, 2010; Dorans & Moses, 2023 ) that provide an intuitive theory of test equat-
ing (Holland & Dorans, 2006). These requirements are not likely to be perfectly met
in practice, sometimes prompting criticisms for being vague, impractical, stringent,
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unnecessary or impossible (Dorans & Holland, 2000; Livingston, 2004; Lord, 1980).
Nevertheless, the equating requirements specify the goals of the test development,
administration, scoring, and linking processes that are useful for producing
interchangeable scores that maintain the reporting scales of a testing program for a tar-
get population of test takers. As described in Linking, the equating requirements are
also useful for characterizing nonequating types of linking.

Equating requires that the test forms being equated are assembled according to the
same content and statistical specifications, such that they exhibit the same measure-
ment properties (Requirement a). Equating Requirement b emphasizes consistency in
administration conditions for tests that are equated (Kolen, 2007). In describing condi-
tions of measurement, Kolen (2007) listed aspects under the control of the test devel-
oper such as that tests X and Y are administered with the same instructions, layout,
timing, scoring procedures, aids, and modes (computer or paper—pencil). Other mea-
surement conditions that are not under the direct control of the test developer can also
affect the quality of equating outcomes, including stakes for test performance, reasons
test takers take the test, and type of test preparation activities.

Requirement c, that the test forms are highly and equally reliable, has received ongo-
ing and updated clarifications. The equal reliability aspect of this requirement reflects
earlier recommendations, meaning that the test forms being equated must have the
same measurement precision. The requirement that forms’ reliabilities be high is a more
recent addition, which conveys that equating requires scores that are precise and close
reflections of their true scores, that support high correlations and prediction accuracy,
and that make subpopulation invariance (Requirement e) and equity (Requirement
d) more likely (Brennan, 2010; Dorans & Walker, 2007; Flanagan, 1951; Holland &
Hoskens, 2003; Kolen, 2004; Lord, 1980).

As stated in the Scaling section, many issues concerning reliability, true score vari-
ance, and error variance are, at best, imperfectly understood. They are also increas-
ingly complex when reliability and equating are considered in greater detail and
in relation to other equating requirements. The reliability requirement depends
on consistently following test development procedures and specifications for test
length, content, items, administration, and scoring procedures (Requirements a and
b). Test forms developed from different sets of items that meet the same specifica-
tions could be assumed to be parallel in the classical test theory sense (equal reli-
abilities, equal true scores, and errors with equal variances). In practice, assembled
forms can be imperfectly or nominally parallel (Lord & Novick, 1968) and might
have unintended differences, such as differences in their mean scores attributable
to their unique samples of items. Equating can be described as the application of
scale-aligning adjustments that address errors attributable to forms’ item samples,
errors that are realized in fixed difficulty differences of the specific form(s) being
equated (Li, 2023; Moses & Kim, 2015). Equating does not address the reduction of
relative errors (i.e., interactions of test takers and items, as well as other unspecified
sources of error; Li, 2023).1

A67
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Forms’ error variances can also be considered conditional on test-taker ability,
variances that are assumed to be equal according to Equity Requirement d. One
proposal based on equity applies conditional, ability-specific scale-aligning adjust-
ments (van der Linden, 2011, 2013), which could be interpreted as an attempt to
adjust scores for IRT-implied relative errors, with the forms’ items and parameters
being treated as fixed. As described in the Local, Ability-Specific Test Linking sec-
tion, these local adjustments likely violate other equating requirements concerning
consistency in scoring rules for a given form (Requirement b) and subpopulation
invariance (Requirement e).

Different score models and associated reliability measures have equating implications
and provide unique representations of reliability and error, including model-implied
error variances based on fixed items (commonly used IRT models), score models that
treat items as random samples, and more complex score models that account for errors
across a range of admissible measurement conditions. These issues illustrate the lack of
a single framework for measurement error and other types of equating error, the need
for greater specificity in reliability and equating, and the importance of test form reli-
abilities that are high and equal in some sense for reducing the impact of these ambigu-
ities on equating results.

Equity Requirement d states that the conditional distributions of Y and X-to-Y
equated scores are equal for test takers at specific values of a latent ability based on
a particular measurement model (Brennan, 2010; Hanson, 1991; Lord, 1980; Mor-
ris, 1982; van der Linden, 2011). Equity was originally defined in terms of IRT mod-
els, 0s, and 0-conditional frequency distributions (Lord, 1980). Equity is commonly
expressed based on f-conditional cumulative distributions (Kolen & Brennan, 2014;
van der Linden, 2011),

Fe[eKT(x)]:Ga[y] forall 0, (18)

where the  subscript indicates conditioning on 6.

Equity discussions based on classical test theory have focused on relationships among
equating functions of observed scores, true scores, and equating requirements (Hol-
land & Dorans, 2006; Hanson, 1991; Kolen & Brennan, 2014; Morris, 1982). Holland
and Dorans (2006) attributed an equity theorem to Hanson (1991) and synthesized
several equating requirements. To summarize, assume that X and Y measure the same
construct and follow a congeneric model (i.e., their true scores are perfectly and linearly
related) and the functional relationship of the true scores, 7; and 7y, can be expressed
as a scale aligning function,

o rel
Ty = lTy(TX): My + (TX _,UX,T) ST NI (19)
OX,T VCZXT

2]
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Substituting observed X scores into true score conversions like Equation 19, lTy(x)
satisfies first-order equity where the conditional mean of I, (X) given L (x)=m
equals the conditional mean of Ygiven 7, for all 7s. Hanson (1991) showed this first-or-
der equity result in Levine true score equating for observed scores (see the True Scores
section) with the nonequivalent groups with anchor test (NEAT) design (see the Data
Collection Designs section). Holland and Dorans (2006) additionally stated that when
X and Y are equally reliable, I, (x) equals I, (x) in Equation 16 and satisfies sec-
ond-order equity where the conditional variance of | Ty(X ) given [ (14) = 7y equals
the conditional variance of Y given 7, for all 7s. Brennan (2010) provided a related
discussion that considered quadratically represented curvilinear equating functions,
showing that curvilinear equating functions are more likely to satisfy first- and sec-
ond-order equity if the reliabilities of X and Y are not only equal, but also high (nearly
linear equating functions are also helpful, but less realistic). Altogether, these results
connect several equating requirements, such that X and Y are assumed to measure
the same constructs (Requirement a), are administered under the same conditions
(Requirement b), with scores that have equal and high reliabilities (Requirement c),
and where the equating is a symmetric scale alignment of the forms’ observed scores
(Requirement f) that approximates the functional relationship of their true scores and
achieves first- and second-order equity (Requirement d) (Holland & Dorans, 2006).
The results represent one of the most general theories of equating available, including
all but one equating requirement (i.e., the subpopulation invariance requirement is
out of scope, since the results are based on a fixed target population, T; Holland &
Dorans, 2006).

Equating Requirement e emphasizes that the same X-to-Y linking results should be
obtained if estimated in T and in subpopulation T,

eKTg(x) =eyr(x) foreachT,. (20)

The subpopulation invariance requirement is more likely met when X and Y are con-
structed to be similar and of high reliability (Dorans & Holland, 2000; Flanagan, 1951;
Kolen, 2004 ). The invariance requirement of equating has been especially important
for use in the empirical evaluations of nonequating types of linking (see the Linking
section) and also for linkings intended to be used as equatings. Indices for quantifying
the extent to which equating functions vary by subgroup are summarized in the Subpop-
ulation Invariance Evaluations section.

Requirement f indicates that asymmetric prediction and projection functions cannot
be used as equating functions because asymmetric functions mean that it is not a matter
of indifference which form test takers take. Symmetric functions like Equations 15 and
16 can be described as a computational realization of comparable scales (i.e., compara-
ble scale score distributions; Holland & Dorans, 2006; Kelley, 1923).
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Data Collection Designs

Data collection designs for test equating are summarized in Table 11.1 and described
in detail in several texts (Angoff, 1971; Dorans, 2018; Dorans et al., 2010; Holland &
Dorans, 2006; Kolen & Brennan, 2014; Kolen, 2007; Petersen et al., 1989; von Davier
et al,, 2004a). Each design is an approach to obtaining test data such that an equating
of the forms’ scores will estimate differences in test difficulty and other characteristics,
where the estimates (a) control for the abilities of the test-taker groups taking both X
and Yand (b) reflect target population T. Successful data collection designs are essen-
tial for obtaining data from which accurate equating and other scale alignment and pro-
jection functions can be estimated.

The simplest test equating design shown in Table 11.1 is the single group design,
where one sample of test takers from population P (=T) takes both X and Y. This
design can use relatively small samples to produce statistics that accurately reflect their
population values. The necessary conditions for this design are that it must be realistic
for test takers to take both tests and that the resulting data are not adversely affected by
timing issues, testing fatigue, learning, or order effects. Scale-aligning, predicting, and
projecting methods are all possible with the single group design, but satisfying the nec-
essary conditions can be challenging. One advantage of this design is that a correlation
between the two tests can be estimated to enable a direct check on Requirements a and
¢, provided that Requirement b is also met.

Another design shown in Table 11.1 is the randomly equivalent groups design,
where two independent samples of test takers from population P (=T) are randomly
assigned to take X or Y. In large-scale testing, the random assignment is usually imple-
mented with spiraling, where X and Y are alternated in their delivery, resulting in sys-
tematically assigned test forms to the test-taker groups. Groups end up being more
equivalent than would be expected with simple random sampling (von Davier et al.,
2004a). Because independent samples are used, the randomly equivalent groups design
requires larger sample sizes to produce statistics for test forms X and Y with the same
precision as obtained with the single group design. When test-taker sample sizes are
large and the test forms can be reused and readministered without security problems,
the randomly equivalent groups design has advantages in that it avoids order effects
that can arise with the single group design. Scale-aligning methods are used with the
randomly equivalent groups design.

In the counterbalanced design shown in Table 11.1, independent samples are drawn
from population P(=T), one where test takers take form X and then Y, and another
where test takers take Y and then X. This implementation combines the single group
and randomly equivalent groups designs, allowing for order effects to be estimated
based on the differences in test linking results for data reflecting each testing order. To
the extent that order effects are observed, various choices can be made for linking forms
X and Y with the counterbalanced data (von Davier et al., 2004a), including the use of
all available data to represent both testing orders, the use of only subsets of the data that
do not reflect order effects (where some test takers take X first and other test takers take
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Y first), and other weighted combinations of these. Usually a counterbalanced design
is implemented in a special study where the estimation of order effects is of interest,
rather than in a typical test administration where testing orders are fixed. As with the
single group design, Requirements a and ¢ can be checked, as can Requirement b.

Another data collection design shown in Table 11.1 is less direct, where X is linked
to Y through scores on an anchor test, A. This is the NEAT design (Holland & Dor-
ans, 2006), which is also referred to as the common-item nonequivalent groups design
(Kolen & Brennan, 2014). Samples from two different populations take X or Y, and
both samples take A. Because the samples represent different populations, estimates of
population differences are needed for the X-to-Y linking, and the groups’ performance
on A provides these estimates. The NEAT design contains two single group designs. In
practice, A can be a set of items common to X and Y (an internal anchor) or a test or
set of items that is separate from X and Y (an external anchor). The quality of the final
linking results based on internal or external anchors reflects the extent to which A is
representative of X and Y. Accordingly, data collections and procedures are encouraged
that strengthen the anchor test (Dorans et al., 2011; Holland & Dorans, 2006).

The NEAT design is more complex than the single group, randomly equivalent
groups, and counterbalanced designs. Specifically, the NEAT design requires invari-
ance assumptions for estimating test-taker group performance on the test that test tak-
ers do not take (assumptions about the unobserved Sample 1 from population P on Y
and about the unobserved Sample 2 from population Q on X ). Invariance assumptions
must be made to produce an equating that applies to the target population. Two major
approaches and their associated assumptions involve chaining through A and estimat-
ing X and Y distributions by projecting from A for a synthetic population defined as a
combination of P and Q (described in the Approaches to NEAT Equating section).

