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In this chapter, we focus on validity, modeling, and analysis issues in technology-based
assessment. For present purposes, we define technology-based assessment (TBA) as a
measurement used for decision-making primarily in education, but also in the work-
place, that employs digital computing in most, if not all, aspects of its creation, delivery,
presentation, scoring, or reporting.

As of this writing, TBAs were being used for consequential decision-making pur-
poses widely in the United States, as well as in some other countries and in some inter-
national assessments. Among the more prominent of such programs are the National
Assessment of Educational Progress (NAEP), the Programme for International
Student Assessment (PISA), the Australian National Assessment Program, the GRE,
the TOEFL, the Graduate Management Admission Test, the United States Medical
Licensing Examination (USMLE), the Law School Admission Test, and the California
Assessment of Student Performance and Progress (CAASPP). CAASPP is particularly
notable because of its test-taker volume, which may be the largest of any such measure.
On a single day, June 7,2019, that volume exceeded 670,000 students, with well over 3
million individuals taking the examinations in the spring 2019 cycle (Johnson, 2019).
Although many testing programs, especially those outside the United States, continue
to test on paper, the number of major testing programs that have become digital, cou-
pled with the large size of CAASPP, demonstrates that technology delivery is feasible
at scale. The transition has proven to be, as one of the authors of this chapter had earlier
suggested, “inevitable and inexorable” (Bennett, 2002).

What is motivating this transition? Briefly stated, the most salient reasons revolve
around three areas. First is the need to align the medium of testing with that of learning and
of the information economy’s workplace. Absent that alignment, assessment runs the risk
of appearing, and becoming, irrelevant to its constituents. The second reason is the belief
that assessment processes can be conducted more efhiciently, with savings in time and cost.
Scores, for example, can in some instances be generated and reported immediately. Third is
the measurement of constructs that are impossible to evaluate in traditional testing modes.
Examples include using technology tools for such activities as reading in hyperlinked envi-
ronments, information search and synthesis, writing, modeling, and collaborative prob-
lem-solving (Institute for Education Sciences, n.d., 2018; Mullis & Prendergast, 2017).

The transition that has occurred since the 1990s in the United States and elsewhere
can be described at a high level in terms of three stages or generations (Bennett, 1998,
2010a). The first generation is essentially an infrastructure-building effort. The cost and
time required to put that infrastructure into place are typically substantial, involving
obtaining hardware and software, hiring personnel, providing training, and creating
myriad new processes and procedures. To control cost and complication, tests in this
generation often look little different from paper assessments in their realized design
and question format. This generation’s tests primarily serve institutional purposes
like school accountability, leverage technology minimally (e.g., through incremental
advances like adaptive testing), and are generally organized as singular events (e.g., for
state accountability purposes, as annual, end-of-year administrations).
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In the second generation, goals begin to shift toward achieving some degree of
qualitative change and to leveraging the technology more effectively for efficiency
improvement (Bennett, 1998, 2010a). With respect to the former goal, a diversity
of less traditional item formats may be employed, including those sometimes called
“technology-enhanced” (e.g., involving multimedia stimuli, dragging and dropping
onscreen text or objects, highlighting segments of text). Additionally, new constructs
may be introduced (e.g., writing on computer), so that what is assessed begins to
change fundamentally. Efficiency improvements extend beyond delivery via automated
approaches to item generation (Gierl & Haladyna, 2013; Irvine & Kyllonen, 2010), test
assembly (Veldkamp & Paap, 2017), and scoring (Shermis & Burstein, 2013; see also
Shermis et al., this volume), as well as to using the Internet for such processes as item
review, standard setting, human online scoring, reporting, and other communications
with test users.

Reinvention characterizes the third generation of assessments (Bennett, 1998,
2010a). What in the two earlier generations was an evolution dictated primarily by
technology now shifts to one driven by substance. In this generation, theory-based
models and cognitive principles combine with more traditional content considerations
to provide the substantive basis for assessment design (see Huff et al,, this volume).
Second, these assessments integrate the needs of individuals more fully with those of
institutions. A special case of this development is greater integration with instruction,
including the repeated sampling of performance over time. Third and finally, the use of
complex simulations and other interactive performance tasks allows new skills to be
measured and traditional ones to be evaluated in more meaningful ways.