An approach similar to the NEAT design involves assembling X using items from an
item pool that have IRT parameter estimates on the same scale, X,, along with other
newly administered items, Xy, . In this common item equating to a calibrated pool
design (Table 11.1, Kolen & Brennan, 2014), the X, items are used as an anchor to
obtain scaled IRT parameter estimates for the X items that expand the item pool.
Then, as described in the IRT and Distinguishing Equating From Other Forms of Linking
sections, an IRT conversion to the f) scale, to Y, or to any other form that might be assem-
bledfromtheitempool,isproducedforthescoresofthe complete X form ( X, and X,,,, ).
Parameter estimates for the item pool and the equating results should all apply to pop-
ulation P (=T).Common item equating to a calibrated pool is more flexible than the
NEAT designs with respect to the source of the anchor items, but it requires an IRT
implementation and the meeting of IRT assumptions (Kolen & Brennan, 2014).

The final rows in Table 11.1 present two pre-equating designs for linking X to Y using
data from previously administered sections or individual items to equate X before it is
ever administered as an intact test. Section pre-equating involves the administration
of a complete old form, Y, composed of two mutually exclusive sections (Y, and Y, )
and one of two mutually exclusive sections of new form X ( X, or X, ) to randomly
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equivalent samples of population P (=T). The statistics for the complete X form
could be estimated using data from the administration of the X or X, sections, and
these estimated statistics could be used to link X to Y (Holland & Wightman, 1982).
The use of two sections is the simplest case for this design. In their discussion of section
pre-equating, Petersen et al. (1989) presented implementations with three and four
sections of X and Y administered to three and six random samples of P.

Pre-equating can also be implemented in individual items rather than test sections.
The final row of Table 11.1 presents an implementation of item pre-equating that is
similar to common item equating to an item pool except that the new items, New, do
not contribute to the equating and scoring of X (Kolen & Brennan, 2014). That is, X is
assembled from items from a calibrated item pool rather than one specific form and is
pre-equated and scored using the IRT parameter estimates from these calibrated items
prior to the administration of X. Then, in a subsequent step after the administration of
X, scaled IRT parameter estimates are obtained for the New items using X and these
are added to the item pool for assembling and pre-equating additional forms. Param-
eter estimates for the item pool and the pre-equating results for other forms assem-
bled from the item pool should all apply to population P (=T'). A more complex item
pre-equating design involving multiple tests and populations is presented by Petersen
etal. (1989), and is a basis of adaptive testing and linking (see the Linking Adaptive Tests
section).

Pre-equating designs are relatively complex and require stronger assumptions than
the other designs described, namely, that the test, section, and item statistics estimated
in a pre-equated administration are accurate when used to produce equating and other
linking functions. Inaccuracies can result from population differences or from context
and order effects where the pre-equating administration involves administering the
items and subsections of X in different orders and contexts than those from the actual
administration of the intact form X (Davey & Lee, 2011). In addition, for implemen-
tations where a typical IRT model is used that assumes test-taker ability is unidimen-
sional, pre-equating could introduce biases when pre-equated IRT statistics based on
unidimensionality assumptions are used to approximate a linking for the full multidi-
mensional test (Kolen & Brennan, 2014). Estimates of X from pre-equating could be
biased reflections of the actual X, resulting in inaccurate equating results that might be
corrected with “postequating” using actual administration data and one of the tradi-
tional designs in Table 11.1.

Methodological Implementations of Equating

This section provides a summary of research, discussions, and studies on the method-
ological issues in equating. The methodological issues covered here pertain to mate-
rial covered in the following sections: Data Use and Smoothing, Continuization, Choices
Among Data Collection Designs, Approaches to NEAT Equating, True Scores, IRT, and
Accuracy Evaluations. Many of these procedures can and should be implemented using
open-source computational programs that provide critical supports for transparency
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and for the independent replication of results (Brennan, 2004; Brennan et al., 2009;
Gonzalez & Wiberg, 2017). In addition to the methodology covered in this section,
important aspects of equating implementations include checks that test that develop-
ment and administration practices are standardized and similar, that quality control
procedures are implemented to ensure administration conditions are followed, and
that tests, items, and answer keys are all working and displayed as intended. The impli-
cations of altered questions and answer keys are covered by Kolen and Brennan (2014,
pp- 331-336).

Data Use and Smoothing

Equating procedures are statistical operations performed on sample data. Ideally, the
sample data should come from an established data collection design and should be a
large and sufficiently representative sample that can produce precise adjustments for
the test linking. The question How large? depends on the data collection design and
can be addressed based on standard errors of equating for the specific design (Kolen &
Brennan, 2014). The question How representative? might be answered in terms of data
or sample selection procedures, such as exclusion procedures for test takers who are not
part of the target population (e.g., from nonrepresentative grades) or who are nonnative
English speakers or exam repeaters (Dorans et al., 2011).

Once equating data are obtained, there are additional choices about how to use the
data to produce the test-linking results. The most direct choice is simply to use the sam-
ple data as originally collected to compute test-linking results, A long-standing inter-
est in the test-equating field is the extent to which equipercentile linking results can
be improved by smoothing the test data. The goal of smoothing is to reduce statisti-
cal sampling error while not substantially inducing bias. Early methods based on hand
smoothing and moving averages of frequencies (Angoff, 1971; Flanagan, 1951) have
been replaced with methods that are more accurate, formalized, and efficient.

One smoothing method for equipercentile linking is log-linear presmoothing (Hol-
land & Thayer, 2000). This smoothing method is based on fitting log-linear models to
the distributions of the test scores to be linked. The model fitting process produces fit-
ted distributions that match a user-specified number of moments of the unsmoothed
data. The process smooths out irregularities and provides plausible nonzero probabili-
ties and frequencies at all possible scores. Log-linear models can be applied to the uni-
variate distribution of the scores of a single test, to the bivariate distribution of two
tests, and to the complex structure of a bivariate distribution of a test, an internal anchor
and its impossible scores (i.e., structural zeros; H. Kim et al., 2017). Log-linear models
can also be used to model other complexities that occur with bivariate distributions
of weighted composite scores (Moses, 2014b). Because log-linear models have sta-
tistical implementations, they have associated model fit indices including chi-square
statistics (e.g., likelihood ratio) and information criteria (Akaike information criterion,
Bayesian information criterion, etc.) that lend themselves to statistical selection strat-
egies (Moses, 2011; Moses & Holland, 2010). Finally, estimated variance—covariance
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matrices for the smoothed distributions are an output of the modeling that can be used
to estimate standard errors of equating and other linking functions that explicitly reflect
the smoothing results (Moses & Holland, 2008; von Davier et al., 2004a).

Another smoothing method used in equipercentile equating is known as cubic
spline postsmoothing (Kolen, 1984). The “post” in postsmoothing indicates that this
smoothing is implemented after an equipercentile X-to-Y equating is computed in
order to directly smooth the equating function. The postsmoothing produces adjacent
and connected score-level cubic functions that are numerically solved to produce the
smoothest possible function that reflects the unsmoothed equipercentile function up
to a user-specified smoothing constraint. The implementation, special procedures for
the highest and lowest scores, and other procedures for approximating symmetry in
the postsmoothed results are described by Kolen and Brennan (2014). Studies have
demonstrated that cubic spline postsmoothing and alternatives are useful for reducing
error in equipercentile equating functions (Cui & Kolen, 2009). Alternative strategies
for selecting postsmoothing parameters have been considered (C. Liu & Kolen, 2018).

Both pre- and postsmoothing introduce bias into equating results. The logic behind
both smoothing procedures is to reduce random error without substantially intro-
ducing bias. There is no definitive answer to the question, Which is better? It is clear,
however, that presmoothing introduces bias before subsequent equating steps are per-
formed, whereas postsmoothing does so when conducted after other equating steps are
performed. Also, presmoothing can be automated if one adopts certain prespecified
equating criteria, but doing so can be risky without examining smoothed plots before
proceeding with equating. By contrast, postsmoothing involves somewhat subjective
judgments about smoothing degrees.

In equating practice, data screening, presmoothing, and postsmoothing are import-
ant tools for improving the accuracy of equipercentile linking and equating functions.
Reasonably large sample sizes are another important matter for ensuring accurate
equating results (Dorans et al., 2011; Kolen & Brennan, 2014 ). When equating data are
collected using small sample sizes, equipercentile functions must rely on models that
make additional assumptions (e.g., pre-equating data collection designs and assump-
tions that work under some situations but not others; see Livingston & Kim, 2011).

Continuization

Equating functions based on scale alignment produce a set of “in between” scores that
reflect plausible estimates of the difficulty differences between test forms, but that
are in fact impossible to obtain. For example, if test X was to be equated to Y and X was
easier than Y, then converting number-correct points that adjust for the easiness of X
might result in X-to-Y scores that are lower but in between the scores that could actu-
ally be obtained (e.g., a score of 28 on X might convert to 27.6). The process of treating
discrete test scores as if they are continuous is referred to as “continuizing” (von Davier
et al,, 2004a). The percentile rank function shown in Equation 11 is one approach
to continuizing based on the assumption that the in between scores are uniformly
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distributed within boundaries for each score (the score + half of the score interval).
The linear scale-aligning function (Equation 16) is another approach to continuization
based on standard deviation units. The continuization process in equating is described
in detail by von Davier et al. (2004a), who showed that the traditional continuization
approach based on percentile rank functions produces continuous distributions that
can be irregular and can imprecisely reflect the original discrete distribution (i.e., over-
estimate variance by 1/ 12).

Von Davier et al. (2004a) described and developed an alternative continuization
for equating based on Gaussian kernel smoothing (i.e., kernel equating; Holland &
Thayer, 1989). Kernel equating is smoother, is more accurate with respect to variance,
and approximates equipercentile, linear, and compromises of these functions through
a user-specified kernel smoothing parameter. Several alternative continuization
approaches have also been considered, including those based on log-linear models (T.
Wang, 2011), exponential families (Haberman, 2011), and alternative kernel functions
(Lee & von Davier, 2011). When continuization approaches work to produce values in
between two adjacent, attainable scores, different approaches usually exhibit small dif-
ferences from each other. They can even be shown to be iterative versions of Equation
11s percentile rank computation (Moses & Holland, 2008). One exception is when
these approaches are used to equate the highest and lowest scores of a test. Equiper-
centile equating based on percentile rank functions will connect the highest X and Y
scores to each other, whereas equatings based on kernel and linear continuizations may
produce results that go further beyond the defined score ranges for the tests (Dorans et
al,, 2011; Kolen & Brennan, 2014; von Davier et al., 2004a). Another possible excep-
tion is scores with unequally spaced values because these are not completely suitable
for Equation 11’s percentile rank calculations that assume scores with ranges of inte-
gers. Flexible continuization approaches could be especially appropriate for tests with
unequally spaced score ranges.

Choices Among Data Collection Designs

Each design described in the Data Collection Designs section and Table 11.1 presents
a particular trade-off of advantages and disadvantages in test equating. These designs
can be compared with respect to statistical precision, specifically the sample size of
test takers needed to achieve a particular standard error of equating. For a given level
of statistical precision, the randomly equivalent groups design and equipercentile
equatings require more data than a single group design and linear equating (Kolen
& Brennan, 2004). Designs can also be compared with respect to the complications
and security concerns they introduce in test administrations (more complexity and
security concerns for randomly equivalent groups designs than NEAT designs) and
statistical assumptions (minimal assumptions for randomly equivalent groups, more
stringent assumptions for NEAT and pre-equating designs; Kolen & Brennan, 2014).
Based on the strengths of each design, a recommended ideal design is one in which
large samples of test-taker data are collected in a securely implemented randomly
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equivalent groups design with an external anchor test that is administered after the
tests (Dorans et al., 2011; Holland & Dorans, 2006). This design exploits the simplic-
ity of the randomly equivalent groups design, but also allows for increased statistical
precision through use of the anchor test as a statistical covariate. Administering the
anchor externally is advantageous in that only the anchor could be affected by context
or order effects, and the anchor would not need to be used if these effects were found.
Pre-equating designs are usually not recommended based on their complexity and
strong assumptions about IRT parameter estimates holding across multiple contexts
(Davey & Lee, 2011). However, pre-equating designs could be considered for situa-
tions where a test linking must be estimated before that test is actually administered
(Kolen & Brennan, 2014).

Approaches to NEAT Equating

Equating texts and studies have given extended attention to the complexities of equating
using the NEAT design, considering aspects such as options and designs of the anchor
test and computations based on assumptions made about the relationship of the test
and anchor scores. One choice is whether the anchor will be internal or external to the
tests being equated (Dorans et al., 2011; Holland & Dorans, 2006). External anchors
are separately timed, and scores on them do not count toward the X and Y scores.

External anchors or sections have considerable flexibility and multiple uses, such as
equating, pretesting, or the tryout of new item types. Potential drawbacks of external
anchors are that they must be sufficiently disguised so that test takers do not respond
differently to the anchors than they respond to the tests. In particular, test takers should
not be able to determine which set of items (or test) is an external anchor, because the
goal is that test takers try as hard on the external anchor as they do on X or Y. If that
is not true, then scores on the anchor test will almost certainly lead to biased equating
results. Recommended practices for equating with external anchors are to use data-
screening procedures to identify and exclude test takers with anchor performance that
is inconsistent with test performance.

Internal anchors are administered and scored within X and Y, which usually results
in higher (anchor, test) correlations than external anchors, but also increases the risk of
context and order effects. Recommended practices for equating with internal anchors
are to administer the anchor items in similar positions on X and Y and to evaluate and
possibly screen the anchor items for differential performance (i.e., differential item
functioning).

The predominant recommendation is that external and internal anchors should be
designed to be representative of the test, with similar average difficulties (though not
necessarily equal difficulty spread; Sinharay & Holland, 2006a, 2006b). The anchor(s)
should also be relatively long and reliable (Moses & Kim, 2007), where the long-stand-
ing recommendation is for at least 20 items or 20% of the items on the test (Angoff,
1971). Also, they should be administered and screened to reduce atypical test-taker
performance, context, and order effects. Following these guidelines helps ensure that
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the anchors will be as highly correlated as possible with the tests being equated, which
supports accurate NEAT equatings.

Once the NEAT data are obtained for a sample of population P that takes X and A and
asample of population Q that takes Y and A (Table 11.1), different options are available
for using the anchor data to equate X and Y in T. Two major approaches involve chain-
ing scale-aligning functions through the anchor and computing scale-aligning func-
tions from test distributions estimated for a single hypothetical group on both X and Y.

The chained approach involves computing a scale alignment function from X to A in
the P data and another scale alignment function from A to Y in the Q data and chain-
ing them together. The assumption is that both scale alignment functions are popula-
tion invariant (i.e., apply to other populations, and specifically to target population T;
Holland & Dorans, 2006). Expressed in equipercentile functions (Equation 15) with
percentile rank functions for A in P and Q, H,(a) and H(a), and linear functions
(Equation 16), the chained equipercentile and chained linear scale alignment functions
are

eyr () =G, (HylH, '[Fp(x)]}) (21)

and
ly,T(x):ly,Q[lA,p(x)]; (22)

where Iy, [] denotes the A-to-Y linear function in the Q data.

The second approach (scale aligning) is referred to as frequency estimation or post-
stratification and involves projecting (see the Distinguishing Equating From Other Forms
of Linking section) the X and Y distributions conditional on A for T The projection is
based on assumptions that the conditional X |A distribution observed in population P
applies to population Q and that the conditional Y | A distribution observed in popu-
lation Q applies to population P. The resulting X and Y distributions are estimated for
a synthetic, combined group of P and Q test takers that comprise the target population
T=wpP+w,Q (wp +wy =1,and w, and w, range from 0 to 1),

Pr.(x) = ZaPrP(x|a)[PrT(a)] = ZaPrP(x|a)[wPPrp (a)+ wQPrQ(a)] (23)

and

Pr.(y) = ZaPVQ(ﬂa)[PrT(a)] = ZaPrQ(ﬂa)[prrP(a) + wQPrQ(a)]. (24)

The X and Y distributions produced with Equations 23 and 24 are estimated for the
same target population and can be used in percentile rank and scale-aligning functions
like Equations 11 and 15. Different linear scale-aligning functions based on poststrat-
ification are possible, such as those that use the means and standard deviations from
the distributions obtained from Equations 23 and 24 in Equation 16 (Braun & Hol-
land, 1982). Another method attributed to Tucker (Angoff, 1971) makes assumptions
that the conditional means of the tests are linear and invariant given anchor scores
and that the conditional variances of the tests are constant and invariant given anchor
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scores, producing estimated means and variances of X and Y on T from anchor-to-test
regression equations like Equation 17 (Gulliksen, 1950; Lord, 1950).

The chained and poststratification approaches to equating tests with the NEAT design
have been compared in several research studies. Von Davier et al. (2004b) showed that
these methods produce identical results when the (anchor, test) correlations are perfect
or when the anchor distributions are identical in the P and Q samples. These results
underscore the view that in ideal equating situations, such as those where (anchor,
test) correlations are high and where administration groups are similar, different equat-
ing methods can produce very similar results (Dorans et al., 2011). Studies have also
considered situations where the chained and poststratification methods give different
results, where a choice of equating method is more consequential for reported scores.
Summaries of these studies indicate that the poststratification approaches have smaller
standard errors than the chained approaches and less overall equating error when group
differences are small, whereas the chained approaches are less biased and have less over-
all equating error when group differences are not small (Dorans & Puhan, 2017; Kolen
& Brennan, 2014; Kolen & Lee, 2011, 2012,2014,2016,2018).

True Scores

The equating of true scores is a long-standing theoretical interest. This interest involves
equating procedures based on theory and measurement models, especially classical
test theory (see the Equating Requirements section, Equation 19; Angoff, 1971; Levine,
1955). For the NEAT design, the test forms and anchors are usually assumed to follow
a classical congeneric model, and versions of Equation 19 are used to compute linear
Ty -to-7, and 7; - to -7, functions that are chained together for a Levine equating of 7,
and 7, (Hanson, 1991; Kolen & Brennan, 2014; Levine, 1955),

ZTY (TX) = ZTYUTA(Tx)]) (25)

where I [] denotes the 7, — to—7 linear function. The relationships of the true test
and anchor scores are assumed to be population invariant (Holland & Dorans, 2006).
Equating functions for true scores address theoretical interests while introducing
conceptual difficulties for practice. The main difhiculty is that true scores are unobserved
and unavailable in practice (Lord, 1980; Lord & Wingersky, 1984) so that true score
equating functions like Equation 25 typically use observed scores, [ (x). Although
the interchangeability claims that true score equating functions support apply to true
scores, the equity discussions described in the Equating Requirements section show that
specific types of equity are achieved in observed score applications when test forms and
anchors are classically congeneric. Still, such applications are inconsistent, lack compel-
ling reasons (Kolen & Brennan, 2014), and do not reflect the measurement error in X
that is unaccounted for when equating is attempted with true score conversions (espe-
cially beyond the conditional means addressed in first-order equity). From the Equat-
ing Requirements section, the strongest connections in theory and practice are achieved
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when the test forms and anchors are constructed and administered in the same way
(reflecting congeneric theories and first-order equity) and the test forms are equally
and highly reliable (such that observed scores approximate true scores and [ (x)
functions reflect second-order equity).

Another version of Levine linear equating is based on the same assumptions for X,
Y, and A and their true scores as used in Equation 25, but equates the observed X
and Y scores in a hypothetical target population (defined with respect to true anchor
scores) using frequency estimation and poststratification assumptions about X and Y
scores given the true anchor scores (Holland & Dorans, 2006; Kolen & Brennan, 2014;
Levine, 1955). Levine equating has been shown to perform well in some situations
where administration group differences are large (Kolen & Brennan, 2014; Mroch et
al,, 2009), though these results depend on the accuracy of the Levine assumptions.

Equipercentile scale-aligning functions based on true scores have been developed by
Chen et al. (2011) and T. Wang and Brennan (2008). T. Wang and Brennan’s (2008)
proposal is to modify the frequency estimation equipercentile procedure in Equations
23 and 24 so that these equations are based on a projection from estimated true anchor
scores (ie., Prp(x]| 7:'1) ). Chen et al’s (2011) approach generalizes chained and post-
stratification equipercentile approaches developed in the kernel equating framework so
that these are based on true scores.

IRT

IRT can also be used to produce equating functions of observed or true test scores or
estimates. IRT applications require that the IRT assumptions hold and that parameter
estimates for X and Y items are on a common scale. When these item parameters for
the X and Y tests are estimated with a single population design such as the randomly
equivalent groups data collection design (Table 11.1) using the same specification of
the 0 scale, the parameter estimates can be interpreted as being on the same scale. When
tests are administered to nonequivalent groups as in the NEAT design, procedures are
needed to transform the parameter estimates to a common scale, either through special
linear transformations based on the two sets of IRT parameter estimates for the anchor
items or through concurrent calibrations of the X and Y test items and anchor items
(Kolen & Brennan, 2014).

For IRT observed score equating, an IRT-based recursive algorithm can be used to
estimate probability distributions for X and Y given 6, Pr(x|6),and Pr(y|6) (Lord
& Wingersky, 1984). Once obtained, these conditional distributions are averaged over
a target distribution of ; specifically,

Pr.(x) = fPr(x|0>PrT(0)d0 (26)

and

Pro(y) = [Pr(y|0)Pr(0)d0. (27)
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Equations 26 and 27 can be described as IRT-based presmoothed distributions
(Holland & Dorans, 2006), which can be used in equipercentile equating. IRT-based
true score equatings can also be produced (see the Distinguishing Equating From Other
Forms of Linking section). Finally, if a testing program’s scale scores are produced using
0 as the test performance measure (see the Scaling Methods for Primary Scale Scores sec-
tion), equating procedures may be bypassed altogether and test takers’ Os may be esti-
mated by applying IRT ability estimation procedures to their item-level performance

(see the IRT Ability Estimates section) and scaling these estimates to the reporting
scale, sc(f).

Accuracy Evaluations

Once estimated, test equating functions should be evaluated for accuracy. Most of
the accuracy evaluations reviewed in this section are comparative, where an equat-
ing function based on one method and associated assumptions is evaluated in com-
parison to one or more other equating functions based on different methods and
assumptions. For example, an equipercentile equating function might be of interest
and evaluated in terms of how different it is from a simpler equating approach, such as
a linear equating, or the use of raw scores to consider whether equating is needed at
all. In subpopulation invariance evaluations, equating functions obtained from sub-
group data are typically compared to a function based on the total group, usually
for purposes of evaluating subgroup dependencies. These comparisons require the
estimation of two or more plausible equating functions and evaluating whether their
differences are “large,” based on material covered in the following sections: Differ-
ences That Matter, Standard Errors, Subpopulation Invariance Evaluations, Correlations
and Prediction Error, and/or Evaluations and Recommendations for Drift in Equating
Chains.