Of note with respect to the focus of this chapter is that the Standards for Educational
and Psychological Testing (Standards; American Educational Research Association
[AERA] et al, 2014) contains no section or set of standards specifically devoted to
technology-based assessment. The document does, however, make clear that “com-
puter . . . tests need to be held to the same requirements of technical quality as other
tests” (p. 197) and that the “interpretation of scores on technology-based tests are
evaluated by the same standards for validity, reliability/precision, and fairness as tests
administered through more traditional means” (p. 188). In this sense, an assessment’s
purpose, with its attendant claims for score interpretation and use, remains the central
consideration in determining the appropriate level of technical quality.

With the above as an introduction, the goals of this chapter are to present (a) major
issues in validity, modeling, and analysis for TBAs and (b) potential approaches to
addressing those issues. The chapter is organized as follows. The first section centers on
assessments used to support consequential purposes. This class encompasses decisions
that, as singular instances, may have highly significant impact on individuals, groups, or
institutions and that are often difficult to reverse. Examples include school admissions,
promotion and graduation, educator evaluation, school accountability, intranational
and international comparisons, and job licensure and certification. In this section, the
history and current landscape are described for technology-based tests of this type.
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Discussed are innovative tasks and item types, comparability, the analysis of response
processes, and the automated scoring of complex constructed-response tasks.

The second major section covers assessments employed for in-the-moment instruc-
tional decisions or for describing what a student knows and can do so that near-term
(but not necessarily real-time) instructional next steps can be taken. As singular
instances, these decisions usually have less dramatic impact on individuals and are more
easily reversed than decisions we have termed consequential. This section also begins
with a review of the history and current landscape that includes brief consideration
of common technology-based assessment designs and task types, response processes,
and scoring methods. This section closes with a discussion of psychometric models for
assessment embedded in instructional and learning systems.

The chapter’s last major section explores the third-generation idea of combining
both assessment purposes—that is, consequential decision-making and instructional
support—in the same assessment. We conclude the chapter by summarizing key points,
giving recommendations for research, and speculating on future directions.

ASSESSMENTS USED TO SUPPORT CONSEQUENTIAL
PURPOSES

In this section, we outline the landscape regarding TBAs used for consequential pur-
poses in education, as well as in the professions and occupations. We include tests used
to make consequential decisions about individual test takers, as well as state, federal,
and international measures intended to provide results for various monitoring and
accountability purposes. In doing so, we trace major milestones in the development
and operational deployment of TBAs.

Even prior to the widespread availability of desktop computers, the potential benefits
of testing by computer were relatively obvious. Such delivery offered the possibility of
immediate scoring and reductions in cost associated with the elimination of printing
and shipping of test materials. Throughout the 1970s and into the 1980s, advances in
psychometric research and theory by Lord (1970) and Weiss (1976) revealed how more
powerful psychometric models, coupled with alternative test delivery schemes enabled
by computer, could also improve quality. Computer delivery that moved beyond sim-
ple, linear, preassembled test forms to the use of sequential and computer-adaptive tests
(CAT) offered the potential of increased measurement precision throughout the profi-
ciency range, as well as increased efficiency (i.e., better precision for a fixed amount of
testing time; Lord, 1980; Weiss, 1982).

The operationalization of TBA required an infrastructure to deliver tests securely
on a large scale. As described by W. D. Way and Robin (2016), this infrastructure
first emerged, surprisingly, from the University of Illinois’s efforts to expand
computer-assisted instruction (CAI) as implemented in its Programmed Logic
for Automatic Teacher Operations system. That system was further developed and
commercialized by Control Data Corporation. In partnership with the National
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Association of Securities Dealers, the Control Data Corporation used this system, circa
1978, to offer what was most likely the first proctored TBA for consequential decisions,
in this instance for licensure and certification.