Differences That Matter

Evaluations of the magnitude of equated score differences are based on whether those
differences are big enough to alter test takers’ reported scores. Criteria for these dif-
ferences, known as “differences that matter” (Dorans & Feigenbaum, 1994), are tra-
ditionally defined based on the differences that are considered so large that they
are not eliminated when reported scores are rounded, such as half of the integer of
the equated scores (0.5 points for equatings based on raw summed scores) or half of the
unit of the scale score interval. These values can provide benchmarks for evaluating the
magnitude of equated score differences based on two equating functions, but because
very similar equated scores can round to different values, the differences-that-matter
criteria should not be treated dogmatically (Kolen & Brennan, 2014). Clarifications
were provided by J. Liu and Dorans (2012), who proposed a procedure for evaluating
whether test takers who take a test under altered conditions should be scored based on
a conversion specifically produced to reflect those altered conditions. Liu and Dorans’s
procedure distinguished four categories of equated score differences, comprising a 2
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x 2 table of rounded reported scores (are they the same or different for two possible
conversions?) and the magnitude of the differences in the unrounded scores (are they
trivial or nontrivial?). Based on these distinctions, Liu and Dorans recommended that
a separate equating for scores based on the altered test conditions should be considered
only when more than half of the test takers whose reported scores are altered (when
the separate conversion is applied) also have nontrivial differences in their unrounded
scores.

Standard Errors

Standard errors of equating can be useful for evaluating the extent to which potential
equating functions differ by more than can be attributed to test-taker sampling errors.
Standard errors of linear equating functions have a history that can be traced to Lord
(1950), with updated discussions reflective of equipercentile and kernel functions, dif-
ferent data collection designs, distributional assumptions, and log-linear presmoothing
models (Angoff, 1971; Braun & Holland, 1982; Jarjoura & Kolen, 1985; Liou & Cheng,
1995; Lord, 1982; Moses & Holland, 2008; Moses & Zhang, 2011; Ogasawara, 2001,
2003; von Davier et al.,, 2004a). The standard errors of equating are defined relative to
the standard deviation of the distribution of equated scores produced from random
samples of test takers from their respective populations,

SEEy; (x) = o] ¢yr (x)]. (28)

Standard errors of equating are usually based on assumptions that the tests, their items,
test-taker sample size(s), and other decisions made in the equating (e.g., smoothing)
are fixed and not varied across replications of the test-taker sampling. Most of the cited
sources present standard errors that are asymptotically derived, though standard errors
can also be estimated through simulations and resampling approaches (Kolen & Bren-
nan, 2014).

Standard errors for a single equating function might be used in evaluations of
equated versus raw score differences, essentially questioning whether test score
equating affects test scores more than can be attributed to statistical error from the
test-taker sample(s). One application is estimating the test-taker sample size(s)
needed to obtain a given level of equating precision (Kolen & Brennan, 2014, pp.
273-276). Another application is the situation where a testing program might offer
different editions of its test in which the items, item sets, and/or test sections appear
in different orders. The extent to which order eftects are observed in test scores can
be evaluated through equating the scores of the alternate editions to each other and
evaluating how different the equated and nonequated test scores are. To the extent
that the differences are “large,” the equating function used to evaluate the item order
effects might also be used to adjust scores for the order effects. Standard errors for an
equating function provide a basis for evaluating whether equated and nonequated
scores differ more than can be attributed to test-taker sampling. These ideas were used
to evaluate order effects in the SAT (Dorans & Lawrence, 1990) and in Advanced
Placement (Moses et al., 2007).
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For questions about differences in equated scores from two plausible equating
functions, each of which reflects sampling error, standard errors of equating differences
(SEEDs) have been developed (Moses & Holland, 2008; Moses & Zhang, 2011; Moses
et al,, 2010; von Davier et al., 2004a),

SEEDy 1, (x) = J[Ey,m (x) — ey (x)]- (29)

SEEDs can be used to evaluate differences between two equating functions, addressing
several possible questions. Equated score differences of interest include curvilinear and
linear kernel equating functions (von Davier et al., 2004a), traditional equipercentile
and linear equating functions (Moses & Zhang, 2011), poststratification equating func-
tions obtained from different target populations (von Davier et al., 2004a), counterbal-
anced design equating functions based on different weights of the samples taking the
tests in different orders (von Davier et al., 2004a), poststratification equipercentile and
chained equipercentile equating functions (von Davier et al., 2004a; Moses & Holland,
2008), and poststratification equating functions based on one or two anchor scores
(Moses et al., 2010).

Subpopulation Invariance Evaluations
The subpopulation invariance requirement of equating (see the Equating Requirements
section; Equation 20) as described by Dorans and Holland (2000) prompted several
empirical evaluations of the sensitivity of linking results with respect to subpopulations
(Dorans, 2004a; von Davier & Liu; 2007). Recent studies indicate renewed interest
in a long-standing question in test equating (Kolen, 2004), one that can be traced to
Flanagan’s (1951) statements that group dependencies in equating are to be expected
(p. 748) and to Angoff’s (1971) statements that equating functions should be indepen-
dent of the individuals used to compute them (p. 563). The inclusion of subpopulation
invariance as a requirement for test equating corresponds to research and expectations
for subpopulation invariance in equating. Empirical checks are important for deter-
mining whether test linkings exhibit desired equating properties and for evaluating
intended equating results for tests that undergo transitions, such as in their specifica-
tions and possibly in their constructs (J. Liu & Dorans, 2013).

Consider the subpopulation invariance measure in Equation 20, for which Dorans
and Holland (2000) developed two measures to quantify the lack of invariance in
intended equating functions for an exhaustive set of mutually exclusive subpopulations:

\/ZTgWg[eKTg(x) — eyp(x) ] ’

Oyr

RMSD(x) = (30)

and

\/ZTgWgE{[eY,Tg () — Evr (%) ]2}
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where the E denotes an expected value and where w, is the proportional sample size
for T, in T. The basis of the RMSD(x) and REMSD measures is quantifying the lack
of subpopulation invariance in test equating functions of T, from that of T, at the
individual score level and also at an overall level. In their discussion of the RMSD(x)
and REMSD measures, Kolen and Brennan (2014) suggested that these measures
could mask other issues, such as the extent to which the test linking results for two
subpopulations differ from each other. They proposed several additional measures that
could directly address this question based on examining

€yT1 (x) _eY,Tz(x)' (32)

Additional measures of invariance can also be computed for specific subgroups of inter-
est (J. Liu & Dorans, 2013),

RESD, = \/ZxPrTg(x)[emg (x)—eKT (x)]z, (33)

where PrTg(x) is the relative frequency at X =x for subgroup T; .

Subpopulation invariance investigations were conducted using Equations 30-33 and
other measures in Dorans (2004a), von Davier and Liu (2007), Kolen and Brennan
(2014), J. Liu et al. (2010), and Yin et al. (2004 ). Standard errors for these measures
were developed and studied by Moses (2008) and Rijmen et al. (2009).

One suggestion for practice is to apply subpopulation invariance concepts to con-
duct population invariance evaluations that address invariance for populations that are
intended applications of an equating function but not necessarily represented in the
actual equating study. Experience suggests that some of the most serious problems with
equating and linking results involve estimating linking functions in data from one group
(e.g., special studies, small subgroups of an administration used for randomly equivalent
groups designs, pre-equated conversions) and applying these linking functions to other
groups, testing conditions, and administration data. These experiences led to recommen-
dations that equatings and linkings conducted in special studies with nonrepresentative
scoring, administration conditions, and test-taker data should be regarded as limited in
the score interpretations they suggest and subject to additional research to support their
use and interpretations with the general testing population(s) (W. Lee & Brennan, 2021;
Moses, 2022). This additional research can include invariance investigations for different
groups as well as special data reviews that ensure that the test equating is working reason-
ably well for particular users and administration groups. These checks could be as simple
as reviewing the scale score distribution(s) from applying an estimated equating function
to the administration group and comparing it to historical distributions for that group.

Correlations and Prediction Error
Equating and other linking functions can be produced to support multiple purposes
and interpretations, such as to align test scales based on score distributions and to
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provide predictions of test takers’ scores. The scale-aligning computations used to
support interchangeability across alternate forms in equating, or comparability across
distinct tests in concordance studies (see the Concordances section), might have other
intended uses as predictions of test takers’ performance on those alternate forms or
tests. To the extent that test correlations and reliabilities are high (see the Distinguish-
ing Equating From Other Forms of Linking section), scale-aligning functions are more
likely to support both aligned scales and accurate predictions. As test reliabilities and
correlations decrease, the differences between scale-aligning functions and prediction
functions increase, such that the predictions from scale-aligning results are increasingly
biased. If the scales of independent random numbers were aligned, the results would
have no predictive utility because they would not reflect the reliabilities and correla-
tions of the “scores” (Dorans, 2004b).

When describing these issues, Dorans (1999) used a coefficient of alienation based
on the prediction error of regression functions,

2
— J1—
Tur 7 T NC TPt g 1 plyy. (34)

Oyr

In words, Equation 34 indicates the proportion that uncertainty is reduced from pre-
dicting Y from using a linear X-to-Y regression function compared to using the mean
of Y. Dorans and colleague (Dorans, 1999; Dorans & Walker, 2007) argued that con-
cordances should only be produced when scores for tests X and Y are correlated at least
.866, in which case Equation 34 indicates a 50% reduction in prediction uncertainty
in standard deviation units using an X-to-Y regression. For tests correlated less than
.866, scale-aligning methods result in biased predictions and should be replaced with
prediction or projection methods (Dorans, 1999, 2004b). Although the correlation in
Equation 34 suggests the need for a data collection design where test takers take both
X andY, Equation 34 can be used to evaluate equating results from other designs where
X andY are alternate forms assumed to be parallel. For the equating of alternate forms,
the XY correlation can be estimated from the test reliabilities (Gulliksen, 1950; Lord
& Novick, 1968).

These discussions were updated by Moses (2014a), who provided analogues to
Equation 34 based on the prediction error from a linear scale-aligning function (Equa-
tion 16),

it — 2 pXYT (35)

Oyr

Equation 3S indicates that equatings, concordances, and other linkings produced from
linear scale-aligning functions reduce prediction uncertainty by 50% when X and Y
are correlated at least .875. Results were provided by Moses (2014a) to compare linear
regression and scale alignment functions in terms of prediction error, showing that these
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functions are similar for high XY correlations but that linear regressions are increasingly
favored when correlations between X and Y are low. Additional insight can be obtained
by decomposing prediction error variances for regression and scale alignment functions
into their proportional contributions of true score and error variances (Moses, 2014a)
and by using other related measures of proportional reductions in mean-square error
(Dorans, 2022).

EVALUATIONS AND RECOMMENDATIONS FOR DRIFT IN EQUATING CHAINS Established
testing programs must produce several editions of a test that are developed, adminis-
tered, equated, and used to score test takers. This history means that testing programs
can have several previously administered and equated forms potentially available
for the equating of additional test forms. Such programs would also have historical
expectations about the reasonableness of scale score distributions for given adminis-
tration groups. An increasing number of test equatings back to the scale is expected to
cause drift due to the accumulation of random error (Kolen & Brennan, 2014). Large
numbers of previous equatings also provide opportunities for monitoring historical
equating results and for evaluating the consistency of current equating and scale score
results.

One way that testing programs can improve test equating accuracy is to conduct their
equatings to link their tests back to two or more previously equated forms (Holland
& Dorans, 2006; Kolen & Brennan, 2014). From 1994 to 2016, the SAT conducted
external anchor equatings to link new forms back to four old forms. Multiple links to
past forms provide ways to detect aberrant equating results and scale score conversions.
Multiple links also make the final equating and scale score conversions less reliant on
any one previously developed equating that may be problematic.

Established testing programs can also monitor their current and historical equat-
ing results for evidence of scale score drift. Modu and Stern (1975) monitored SAT
scales from 1963 to 1973, finding evidence that the verbal and mathematics sections
had drifted. More recently, Haberman and Dorans (2011) delineated several contrib-
utors to scale score inconsistency, including anchors for the NEAT design, sampling
errors (random and nonrandom), accumulated random error, and model misfit. Some
practices were noted to exacerbate scale drift, such as continuous testing where more
new forms are administered and equated with smaller groups of test takers (increasing
standard errors and the accumulation of standard errors in chains of equatings). When
equatings and raw-to-scale conversions are available for several administered forms,
additional methods for evaluating drift have been described, such as harmonic regres-
sion and time series analyses for evaluating seasonality effects in scale score conver-
sions (Y. Lee & Haberman, 2013) and quality control charts and time series methods
to support continuous monitoring, adjustment of variations, identification of abrupt
shifts, and the assessment of autocorrelation. More recent evaluations of scale stability
in the SAT have also been conducted, such as studies of the extent to which drift in
equating chains is affected by different degrees of postsmoothing (S. Y. Kim et al., 2020)
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and the drift due to the accumulation of random and nonrandom errors observed from
readministering and re-equating an old form and comparing this to more recently
equated forms (Guo et al., 2012). Another study evaluated the extent to which scale
score drift and variability in the SAT were controlled by equating back to two or three
old forms rather than one (J. Liu et al,, 2014). These studies provide examples of how
equating drift might be assessed and potentially reduced.

LINKING

In the Equating section, equating was described as the strongest type of linking, subject
to the strictest requirements, used to adjust the scores of alternate forms of a single
test for unintended difficulty differences for the purpose of establishing interchange-
able scores. The Linking section describes other types of linkings for the scores of tests
that are distinct and not expected to meet all of the equating requirements of equal
constructs, same test specifications, equal and high reliabilities, same administration
conditions, etc. Linking efforts might be undertaken to promote particular interpreta-
tions, such as appropriate comparisons or predictions from distinct tests. These goals
are not as ambitious as the interchangeability goal of equating. Although the compara-
bility established in linking might be general in intention (e.g., score comparisons across
different tests and testing contexts), the results of linking distinct tests are nevertheless
weaker (i.e., less precise) than equated results, with interpretations that must usually
be qualified and limited in some way. For example, the score comparability achieved
through scale aligning methods is considered to be “assured only for that specific group
taking the tests under specific conditions (Angoff, 1971)” (Pommerich, 2016, p. 117).
Predictions and regressions are also noted to be group specific (Linn, 1993; Mislevy,
1992).

This section summarizes types of linking other than equating, their uses, and their
limitations. The linking types covered in earlier linking frameworks include those in the
Concordances, Vertical Scaling, Battery Scaling and Composites, and Predicting and Pro-
jecting sections, all of which are summarized in Table 11.3 based on a tabled version
of Holland and Dorans’s (2006) linking framework. Some linking types described in
previous discussions are omitted because of ambiguities and updates in terminology
(calibration was part of earlier linking frameworks, but is avoided here because it some-
times refers to vertical scaling and other times to fitting IRT models; Holland & Dorans,
2006). Approaches described in the More Recent Linking Types section are also covered,
including linking for exams administered in different testing modes, linking subjectively
scored tests, local linking, linking adaptive tests, linking exams administered to different
test takers using weak anchors, and linking state tests to NAEP (Table 11.4).

Concordances
Concordances are scale-aligning linkings for tests built from similar but not identi-
cal test specifications, where the tests have similar uses, lengths and reliabilities. One
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Table 11.3 Summary of Nonequating Types of Linking

What Is
Dissimilar?

Type of
Linking

Concor-

dance

Vertical
scaling

Difficulty;
populations

Battery Constructs

scaling

Composite
scales

Predicting
and project-

ing

Table 11.4 Summary of Recent Linking Examples

WhatIs | What Is
Similar? Equal?
Constructs; = Popula-
reliability; | tion
difficulty
Constructs;
reliability
Popula-
tion
Popula-
tion
Popula-
tion

Type of Linking What Is Likely

Dissimilar? Data
Collection
Design

Linking across | Conditions of Various

conditions of measurement

measurement

Linking Scoring that drifts | Various

subjectively

scored tests

Likely Data
Collection
Design
Single group;
approximated
counterbal-
anced

NEAT with
common items
or scaling test,
or random
groups

Single group
or randomly
equivalent
groups

Single group
taking the indi-

vidual tests

Single group;
counterbal-
anced

Computation

Scale aligning

Scale aligning

Computation

Scale aligning

Scale aligning

The composite
is a sum of the
scale scores of
the individual
tests, which
are main-
tained through
scale-aligning
equatings
Predicting and
projecting

Interpretations

Comparable scales for
the overall concordance
group, but not necessarily
to subgroups

Comparable scales that
depict growth based

on the methodological
choices for how the
vertical scales were estab-

lished

Comparable scales that

indicate test takers’ rela-
tive performance across
the test battery

Composite scales are
indirectly maintained to
the extent that the scales
of the individual tests
are maintained and the
intercorrelations of the
individual tests do not
change

Best prediction for a
prediction group

Interpretations

Comparable scales, with caveats about
limitations when testing mode differ-
ences are large

Comparable scales, depending on high
reliability and procedures to account for
trends and rater drift across administra-

tions

(continued)
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Table 11.4 (continued)

Type of Linking What Is Likely Computation Interpretations
Dissimilar? Data
Collection
Design
Local, ability- A form’s scale Various Conditional scale | §-Conditional comparable scales
specific test alignments at dif- aligning
linking ferent abilities
Linking adaptive = Forms and form Pre-equat- | IRT ability estima- = Comparable scales at specific levels of
tests difficulties at dif- | ing tion adaption, influenced by the item pools,
ferent abilities and the accuracy of the IRT models,
scores and adaptions

Linking tests Test-taker groups; | NEAT Scale aligningon | Comparable scales for hypothetical
using weak collateral informa- | design projected distribu- | groups defined by the weak anchor(s)
anchors tion vs. the tests without tions

a suitable

anchor
Linking state State tests and Single Scale aligningor  Comparable scales or projected results
tests to NAEP NAEP group or projecting are more supported within states than

counter- across them

balanced

Note. IRT = item response theory; NAEP = National Assessment of Educational Progress; NEAT = nonequivalent groups with anchor testing.

example is the concordance of the SAT and ACT reporting scales. Other concordance
discussions and examples involve the ACT and ITED tests (Yin et al., 2004), and,
arguably, those described in the Linking State Tests to NAEP section. Concordances are
intended to align the tests’ scales using scale-aligning functions and support additional
desires to use the resulting concordance tables as surrogates for test takers’ scores on the
test they did not take.

Early arguments about concordances for the ACT and SAT were summarized by
Pommerich (2007), including concordance table proposals for avoiding excessive test-
ing in schools and arguments from Angoff (1962) and Lindquist (1964, February)
against concordance tables because of problems in these proposals and possible misuses
of their results. Since these early arguments, several ACT /SAT concordances have been
produced (College Board/ACT, 2018; Dorans, 1999; Dorans et al,, 1997; J. Liu et al,,
2010; Marco & Abdel-Fattah, 1991). These ACT/SAT concordance studies are based on
obtaining data from test takers taking the ACT and the SAT at least once, in either order,
selecting the ACT and SAT scores to use for the test takers who take either test more
than once and screening the test-taker data to avoid large time differences between ACT
and SAT testings. Linking results are produced from the screened data as equipercentile
conversions for some combinations of ACT and SAT tests (e.g., the ACT Summed score
and the SAT Total scores in 2018, the ACT Summed score and the SAT Verbal + Math
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score in 2010). Decisions about which ACT and SAT tests to concord are usually based,
in part, on the size of their correlations (see the Correlations and Prediction Error section;
Dorans, 1999). Content similarities and political issues often inform these decisions as
well. The usual data collection design is a single group design that ignores testing order.
In some ACT/SAT concordance studies, testing order is accounted for by weighting
data for each order similar to a counterbalanced design, but for nonequivalent groups
(College Board/ACT, 2018; Marco & Abdel-Fattah, 1991). Other statistical weighting
procedures have also been used to improve the representativeness of the concordance
data and resulting concordances for the test-taker populations of each test, who do not
necessarily take both tests (College Board/ACT, 2018).

Because of differences in the specifications of the tests in concordance studies, con-
cordance results are not expected to provide interchangeable scores. In fact, concor-
dance tables are expected to be group dependent. For example, the concordance of the
ACT Summed score and the SAT Verbal + Math score differs for females and males
and across different race/ethnicity groups. These differences can be attributed in large
part to the fact that math content contributed 25% to the ACT Summed score and 50%
to the SAT Verbal + Math score (Dorans, 2020). In addition, concordances produced
from very specialized conditions of measurement, scoring, or with restricted samples
or in special studies may not generalize to entire testing populations and may warrant
additional studies to update results (Dorans & Moses, 2023; W. Lee & Brennan, 2021;
Moses, 2022).

Vertical Scaling

Vertical scaling is used to establish “developmental” scales for reporting performance
on versions of a test that are appropriate for specific ages or grade levels represented in
schooling, and usually K-12 testing (Kolen, 2006; Kolen & Brennan, 2014). In Holland
and Dorans’s (2006) linking framework, vertical scaling involves the linking of tests
that measure similar constructs at similar reliabilities, but that differ in difficulty and in
the test-taker populations. Thurstone (1925, 1938) proposed vertical scaling methods
for item difficulties and then modified them for summed scores (later described as a
method of absolute scaling for age and grade-based scales; Flanagan, 1951; Gulliksen,
1950). Rasch IRT models were considered for vertical scales in the 1970s and 1980s
(Briggs & Weeks, 2009). More recent vertical scales include CTB/McGraw-Hill’s Terra
Nova (CTB/McGraw-Hill, 2001), the Iowa Test of Basic Skills (Hoover et al., 2003;
Kolen 2006; Petersen et al.,, 1989), the ACT scales (Brennan, 1989), tests of English
acquisition and English as a second language (ETS, 2005; J. Wang & Smith, 2003), and
the 2016 redesigned SAT Suite (Y. K. Kim et al., 2016). Typically, a separate vertical
scale is established for each test in an overall testing battery, serving as potential inputs
to battery scaling (see the Scales for Test Batteries and Composites and Battery Scaling and
Composites sections). The resulting developmental scales and scores are used to provide
a means by which students’ growth is measured, observed, and used to plan instruc-
tion and instructional support across schooling. Because the tests being linked in the

I89



90

EDUCATIONAL MEASUREMENT

vertical scale differ in difficulty, length (usually), timing, content, and other aspects,
vertical scaling results do not produce interchangeable scores across levels (Kolen &
Brennan, 2014).

Several issues affect the production and results of vertical scales (Kolen, 2006),
including definitions of growth, grade-based testing content, data collection designs,
linking methodologies, and implementation choices in an IRT model, scoring, and
estimation.

How Growth Is Defined
Vertical scalings can reflect different definitions of growth, such as grade to grade, where
growth is defined over the test content appropriate to particular grades (usually two

adjacent grades), and domain, referring to growth over all content in the domain (Kolen
& Brennan, 2014).

Grade-Based Testing Content

For subject matter areas closely tied to a school curriculum, students tend to exhibit dif-
ferent amounts of growth depending on the content areas on which students are tested.
For example, if division by whole numbers is taught in Grades 3 and 4, then growth
in the third and fourth graders is expected to be greater in this area than growth in
fifth and sixth graders (Kolen & Brennan, 2014). Different vertical scaling results might
result from conducting the scaling on either grade (Holland, 2007, p. 18). Growth rates
would be different across vertically scaled tests measuring domains that are differen-
tially associated with school curriculum. Vertical scaling results can also be affected by
how well the difficulty levels are represented in tests for earlier and later grades (Kolen,
2006, p. 178).

Data Collection Designs

Three designs are usually contrasted for vertical scaling (Kolen & Brennan, 2014).
For vertical scales established with the NEAT design, adjacent grade-based tests are
taken by students from those corresponding grades, and the blocks of items represent-
ing overlapping content for those two grades serve as the anchor test. The randomly
equivalent groups design can also be used, where test takers in each grade are randomly
assigned to take either a grade-specific test or a test designed for an adjacent grade. The
NEAT and equivalent groups designs both involve the chaining of test linkings for tests
administered to adjacent grades, and both designs reflect a grade-to-grade definition of
growth.