One of the earliest entities interested in the potential convenience and efficiency
of TBA—in particular, through adaptive testing—was the U.S. military (Sands et al.,
1997). Military institutions sponsored considerable research and influential confer-
ences on this topic that advanced the measurement field substantially (Weiss, 1978,
1980, 1985). In 1979, a feasibility study was launched to develop an adaptive version
of the military’s selection and placement test battery, the Armed Services Vocational
Aptitude Battery. This test was developed, evaluated, launched for operational testing
in 1992, and adopted fully in 1996.

One of the earliest efforts to deploy TBAs for consequential decisions in education—
in this case, college placement decisions—began in the mid-1980s, when the College
Board introduced its computerized-adaptive College Placement Tests (CPTs). The
CPTs, delivered on microcomputers, were intended for use at 2- and 4-year institutions
to help identify incoming students requiring remedial education in English, reading,
and mathematics. The development and validation of these tests is described by Ward
(1988) and Ward et al. (1986). The College Board’s current college placement test—
Accuplacer—is a direct descendant of the CPTs.

A subsequent major milestone was the development and introduction by ETS
(Educational Testing Service) in 1993 of a CAT version of the GRE General Test, for
use in graduate admissions decisions (Mills, 1999). Designed to award scores that were
comparable to its paper-and-pencil predecessor, this work produced a key innovation:
an item-selection algorithm capable of balancing psychometric considerations with
constraints related to item content, format, and exposure, including dealing with pas-
sage-based items (Stocking & Swanson, 1993). This innovation helped to ensure that
GRE CAT scores not only were psychometrically efficient but also met the content
validity and fairness criteria important to consequential use. In this same decade,
ETS followed with computer versions for other postsecondary admissions programs,
including the adaptive Graduate Management Admission Test and the TOEFL CBT,
with both adaptive and linear sections.

Whereas the introduction of these TBAs was a notable advance, it also surfaced some
unanticipated challenges (Wainer & Eignor, 2000). Paper-and-pencil tests could be
administered to large numbers of students on a few days per year, requiring only a small
number of different forms. In contrast, because of infrastructure limits, TBAs had to be
delivered in small centers to fewer students on a more continuous basis. Since demand
tended to peak at particular times, problems quickly arose with test-taker access to
centers. As important, it soon became apparent that initial plans for item pool sizes
and item exposure controls were inadequate to maintain security. Dealing effectively
with these problems substantially increased the costs of CAT TBA relative to paper-
and-pencil administration. Additional problems emerged with respect to preventing
students from learning how to “game” the CAT (W. D. Way & Robin, 2016). The vast
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majority of these problems have been ameliorated over time, with increased access, use
of alternative models such as multistage adaptive testing (MST), and enhanced schemes
for exposure control. As of this writing, the two major undergraduate college admis-
sions programs (ACT, formerly American College Testing; and SAT, formerly Scholas-
tic Aptitude Test) have begun to offer TBA versions, with the SAT having become all
digital as of 2024 (College Board, 2024).

The first forays into TBA consisted largely of adaptively delivering multiple-choice
items, the staple of paper-and-pencil testing programs. Relatively little was done to lever-
age the affordances of TBAs for presenting more complex tasks focused on measuring
a broader set of competencies. While this eventuality may have been partly due to the
limitations of the available computer technology, other contributing factors included
cost, limits on available testing time, score reliability, comparability with paper versions,
and fairness concerning the use of performance testing generally.

It is perhaps not surprising, then, that early attempts to introduce performance tasks
occurred with licensure and certification testing, where longer testing times, costs that
could be passed on to the test taker, and reduced need to maintain comparability with
prior versions made such innovations more tractable. For example, in the 1990s the
National Council of Architectural Registration Boards introduced an automatically
scored, performance-based design section into its licensure examination (Bejar &
Braun, 1999). Similarly, the National Board of Medical Examiners incorporated com-
puter-based patient management cases into the USMLE (Margolis & Clauser, 2006).
Finally, the American Institutes of Certified Public Accountants began to administer
TBAs containing performance tasks (Breithaupt et al., 2006). It is noteworthy that
all these examinations retained very substantial, complementary multiple-choice sec-
tions to achieve the reliability and generalizability levels needed for licensure decisions.
(See Margolis et al., this volume, for a comprehensive review of testing in licensure and
certification.)

The first waves of consequential TBA testing—in the military, in university place-
ment, in graduate admissions, and in licensure and certification—occurred with TBAs
delivered on mainframes, then on stand-alone desktop computers in college placement
offices, and next via networked machines at vendor testing centers (e.g.,, Prometric
and Pearson VUE) and in university labs. Hardware and software could be reasonably
standardized, and the use of data networks to transmit test content and response data
allowed security to be maintained. For K-12 education, in contrast, the use of TBA for
state-mandated accountability tests, high school end-of-course measures, and gradua-
tion examinations awaited development of a more pervasive infrastructure that could
accommodate machines resident in the schools. (See Ho & Polikoff, this volume, for a
comprehensive discussion of assessment for accountability in K-12.)

With the evolution of the Internet and the proliferation of laptops and tablets, TBA
became increasingly practical for state-mandated accountability tests. This history
dates to about 2000, when Oregon, Virginia, and a few other states each began pilot
TBA programs (Bennett, 2002). Those pilot efforts gradually expanded so that by
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2007, Oregon, for example, had received approval for a computer-adaptive version
of its federally mandated K-8 summative assessment (W. D. Way & Robin, 2016).
The passage of the American Recovery and Reinvestment Act of 2009, and in partic-
ular the Race to the Top Assessment Program (U.S. Department of Education, n.d.),
gave a dramatic boost to development by funding several testing consortia, including
the Smarter Balanced Assessment Consortium and the Partnership for the Assess-
ment of Readiness for College and Careers (PARCC). Smarter Balanced and PARCC
developed TBAs aligned to the Common Core State Standards in English language
arts and mathematics. The tests made use of adaptivity (Smarter Balanced), items
that employed technology affordances (technology-enhanced items [TEIs]), and
more innovative performance tasks to measure writing, research, and problem-solving
skills. The tests were first administered operationally in 2015 in a substantial number
of states. By the 2015-2016 school year, between the adoption of the consortia tests
and states that had implemented their own TBAs, EdTech Strategies (2015) estimated
that 85% of the accountability tests in Grades 3 to 8 would be delivered online. More-
over, although many states were using both online and paper-based tests, only three
states were not using some form of TBA. Primarily a result of political pressures, state
membership in the consortia has waned substantially, with many states since choosing
to implement their own TBA programs. Despite the reduction in consortia member-
ship, most states continue to use TBA in whole or in part for their state-mandated
accountability assessments (Olson, 2019).

Progressing alongside the development of TBA for state accountability was incor-
poration into the U.S. national assessment. In 1999, NAEP began a series of studies to
facilitate its transition to TBA. NAEP is a congressionally mandated assessment and
differs from typical testing programs in that group-level results, rather than scores for
individual students, are reported for the nation, states, selected demographic groups,
and some large-city school districts. Results are based on samples of schools and
students, with a highly efficient matrix-sampling design employed to cover a broad
content domain while minimizing testing time for any individual. Although the results
do not carry direct consequences for schools or students, NAEP results receive much
press coverage and are highly influential in shaping national, state, and big-city educa-
tion policy.

The NAEP TBA studies investigated the delivery of traditional NAEP paper-based
assessments in mathematics and in writing via computer (Bennett et al., 2008; Horkay et
al., 2006; Sandene et al., 2005 ). Computer delivery occurred on desktop computers via
the Internet or on disconnected laptops. These studies, which involved administering
the assessments in both modes to randomly equivalent samples, examined issues related
to comparability of results between computer and paper administration and between
laptop and desktop administration, as well as issues related to differential subgroup per-
formance and the role of computer familiarity. Results were largely favorable, suggest-
ing the prospect of transitioning NAEP to TBA while maintaining trend comparisons
to previous paper results. A third study explored the use of innovative interactive tasks
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to examine problem-solving in technology-rich environments (Bennett et al.,, 2007,
2010). This study also yielded promising results.