A third data collection design is the scaling test design, which is similar to the NEAT
design where an external “scaling” test that is built to reflect content from the entire
domain and represent all of the grades of interest is used as the anchor. Typically, the
scaling test is administered to students along with the grade-specific tests to be scaled.
The scaling test design reflects a domain definition of growth. The scaling test design
has been used with the Iowa Test of Basic Skills, ACT, and SAT testing programs.
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Linking Methodologies

Vertical scales can make use of methods based on several measures of test perfor-
mance (Kolen, 2006). For summed scores, Hieronymous scaling involves the linking of
summed score medians across tests. Thurstonian scaling is based on linking grade-based
summed score distributions after they are transformed into normal distributions. The
untransformed raw scores could also be vertically scaled, such as through chained
equipercentile procedures (Y. K. Kim et al,, 2016). IRT scoring methods can also be
used to establish vertical scales.

IRT Implementations

The use of IRT for vertical scaling involves choices of an IRT model, estimation choices,
and the IRT-based scores to use (Briggs & Domingue, 2013; Briggs & Weeks, 2009;
Kolen, 2006). IRT models such as the Rasch, 2PL, or 3PL models could be used. Test
items’ IRT parameter estimates could be obtained through calibrations conducted sep-
arately for each grade-specific test, items, and test-taker data or concurrently for the
tests, items, and test takers from all grades. Vertical scales could be established from
different proficiency estimators, including MLE (Equation 4), EAP (Equation $), or
TCC approaches (Equation 6).

The test score linkings resulting from vertical scales have been characterized as a
“folding ruler” and as a “ruler that bends” (Yen, 2007, pp. 274-275). What causes verti-
cal scales to fold and bend? As noted previously, the grade-specific tests can show more
growth for content that is specifically taught in the curriculum for those grades (per-
haps suggestive of grade-to-grade growth). Reviews of vertical scales from the 1980s
describe a shrinkage phenomenon where the scores from several types of vertical scales
tended to have standard deviations that shrunk from earlier to recent tests and grades
(Briggs, 2013; Kolen, 2006; Yen, 2007). Shrinkage was most often shown in vertical
scales established with IRT, potentially affecting the ordering of schools based on their
gain scores (Briggs & Domingue, 2013). Shrinkage in IRT scales results in a depic-
tion of growth that differs from the growth depicted in vertical scales established with
non-IRT approaches, where shrinkage suggests more rapid growth for lower achiev-
ing students who catch up to higher achieving students (Briggs, 2013; Hoover, 1984).
Although the source of the scale shrinkage in vertical scales from the 1980s was never
definitively established, suggested explanations point to early IRT estimation methods
(i.e., joint maximum likelihood estimation), multidimensionality within and across the
tests, and a failure to establish interval scales. Vertical scales since the 1980s have gen-
erally not exhibited shrinkage (Yen, 2007), coinciding with updates in IRT procedures.

Additional influences on vertical scales have been elaborated (Briggs & Weeks, 2009),
including the chosen IRT model (scales based on 3PL models result in greater scale
score variability than those based on Rasch models), IRT estimation (MLE results in
greater score variability than EAP), and calibration (concurrent calibration decreases
scale variability vs. separate calibration). IRT limitations can also affect vertical scales,
such as strong and potentially unrealistic assumptions that item parameter estimates
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fit item response data and are invariant across ages and grades, as well as assumptions
that items and test-taker abilities can be modeled as unidimensional. Multidimensional
approaches that account for changes in constructs measured across grades can show
limitations with unidimensional approaches (Weeks, 2018). For these and other issues
described in the cited sources, vertically scaled scores across grade- and age-specific tests
can produce inconsistent estimates of test takers’ growth, estimates that reflect choices
in methodology, test development, and administrations. Altogether, these results indi-
cate that scores from different tests in the vertical scale are not interchangeable.

Battery Scaling and Composites

Battery scaling can be described both as an approach to establishing scales (see the
Scales for Test Batteries and Composites section) and as an indirect way to link the scores
of a battery of tests designed to measure different constructs that are administered to
a common population of test takers (Holland & Dorans, 2006). The purpose of estab-
lishing the scales in a similar way for all the tests in a battery is so the resulting scales
can facilitate interpretations about relative performance and strengths and weaknesses
across the battery. Examples include an early proposed battery scale for different scoring
methods for handwriting (Kelley, 1914) and for establishing scales for recent versions
of the SAT and ACT batteries (Brennan, 1989; Dorans, 2002; Y. K. Kim et al., 2016). It
is likely and expected that the linkings of test scores produced in battery scaling do not
produce interchangeable test scores. One way that this lack of interchangeability can be
observed is in subpopulation dependencies, such as for subgroups of test takers who do
relatively better (or worse) on a mathematical measure and also do worse (or better) on
a verbal measure.

Composite scores are usually derived from individual tests in a battery, making the
comparability of composite score scales indirect and difficult to maintain. To illustrate
some challenges with composite score scales, consider a situation where the scales of
two tests are established and maintained through equating, and let these two tests for
which alternate forms would be developed be represented as Y, and Y,. A composite
score is also of interest, defined here as the sum of the two scale scores, sc(Y) = sc(Y;)
+ sc(Y,) . For this situation, the distribution of sc(Y) is a function of the scale score
distributions of sc(Y,) and sc(Y,) and also the joint distribution of [ sc(Y;),sc(Y;) ].
Specifically, the mean of sc(Y) can be obtained as the sum of the means of both
tests” scale scores, the variance of sc(Y) is obtained as the sum of the variances of
both tests’ scale scores plus two times their covariance, and the skewness and higher
moments reflect higher moments in sc(Y;) and sc(Y;) and in the joint distribution
of [ sc(Y,),sc(Y,) ]. These relationships indicate that except for its mean, the distribu-
tion of the composite scale scores sc(Y) is a function of the sc(Y]) and sc(Y,) scale
scores that would be maintained through equatings of the Y| test forms to each other
and the Y, test forms to each other, as well as the covariance and higher moments of
the joint distributions of [ sc(Y;),sc (Y,) Jthat would not be maintained through the Y
equatings and the Y, equatings. Examples of composites produced from multiple tests
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include those reported by ACT, SAT, and other programs. Kolen and Brennan (2014)
summarized how a change in composite score standard deviation coincided with the
change in intercorrelations of separate battery tests’” scale scores and recommended
specific checks for composite score comparability: “When composites are created for
tests in a battery, it is important to check whether the composites are also comparable”
(p. 425). Analogous results have been shown in linking situations involving latent com-
posites (Dorans et al., 2014; Weeks, 2018). An implication is that composite score
scales are best maintained directly rather than linked through indirect reliance on
equated battery tests.

Predicting and Projecting

Predicting and projecting are the oldest and earliest examples of test linking (Holland
& Dorans, 2006). Although these linkings are not symmetric like scale-aligning func-
tions, various applications have been described in the psychometric literature. Predic-
tions and projections have been recommended because of their increased prediction
accuracy versus scale-aligning functions, such as when there are low correlations in the
scale scores for which a concordance is desired (Dorans, 1999; 2004b), or in the IRT
thetas of distinct measures intended to be linked (Holland & Hoskens, 2003; Schalet et
al,, 2021). Other uses are for establishing auxiliary scales, such as reports of normative
growth using conditional norms (i.e., relative growth rather than the absolute growth
intended to be shown in vertical scales). Conditional growth norms might be used to
forecast how younger test takers obtaining specific scores on an earlier test are expected
to perform on a later test (Betebenner, 2009; Castellano & Ho, 2013). For example,
PSAT-to-SAT prediction tables are descriptions of expected growth at the student
and school levels (Y. Kim et al., 2018a, 2018b). As described in Holland and Dorans’s
(2006) linking framework (also Linn, 1993; Mislevy, 1992), predictions and projec-
tions are the least restrictive type of linking in terms of requirements. They do, however,
require a sample of test takers who took both tests. The usefulness and accuracy of pre-
diction and projection tables are higher when the tables are applied to test takers who
are most similar to the test takers used to produce the tables (Holland & Dorans, 2006).
In other situations, the group dependences noted in prediction and projection tables
can make them unstable, inaccurate, and “precarious” (Mislevy, 1992, p. 63), such as in
applications to nonrepresentative groups or to groups over time (Thissen, 2007).

More Recent Linking Types

Since Holland and Dorans (2006) presented their test linking framework, different
types of linking have been proposed and developed. Some prominent examples are
summarized in this section and in Table 11.4. A focus of this discussion is the extent
to which these more recently proposed linking types differ from those in the Equating
Requirements section. Several of these proposals are based on desires to offer testsin more
specific ways to test takers by offering tests in an increased number of administration
modes (see the Linking Tests Across Conditions of Measurement section), supporting tests

SI93



94

EDUCATIONAL MEASUREMENT

with subjective scoring procedures (see the Linking Subjectively Scored Tests section), or
developing the tests or the intended linking function tailored to specific test takers (see
the Local, Ability-Specific Test Linking, and Linking Adaptive Tests sections). Additional
proposals expand on methods for linking across nonequivalent groups (see the Linking
Tests Using Weak Anchors section) and the Linking State Tests to NAEP section.

Linking Tests Across Conditions of Measurement

Testing programs might allow test takers to take their tests in different administration
modes, such as translated into different languages, with modifications and accommo-
dations for special populations, and in multiple delivery systems that include paper-
pencil tests and computerized tests delivered online. When offering alternative editions
of their tests that are administered under different conditions, the testing program can
be faced with two choices. One choice is to ignore administration effects and treat the
scores from a test given in different administrations in the same way. This choice could
raise fairness concerns and result in an unknown degree of comparability in scores
across measurement conditions (Pommerich, 2016). The other choice is to conduct
linking studies to estimate and apply score adjustments that account for administration
effects on scores (i.e,, mode comparability studies). This choice may be possible for
evaluating score effects from computerized versus paper testing modes, but is less feasi-
ble for tests administered with and without accommodations or in different languages
where standard data collection designs may be less available (Thissen, 2016).

Mode comparability studies and linkings produced in these studies do not meet the
equating requirement for equal conditions of measurement (see the Equating Require-
ments section) and are not expected to produce interchangeable scores. However, these
studies might improve or at least inform the fairness of score reporting. Some reviews
of paper—pencil versus computerized mode comparability studies suggest that scores
from these modes are comparable more often than not (Pommerich, 2016), whereas
other studies suggest that computerized testing can favor some subgroups over others
(Kolen & Brennan, 2014). The mixed findings could be due to challenges in conducting
mode comparability studies with traditional data collection designs (see the Data Col-
lection Designs section) and the extent to which the administration modes differ.

Traditional data collection designs can be challenging to implement with mode com-
parability studies (Kolen, 2007). Mode comparability studies with randomly equiva-
lent groups designs require that test takers be randomly assigned to an administration
mode (paper—pencil, computerized, etc.), an assignment that can differ from the typi-
cal administrations of tests and modes by a testing program. ANEAT design implemen-
tation would require that test takers take an anchor test given in a single administration
mode that may differ from the mode in which they take their actual test. Single group
and counterbalanced designs can produce scores with order effects (Eignor, 2007).
Traditional designs have been implemented in special studies for large-scale assessments
like NAEP, the Programme for International Student Assessment (PISA), and the
Trends in International Mathematics and Science Study (TIMSS; Jia & Xi, 2021) and
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have found that digitally administered items in mathematics and reading (NAEP) and
math and science (TIMSS) were more difficult for fourth and eighth graders. Other
studies have assessed mode effects in paper—pencil and online administrations of cre-
dentialing, licensure, and placement exams, using a variety of methods to account
for test-taker nonequivalence and finding mixed results (Jones et al., 2022; S. Kim &
Walker, 2021; Moses et al., 2021; Puhan & Kim, 2022).