Based on this early work, subsequent research, and developments in technology
and testing, as of this writing, the NAEP program has almost completely replaced its
paper-based assessments with TBAs. In 2011, NAEP conducted its first operational
writing TBA in Grades 8 and 12 (National Center for Education Statistics, 2012). The
assessment, which was delivered on NAEP laptops, required students to compose essays
in response to prompts, just as in earlier paper administrations. However, because the
assessment was based on a new framework, no attempt was made to maintain trends
to prior years. In 2014, NAEP conducted the Technology and Engineering Literacy
assessment, designed from inception as a TBA (National Center for Educational
Statistics, n.d.). This assessment included TEIs as well as scenario-based interactive
tasks (see the section on “Innovative Item, Task, and Assessment Types”).

NAEP’s mathematics and reading assessments at Grades 4 and 8 were transitioned
in 2017 and consisted largely of traditional multiple-choice and constructed-response
items, along with a limited number of TEIs (Jewsbury et al., 2020). Plans for future
assessments in all NAEP subjects presume digital delivery and the increased use of
innovative item types. While the current TBAs still employ the standard NAEP matrix-
sample designs, adaptive administration has also been explored (Oranje et al., 2014).

In similar fashion to NAEP, such international group-score assessments as PISA
and the Trends in International Mathematics and Science Study (TIMSS), are transi-
tioning or have transitioned to TBA. (See Braun & Kirsch, this volume, for a compre-
hensive discussion of assessments in the international context.) Unlike NAEP, these
assessments continue to support both TBA and paper administration because not all
participating education systems have the required infrastructure. Consequently, these
programs work to maintain comparability of results, both to prior assessment cycles
and within a cycle.

PISA, which measures the reading, mathematics, and science skills of 15-year-olds
across many nations and jurisdictions, transitioned to TBA for all three content
areas (plus financial literacy) in 2015 (Organisation for Economic Co-operation and
Development [OECD], 2017). The assessments, which were delivered on school desk-
tops and laptops, consisted largely of TBA analogues to existing paper item types. In
2018, the reading TBA was converted to an MST, whereas the mathematics and science
assessments remained linear tests.

TIMSS, which assesses the mathematics and science skills of eighth graders, was
also in the process of transitioning to a digitally based version (Mullis, 2019). As of
2019, TIMSS was administered via computers or tablets, as well as in its paper for-
mat, with about half of participating education systems utilizing each mode. In addition
to traditional items, the ¢eTTMSS digital version included innovative tasks designed to
simulate real-world and laboratory situations where students can integrate and apply
processes and content knowledge to solve mathematics problems and conduct scientific
experiments.
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A third international group-score assessment, the Progress in International Reading
Literacy Study (PIRLS), has also incorporated a TBA, this one concentrating on the
reading skills of fourth graders. In 2016, 16 of the 58 education systems that participated
in the paper-based assessment (including the United States), also took ePIRLS,
a supplementary measure of online reading skills (Institute for Education Sciences, n.d.;
Mullis & Prendergast, 2017). The assessment, which was delivered on either school
desktop or laptop computers, consisted of two tasks that required test takers to answer
multiple-choice and constructed-response items pertaining to information presented
on simulated web pages.

As we look to the future, it seems reasonable to assume that TBAs will move toward
a more decentralized delivery model admitting a wider range of assessment devices. As
seen with the consortia-developed K-12 tests, beyond requiring a minimum config-
uration, it is impractical to impose strict control over the delivery device. Within and
across U.S. states, schools own a wide variety of equipment. Furthermore, it is not fea-
sible for test sponsors to provide a common device at that scale. Similar considerations
exist for international programs like PISA and TIMSS.

Moreover, disruptive events like the COVID-19 pandemic make it evident that
consequential testing may need to be carried out remotely at times. In pandemic con-
ditions, gathering in groups is unsafe. Thus, consequential testing may increasingly
need to be administered in homes on test taker—owned equipment, where feasible
and where the security conditions for such testing are acceptable to both sponsors
and users. For the purposes of K-12 assessment, approaches such as remote proc-
toring involving live monitoring or video capture, as well as recording and analyzing
process data (e.g., timing and keystroke sequences), remain controversial as of this
writing.

In addition to various exogenous factors, validity and fairness concerns may be mov-
ing consequential testing toward a more decentralized delivery model. As more com-
plex constructs are included and tasks are incorporated that require extensive use of and
familiarity with the device and interface, issues of comparability and fairness might be
better served by allowing test takers to work on their own equipment. In that way, score
differences might be more likely to reflect differences in the target constructs rather
than also reflecting familiarity with an arbitrarily imposed, standardized device config-
uration.

To make consequential testing possible in decentralized testing environments,
current strategies for ensuring standardization, security, and fairness will need to be
adapted. As for K-12 accountability testing, some control over testing conditions may
still be imposed through the specification of minimum device characteristics like screen
size and resolution, types of keyboards, and transmission bandwidths. Providing free
online practice materials and tutorials to familiarize test takers with task types, tools,
and interfaces will also continue to be important. But most likely, these strategies will
need to be coupled with a careful approach to designing delivery systems, interfaces,
tools, and tasks to ensure performance is device agnostic.
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Innovative Item, Task, and Assessment Types

In the preceding section, we outlined the development and landscape for consequential
TBA. Next, we consider the building blocks of innovation in such assessments—items,
tasks, and assessment types.

Among the potential benefits technology brings to assessment design are increased
construct fidelity (Russell, 2016), evoking and supporting more complex cognitive
processes, and allowing greater observability of the response process. Construct fidel-
ity represents the extent to which the response process evoked by the item accurately
reflects the targeted measurement construct. Russell and Moncaleano (2019) identi-
fied two components of construct fidelity: the extent to which the problem context
is consonant with domain practice and the degree to which the response interaction
aligns with the interactions that would occur in a real-world situation. For most con-
structs, paper-and-pencil items are far from real-world applications in both respects,
implying that technology enhancement might allow for increases in construct fidelity.

Complexity of cognitive process relates to the length and depth of reasoning that is
required to correctly respond to the task. Criticism haslong been made about traditional
multiple-choice item formats because they can measure only certain types of cognition
and because of the impact that focus may have on teaching and learning (Frederiksen,
1984). Technology-enabled assessments have the potential to measure constructs that
involve more complex cognitive processes, such as science practices, collaboration
skills, and investigative research (Bennett et al., 2010; Csapo et al., 2012). Through use
of simulated problem contexts, computer-based tasks can support an extended prob-
lem-solving process more appropriate for these domains from which student cognition
might be modeled at a finer grain size (Mislevy & DiCerbo, 2012).

Whereas TBA may be useful in evoking complex cognition, traditional paper-based
assessments can also call on higher order response processes through the use of text and
diagrams (Bennett, 2012). An advantage of computer-based assessments, however, is the
ease with which evidence about response process can be captured. The more interactive an
item response, the more process data can be recorded. Thus, technology makes complex
response processes more observable. “Observable” does not necessarily mean scorable;
as discussed in the section “Response Processes,” challenges in interpreting and scoring
process data must also be overcome before this evidence can be used meaningfully.

In the following paragraphs, we examine technological innovations in four broad cat-
egories: TEIs, extended-interaction items, scenario-based tasks, and simulation-based
performance tasks. The first two categories involve innovations at the item level, while
the second two encompass innovations for lengthier tasks that may include interdepen-
dent components.

TEls

The most common items used in computer-based assessments are traditional item types
with constrained outcome spaces, some of which could have an exact paper-and-pencil
replica. These items might take multiple-choice, matching, sorting, or short-answer
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formats. They may appear as discrete samplings, independent of one another, or as part
of an item set. For assessments offered on both paper and computer, items with exact or
highly similar counterparts are desirable to increase the comparability of score meaning
between delivery modes. Additionally, these items produce data that fit commonly
used scoring and psychometric models, increasing the likelihood that results can be put
on the same scale as previous paper administrations.