A major question is how different the tests are when administered in each mode, such
as in terms of their display of items and other test material, the test administration(s)
(fixed, adaptive, etc.), and the extent of proctoring for the computerized administration
(proctored at test centers vs. unproctored or online administrations). Discussions of
these issues suggest that mode comparability linkings are most dissimilar with equat-
ings that produce interchangeable scores across testing modes when the computerized
test is adaptive and unlikely to exhibit equity with the paper—pencil scores (Eignor,
2007). In summarizing the transitions many admissions and placement programs made
to online testing in efforts to continue administering tests in the COVID-19 pandemic,
Camara (2020) noted that online administrations with especially large differences
from paper—pencil tests risked the integrity, accuracy, reliability, validity, and fairness of
the resulting scores and would “likely mean score trends and comparability cannot be
maintained” (p. 13).

Altogether, the challenges with data collections and with potentially large differences
in administration modes make mode comparability studies challenging in their imple-
mentation and their interpretation. Thissen (2016) provided a general discussion of
testing and linking across different translations, grade levels, accommodations, and
paper—pencil versus computerized modes, concluding that empirical investigations of
fairness are needed for tests and linkings across conditions of measurement:

Continued vigilance is required. There is no way to guarantee that a use of a
test is fair. All that can be done is to catalog carefully the ways in which compari-
sons could be unfair, and then check, with either statistics or reasoned judgment,
whether unfairness exists. (Thissen, 2016, pp. 212-213)

Linking Subjectively Scored Tests

Tests that are composed of CR items present challenges for linking, such as tests that
usually contain a small number of items and data collection designs that do not work
the same way as for tests containing MC questions (Kolen & Brennan, 2014). The use
of human raters to score tests containing a small number of CR questions can reduce
reliability. Automated essay scoring approaches may avoid reliability reductions from
human rater scoring, but they can also introduce their own challenges for score inter-
pretability and fairness (see the Ability Estimates From More Complex Models section).
The previously described issues about unreliable scores having less utility and produc-
ing linkings with less equity indicate that linkings for tests with CR items are not likely
to produce interchangeable scores. Tests with small numbers of questions can also result
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in inadequate coverage of the content domain, such that alternate forms may measure
different constructs. Low reliability and inadequate content coverage can make equat-
ing and score interchangeability less likely for tests with CR questions.

When tests containing CR questions must be linked using a NEAT design, linking
accuracy depends on a number of factors and procedures. A crucial issue with NEAT
designs for CR tests is what to use for the anchor test. When the anchor contains CR
questions, the scores from these anchors can reflect a particular type of bias due to
leniency/stringency differences in human raters from the two administration groups
(Tate, 1999, 2000; S. Kim et al., 2010a, 2010b). Trend scoring procedures are recom-
mended for these biases, where the responses to a set of CR questions from a single
group of test-takers are scored by raters in both administrations. A scale-aligning trans-
formation for the sets of scores from these administrations is produced to account for
the unintended differences in rater leniency/stringency across administrations and to
produce scores that can be used more effectively as an anchor for linking the tests. The
use of trend scored CR questions as an intact anchor, or as part of an anchor with MC
question scores for mixed format tests, improves accuracy when linking mixed format
tests with the NEAT design (S. Kim et al., 2010a, 2010b). Another choice available for
mixed format tests is to use anchor tests composed only of MC items. This approach is
most effective when the administration groups are similar to each other on the MC and
CR sections, when the correlations of the MC and CR scores are high and similar across
forms, and when the number of score points attributable to MC scores is large (Kolen
& Lee, 2011, 2012, 2014, 2016, 2018).

Local, Ability-Specific Test Linking

If an equating satisfies equity, then it is a matter of indifference whether test takers at
every given ability level take form X or Y (see the Equating Requirements section; Lord,
1980). Consider Lord’s original definition of equity, defined over every ability level (¢
value from an IRT model), and emphasize “each” ability level (van der Linden, 2011,
p-209; van der Linden, 2013, p. 262). A set of X -to-Y linking functions could be defined
to satisfy this interpretation of equity at specific values of §:

eyy(x) = G;l[Fe(x)] such that F, ey, (x)] = G, [y] for each 6. (36)

The goal of Equation 36 is to estimate each set of §-conditional X and Y distri-
butions (Lord & Wingersky, 1984) and use them to produce #-conditional X-to-
Y equipercentile functions. This proposal contrasts with the usual recommended
practice to average the conditional distributions of X and of Y given ¢ (Equations 26
and 27) and conduct an equating for ey, (x) on the averaged distributions (Kolen
& Brennan, 2014). If test takers’ estimated fs were available from an IRT model,
a set of equating functions at each estimated 6 value could be used to evaluate
lack of equity in the equated scores, ey, (x) — ey (x), rather than in distributions
(Equation 18), analogous to evaluations of subpopulation invariance (Equation 20;
Dorans & Holland, 2000).



Scaling, Equating, and Linking

One proposal is to use Equation 36 to produce and report f-conditional scores to
test takers, to satisfy equity and address equating bias attributable to 6-conditional
measurement error (van der Linden, 2011, 2013). This proposal has been criticized
for theoretical reasons and practical issues (Dorans, 2013; Holland, 2013). Some ques-
tions are discussed next to elaborate both perspectives, the proposal for #-conditional
procedures and counterarguments.

« Does the target population for equating, T, contain test takers at all 6 values or is
it 0-conditional? One perspective is that there are multiple 6-conditional target
populations (van der Linden, 2011, p. 209). Another perspective defines T in
terms of all test takers taking a test in a data collection design from Table 11.1
(i.e., test takers at all  values). From the perspective that T contains test takers
at all 6 values, f-conditional linking functions that differ from e, (x) are an
indication that the subpopulation invariance requirement is violated (Require-
ment e, Dorans, 2013). A f-conditional interpretation would consider these
differences to reflect different populations.

« Should administration conditions like scoring rules be applied in the same way
to test takers at all fs or should different scoring procedures be applied to test
takers at different #s? Unique scoring rules might be applied to test takers at
specific § values or consistently to test takers at all  values. Note, however, that
0-conditional linking functions would imply that the equal measurement con-
ditions requirement of equating is not satisfied (i.e., test takers with different ¢
values who take test X are scored differently from each other and likely from Y).
Psychometricians have usually argued for the use of uniform scoring for all test
takers taking a given test form (Livingston, 2004; Petersen, 2007).

« What are the implications of §-conditional linking functions for score compa-
rability? From one perspective, -conditional equipercentile functions correct
for 0-conditional measurement errors (van der Linden, 2011, 2013). Another
perspective is that 0-conditional equipercentile functions result in differential
treatment of test takers (Dorans, 2013; Holland, 2013) and 6-conditional score
interpretations that would be contradictory to interchangeability across different
0 values (i.e., score comparisons across ¢ values are not supported).

« Isequating an adjustment for the estimated difficulties of X and Y'in T or an
adjustment for f-conditional measurement error? One perspective is that the
equating of observed scores involves adjusting for 6-conditional measurement
errors (van der Linden, 2011, pp. 213, 223). The perspective of most other works
cited in the Equating section is that equating involves adjusting test form scores
for unintended differences in overall difficulty (see the Equating Requirements
section), where the test forms involved are equally and highly reliable.

Rather than use Equation 36 to report §-conditional linking functions to test takers,
the recommendation in this chapter is to re-emphasize high reliability as a requirement
for equating. This means that a single X -to-Y conversion applied to all test takers of X
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would reflect less measurement error, would be a closer approximation of the equity
requirement, and would have small differences from 0-conditional X-to-Y functions.
The requirement for high and equal reliability in test forms being equated means Lord’s
(1980) theorem that only perfectly reliable true scores can be equated is more closely
approximated. This perspective makes use of Equation 36 not as a score reporting strat-
egy, but as one possible check for equating adequacy, namely, a check on the extent to
which #-conditional measurement error and (in)equity affect equating accuracy.

Linking Adaptive Tests

Adaptive testing is based on the premise that a test can be more precise when it is con-
structed so that its difficulty is matched (“tailored,” Lord, 1980, p. 150) to test-taker
ability. This matching of test-taker ability and test difficulty implies increased efficiency,
in that a matched test can be shorter but measure at a precision that is similar to or
higher than that of a longer test that may be too easy or too difficult for an unmatched
test-taker group. Adaptive tests are usually IRT based in their scoring, linking, and scale
scores, relying on a large pool of available test items with IRT statistics obtained from
pretest and pre-equating data collections and using computer-based algorithms to
administer the tests (van der Linden & Glas, 2010).

When the test is administered, a computer program implements sophisticated algo-
rithms to obtain preliminary IRT-based ability estimates as a test taker takes test items.
Then the computer program selects and administers subsequent test items with diffi-
culties that match test takers’ ability estimates. The computer might stop the test when
the test taker’s ability estimate reaches a predetermined level of precision. Additional
procedures are needed to ensure that the item pool is adequately maintained, that items
are not being overly selected or exposed so as to raise security concerns, that content
specifications are met, and that items” IRT parameter estimates are not drifting during
repeated use. Adaptive testing could be implemented at the item level (i.e., every subse-
quent item a test taker takes is based on his/her ability estimated from previously taken
items). Adaptive testing could also be implemented at a small number of stages where
test takers are routed to collections of items of differing difficulty (i.e., multistage tests,
MSTs). Several examples of item-adaptive tests and MSTs are described by van der Lin-
den and Glas (2010).

Computer-adaptive tests present several challenges for score linking. The adaptive
tests are highly dependent on the item pools, such that systematic changes in the item
pool through item reduction or the use of different exposure controls can result in test
scores that are not interchangeable because of increased measurement error, violations
of second-order equity, and changes in the distribution of reported scores (T. Wang &
Kolen, 2001). Even when alternate item pools are built to be very similar, they might
produce scores that are different enough to warrant additional linking beyond what is
provided in the adaptive test (Segall, 1997). Adaptive tests rely on assumptions that
scoring parameters are correct and item order and context effects are either minimal or
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can be controlled. More thoughtfulness has been encouraged about these assumptions
(Harris, 2023), and special research has been prompted to assess pretested items admin-
istered in varied positions (Davey & Lee, 2011). Importantly, the design of an adaptive
MST will reflect one of several possible trade-offs of adaption and the extent to which
content specifications are met:

More modules per stage may make a test more adaptable to a wider range of
examinee proficiency levels, but then, more easy items and hard items are needed
to build the MST modules. The items must also be selected to simultaneously
meet all requisite content specifications for any test route taken by the exam-
inee. This is often very challenging when the modules at a given stage must be
matched on content and also span a fairly wide range of item difficulty. Similarly,
fewer items per stage likewise encourages the use of more adaptation, but can
result in routing decisions being made on smaller and smaller slices of the content
domain. (Zenisky et al., 2010, p. 356)

Adaptive tests have some resemblances to vertical scales (see the Vertical Scaling sec-
tion), in that they involve tests developed to differ in difficulty and possibly in content
being administered to test takers of specific estimated ability. Both linking types can fail
to meet the equating requirement for content and difficulty (Requirement a, see the
Equating Requirements section) and both raise comparability challenges. Similar to how
different vertical scaling results could be produced as students of different ages and/or
grades take the tests being vertically scaled, different scores from computer-adaptive
tests could be produced if test takers of higher and lower ability take one of several
unique and adaptive tests differing in their difficulty and possibly content. These issues
might be a matter of degree where, for example, simulations of MSTs that administer
modules with relatively small differences in difficulty and content may not show large
scoring errors in misrouted test takers (S. Kim & Moses, 2014). However, as the quote
from Zenisky et al. (2010) suggests, it is possible that the adaption in adaptive testing
could be more extreme, as is the case with item-level routing, such that tests targeted at
specific ability levels differ from those that target other ability levels in their difhiculty
and content coverage. Greater degrees of adaption and larger differences in the adaptive
tests administered to test takers can reduce the comparability of scores across test takers
of different ability.