While the format of such items is basically traditional, technical innovations can be
introduced in stimulus presentation or response process, thereby making the item a
“technology-enhanced” one. For example, the use of images, audio clips, animation,
and video enables a richer presentation of information, which may increase construct
fidelity or evoke more complex cognitive processes, even when the response type is
highly constrained (Bennett et al., 1999). Figure 9.1 gives an early example that shows
how multimedia might be employed in an item stimulus as part of a test of U.S. history
knowledge. The item allows the student to view and analyze a primary source in a way
closer to that of a historian.

For the response process, the affordances of mouse and touchscreen technology are
frequently used to enable drag-and-drop or on-screen drawing as response mechanisms
(Zenisky & Sireci, 2002). Drag and drop can be used for questions that ask test tak-
ers to move objects into the correct order or for items in which test takers reposition

Multimedia Demo [~]=~
Item 3 of 14

Which of the following best states the main idea of this
selection?

[ The fight for feminist equality in the United States from the
1880's to the 1970's.

[] The abuses that women faced while securing the right to
vote.

[ The biographies of the most i ti in the f
movement in the 1800's and the 1900's.

[J The founding of civil rights organizations in the United
States duﬂng the past two centuries.

FIGURE 9.1
A Technology Enhanced U.S. History Item Using Multimedia

Note. Copyright ETS® 1999. Reprinted with permission.
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objects from one set to match objects in another set. Additionally, drag and drop can
access a more continuous response space, such as putting objects onto a map or placing
a marker on a spectrum (ATP, 2017; Wan & Henley, 2012).

An example is the PISA 2015 interactive science task, Fish Farm. In this item set,
students are given a brief context statement about the need to develop a particular
type of alternative seafood source and the challenges encountered in operating such
a source. Following this context are three independent items (i.e., subsequent items
do not build directly on preceding ones or lead to a culminating task satisfying a goal
given in the context statement). One of the set’s items asks students to help design
a sustainable farm ecosystem by dragging organisms into the appropriate tanks
(Figure 9.2). The cognitive complexity of this item is fairly high because it “requires
students to understand a system and the role of several organisms within that system”
(OECD, 2018). Whereas this item could be rendered on paper using a diagram and
labels for the organisms, the ability to move the organisms into the fish farm allows test
takers to more naturally construct, evaluate, and revise their model.

Russell and Moncaleano (2019) judged that most usage of drag and drop in TBA
failed to increase construct fidelity. Interactivity, per se, does not necessarily improve
the item. In the fish tank task, the graphical representation allows students to reason

pisazors  HHEEER @

Sustainable Fish Farming
Question 1/3

Refer 1o the informabion below. Use drag and drop 10 answer e QUaSon,

The diagram shows a design for an experimental fish farm
With three large tanks. Fillered salt water i pumped from b

the ocean before flowing from tank to tank untl it is

returned 10 the ocean. The primary goal of the fish farm is ~ Flte'—j, Py l
10 GroW COMMON S0k 10 be a

way.

food is ragworms. |

The following organisms will also be used in the farm: '.
Microaigne; Microscopic organisms that only need light I%I‘_m'
and nutrients 1o grow. | 1

= Bagworms: inverebrates that grow very rapidly on a
et of microalgae.

= Shelfish: Org that feed on igae and other
small organisms in the water.

« Margh Grass: Grasses that absorb nutrients and wastes
from the waler,

Wiater & Cleaned I T ank. Fish are harvested from tha tank.