When unidimensional IRT models are employed, it is virtually impossible for test-
taker scores to be successfully equated for adaptive “forms” because, by design, the
adaptive routes differ in difficulty and indirectly modeled content, at least in part, as
well as the test-taker groups that take the different routes. In effect, different ability
groups take different test forms that are intentionally designed to be nonequivalent,
which rules out equating as an attainable goal. (Similar statements apply to linking
scores on paper—pencil and MST forms.) Just about all educational tests are multi-
dimensional by design and by content specification. When a unidimensional IRT
model is used and adaptions reflect ability, difficulty, and incompletely modeled
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multidimensional content, statements about scores for test takers who take different
test forms and routes being on the same scale are difficult to defend. Linkings of some
kind may be possible, but the characteristics of any linked scores can be ascertained
only through empirical studies that consider the accuracies of the IRT parameters and
scores, the item pool, the adaptive settings, test forms for higher and lower ability test
takers, etc. The strong claims supportable by an actual equating are not expected in

such linkings.

Linking Tests Using Weak Anchors

Consider the situation where a linking is desired for tests X and Y, but the test data are
not collected in one of the recommended data collection designs (Table 11.1). If these
test data were obtained in a manner similar to a NEAT design in which X and Y were
taken by nonequivalent groups, but with no anchor score data, what linking approaches
might be available? One example of this situation occurs when the data from a paper—
pencil test were intended to be collected in a randomly equivalent groups design, but
test book spiraling procedures failed. Another situation occurs when the administration
ofa common anchor to both groups is not feasible because of security concerns. Finally,
testing programs might intentionally introduce this type of design by offering their test
in different administration modes and giving test takers the option to self-select into
different test administration modes.

Two issues that determine the quality of linking are the similarity/dissimilarity of
the administration groups and the representativeness of the available anchor(s), (A(s))
for X andY asindicated in the anchor, test correlations. An ideal situation occurs when
the administration groups are samples from the same population. For this case, Hol-
land and Dorans (2006) described the role of the anchor as one of reducing random
variability and improving statistical precision, even when the anchor does not represent
the tests:

When P=Q , the NEAT design is called an EG [randomly equivalent groups]
design with anchor test. The two samples are drawn from a common population
and the role of the anchor test changes. The anchor test becomes a covariate as
in a randomized experimental design. It is used to gain precision in the estimation
of the relevant parameters, rather than to adjust for group differences. For this
special case, it is not necessary for A to measure the same construct that X and Y’
do, or even to be a test score. All that matters is for A to be correlated with both
X and Y. When this is the case A is useful as a precision-increasing covariate. (p.
199)

For less than ideal situations where the populations of the administration groups can-
not be considered equivalent, the anchor must reduce bias and variability (Holland &
Dorans, 2006). The potential for greater linking error when administration groups are
not equivalent means that it is especially important that the anchor be representative
of, and correlated with, test scores. Although the use of inadequate anchors for a linking
test administered to nonequivalent groups might improve linking accuracy, this use
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may not sufficiently account for test-specific group differences or produce equatings
that support interchangeable scores.

Several linking methods have been considered for situations where the administra-
tion groups differ and where multiple anchors and/or background variables might be
available that could be incorporated into a test linking. Suggestions for using multiple
scores were made by Angoff (1971) in a generalization of regression methods (Equa-
tion 17). Livingston et al. (1990) suggested propensity score matching as a way to
incorporate multiple scores. Dorans and Wright (1993) showed that linking results
obtained from matching administration groups based on a selection variable could
be more accurate than methods based on matching groups with traditional anchors.
Liou et al. (2001) described how demographic background variables might be used
in test linking by making assumptions about the missing data and using correspond-
ing imputation methods. Moses et al. (2010) showed how frequency estimation
based on projected distributions (see the Distinguishing Equating From Other Forms
of Linking section), categorized propensity scores, and missing data imputation could
all be used to produce similar linking results when these methods were used with two
anchor scores. Studies of categorized propensity scores based on background variables
(Livingston, 2014; Wallin & Wiberg, 2019) and linear scale alignments with linear
regressions of multiple background variables (Brinberg & Wiberg, 2011) showed that
these approaches can increase precision and reduce variability in test linking. Statisti-
cal weighting procedures based on log-linear models have also been described for test
linking based on background variables (Haberman, 2015) and on test takers’ previous
test scores (Y. Lee et al,, 2019).

Most of these methods produce scale-aligning results that are similar to those obtained
from projecting test score distributions for hypothetical administration groups defined
by one or more anchors and/or background variables. It is possible that the linking
results based on using an anchor and/or background variable have improved accuracy
compared to an inappropriate randomly equivalent groups approach. However, to the
extent that the anchors and/or background variables do not represent (and correlate
highly with) the tests being linked, and also do not account for administration group
differences, the linking results will likely have inadequacies, such as insufficiently con-
trolled group differences that preclude interchangeable scores.

Linking State Tests to NAEP

The National Research Council published Uncommon Measures (Feuer et al., 1999)
to address a debate in the late 1990s between those who favored voluntary national
tests as a means of assessing the educational progress of students across the nation
and those who believed that statistical linkages among existing tests could be used
to achieve that purpose. The Uncommon Measures report examined the feasibility of
linking the results of commercial and state tests, such as by linking these tests to each
other and to the NAEP scales to support comparisons of students’ achievement with
national and international benchmarks and with students in other places. Feuer et al.
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demonstrated that it was not possible to link state assessments for several reasons,
including differences in the NAEP and state tests with respect to their content, format,
margins of error, intended and actual uses of the tests, and the consequences attached
to the test results.

Attempts to link state tests to the NAEP scale have continued since Feuer et al’s
(1999) report (Dorans, 2020), prompting discussions and questions about the inter-
pretational value of the results. Thissen (2007, 2016) discussed an approach based on
projection methods (Williams et al., 1998), and listed concerns about lack of population
invariance, indications that linking results were not stable over time, study cost, and
the unknown levels and differences in motivation for students taking a standardized
test versus the NAEP test, which is more of a survey that lacks direct personal conse-
quences for test takers. Other attempts involve linking state standards to NAEP scales
using equipercentile methods (Braun & Qian, 2007; McLaughlin, 2000; McLaughlin &
Bandeira de Mello, 2002). These attempts prompted concerns about whether the infer-
ences and interpretations were too strong, about potential instabilities of the results
over time (Koretz, 2007), and about comparisons that may not be defendable for the
states and state tests that differ from NAEP with respect to content frameworks, imple-
mentation, and stakes (Ho & Haertel, 2007).

In another attempt to use the NAEP scale to connect disparate state assessment
results, Reardon et al. (2021) reported linear scale-aligning linkings of school district
means on state tests to the NAEP scale, based on statistically inferring the district
means on the state tests from published passing rate distributions. Commentaries on
Reardon et al’s article by Bolt (2021), Davison (2021), Moses and Dorans (2021),
and von Davier (2021) re-emphasized long-standing cautions about the large variation
in blueprints used by different state tests and other differences with NAEP in terms
of content, administration conditions, stakes, and test-taker motivation. Moses and
Dorans (2021) provided empirical demonstrations that state-based linkings of district
means from one test to another are not invariant across states, even when correlations
in the district means of these scores are very high (.98 or higher). These discussions
suggest that cross-state invariance evaluations are needed to support cross-state com-
parisons of districts.

DISCUSSION

The reporting scales for a large-scale testing program are the focus of five chapters of the
previous editions of Educational Measurement (Angoff, 1971; Flanagan, 1951; Holland
& Dorans, 2006; Kolen, 2006; Petersen et al., 1989). The current chapter updated these
discussions. The Scaling section covered approaches to setting the scales for the test(s)
of a large-scale testing program. The Equating section covered equating approaches
for alternative versions of the same test. The Linking section discussed other linking
approaches for relating the scores and scales of different tests. In these discussions,
scaling, equating, and linking activities were described and related to a wider context
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of testing activities, including test specifications, test form assembly, test scoring,
test administration conditions (including data collection designs), and the intended
purposes and uses of the test(s). When testing activities are consistent and tests are sim-
ilar with respect to construction, administration, and purposes, the resulting scales are
more likely to reflect their intended interpretations. When testing activities are incon-
sistent or are altered in tests that are scaled and linked to each other, the resulting scal-
ing, linking, and equating procedures may not produce results that adequately support
intended score interpretations.

Recent testing trends create and increase the challenges in establishing, maintain-
ing, and relating the score scales of tests. Pursuits of alternative online administra-
tions have increased since the COVID-19 pandemic, with mixed administration
effects on reported scores (see the Linking Tests Across Conditions of Measurement sec-
tion). There are also calls to revise testing in ways that address increasingly diverse
testing populations, such as to develop and administer tests under less standardized
conditions (Sireci, 2020), in ways that reflect test takers’ sociocognitive backgrounds
(Mislevy, 2018). In situations where testing programs compete for dwindling num-
bers of test takers, some programs have attempted to link their tests to other tests
using substandard linking methodologies (Dorans & Moses, 2023). In other cases,
unlinked scores are released with the presumption, but not necessarily the commu-
nication, that scores are linked based on nonempirical and untestable assumptions
(Baldwin & Clauser, 2022; Dorans & Middleton, 2012). Assessment approaches
can make different trade-offs of standardization, reliability, and comparability versus
validity, group fidelity, and local uses (Brennan, 2006; Mislevy et al., 2025). Some of
these trade-offs prompt recommendations to limit unwarranted score interpretations
and broad comparisons of test takers that can be unfair (Dorans & Haberman, 2022;
Moses, 2022, 2025).

As discussed in this chapter, large numbers of forms administered to smaller admin-
istration groups using weak data collection designs and little or no linking efforts can
simultaneously inflate several types of error (random, systematic, violations of the
equal construct requirement, etc.). They also raise concerns about the comparability
of scores being released and used to make comparisons (Baldwin & Clauser, 2022;
Moses, 2022). Experience indicates that these concerns have especially serious con-
sequences for test score users when testing organizations are not forthcoming in com-
municating the procedures they use, the assumptions they make with their procedures,
and the extent to which comparability in their scores is (un)supported. For these and
other challenges, the recommended practices described in this chapter include checks
to monitor and ensure that reported scales continue to reflect their intended interpre-
tations. Additional recommendations are for checks on equating and linking results,
especially those produced under limited and unique study conditions that may warrant
interpretations that are restricted to the conditions of those linking studies rather than
generalized to uses in broader testing populations (W. Lee & Brennan, 2021; Moses &
Dorans, 2021; Moses, 2022).
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The entity that produces reported scores has the ultimate responsibility for
establishing and maintaining their reporting scales and for ensuring that the resulting
scores and their interpretations are clearly communicated to test users (AERA et al,,
2014). Itis crucial that reported scores have clear, useful, and defensible interpretations
and explanations based on sound scaling, equating, and (if necessary) linking, along
with other supporting information. The ultimate goal is that reported scores, especially
how they are produced and interpreted, should be integral and defensible evidence in
support of validation arguments about test scores. It should be noted as well that this
goal is unlikely to be attained without the active cooperation with and/or input from
those who design, develop, administer, and market tests. Defensible scaling, equating,
and linking is not simply the application of complex psychometrics to testing issues.
All applied psychometrics involves assumptions, and the defensibility of results rests
heavily on the credibility of these assumptions in the specific testing context under con-
sideration, with appropriate attention given to quantifying and communicating likely
error in reported scores:

Whether scores are equated, linked in some weaker sense, or rescaled, however,
the overarching consideration in my opinion is that users be given appropriate
guidance about score interpretation and use. Part of that guidance ought to be
explicit indications of the amount of error in scores and in the likely uses made of
scores, as well as admonitions about likely misinterpretations of scores. (Brennan,
2007, p. 175)
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NOTE

1. The variance of mean-score differences plus the relative error variance in

classical test theory is the absolute error variance in generalizability theory
(Brennan, 2001).