Fifiers Pt iow oty metroalges 1 move Brough T fam a1 P fow Of water

The researchers noed 10 decide in which tank each organism should be placed. Drag and drop each of the Delow fo the app
tank above 1o ensure that the Common Sole is fed and that sall water is netumed 1o the ocean unchanged. The microaigae are already in the

comect tank,
< o W P
Covrvmon Sole Ragwonms Sheltisn Marsh Grass
FIGURE 9.2

PISA 2015 Interactive Science Item in Which Students Use Drag-and-Drop Interactions
to Complete a Model of a Fish Farm

Note. PISA = Programme for International Student Assessment. From Try PISA 20135 Test Questions by OECD, 2018.
(https://www.oecd.org/pisa/test/pisa2015/#d.en.537240). CC by 3.0
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more directly about the placement and interactions among the organisms. Thus, the
drag-and-drop functionality is used effectively to increase the similarity of the evoked
cognitive process to ones that a scientist might employ, arguably enhancing construct

fidelity.

Extended-Interaction Items

More innovative uses of technology have generally resulted in greater interactivity,
providing support for and observation of a more extended response process but still
within the context of a discrete, stand-alone item or item set. These items frequently
involve constructing a complex response to solve a problem. Test takers might be asked
to graphically represent a process, analyze data, or test a hypothesis using a runnable
model (a function that accepts input parameters and outputs a result intended to mimic
reality, as in the “running in hot weather” example that follows). This type of item is
distinguished both by the multiple actions a test taker is expected to take and the depth
of cognitive processing associated with those actions.

An example of this class is shown in Figure 9.3. In this PISA 2015 item set, test takers
are asked to use a runnable model to answer questions about factors that increase the
risk of dehydration or heat stroke for a jogger on a hot day. Test takers are expected to
interact with the model, running several trials with different settings before responding

pisa2015s  MNER

Running In Hot Weather
Quostion 215

|+ How to Run the Simulation

Run the simuladon 10 collect data based on the
Information below. Click on a choice and then select data
in the (able 10 ANSWOr W QUESDON.

A runner runs for an hour on & hot and humid day (air
temperature 35°C, air humidity of 60%) without drinking
any water. This runnor is at risk of both defhydration and
heat stroke,

‘Whiat would be the efiect of drinking water during the run
on the runner's fisk of defydration and heat stroke?

10 Drinking water would reduce the risk of heat stroke
but not detrydration.
Drinking water would reduce the risk of
[but not heat stroke.
Drinking water would reduce the risk of both heat
stroke and dehydration.
Drinking water would not reduce the risk of edther
hoat stroke or dehydration.

<4 Select two rows of data in the table 1 Support your
answer.

FIGURE 9.3
PISA 2015 Extended-Interaction Item From the Running in Hot Weather Set

Note. PISA = Programme for International Student Assessment. From Try PISA 2015 Test Questions by OECD, 2018.
(https:/ /www.oecd.org/pisa/test/pisa2015/#d.en.537240). CC by 3.0
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to the multiple-choice item prompt. The interactions allow students to engage with a
real-world problem, while providing evidence of solution process through event logs
(discussed in the section “Types of Response Process Data”). Thus, this format permits
measurement of a construct that is not possible to assess with a paper test.

Another example of extended interactivity can be found in the PISA 2018 literacy
items, which provide a simulated web browser for test takers to employ in researching a
topic. While the primary construct is reading comprehension, the item design requires
students to follow hyperlinks and use tabs for navigation to relevant content. In this
case, the interactivity is intended to increase construct fidelity by replicating the context
in which one might undertake information search.

Scenario-Based Tasks

Whereas TEIs and extended-interaction items can provide richer stimuli and the
opportunity to observe response processes, their design as independent items
(including in sets) limits the depth and complexity of problem-solving. To tap deeper
problem-solving processes, assessment designers may turn to scenario-based tasks
(SBTs), as defined by Deane et al. (2018), O’Reilly et al. (2019), and others. These
tasks are characterized by an overarching narrative, or scenario, which poses a goal for
the test taker to achieve. The scenario presentation is followed by a sequence of related
technology-enhanced and more traditional items that lead to a culminating perfor-
mance in which the test taker attempts to satisfy the goal (e.g., a proposal for how a
school might use a generous gift, backed by reasons and evidence from given sources).
SBTs break the process leading to this goal into steps, each of which is at the same time
part of the larger whole but implemented as one or more distinct items.

Some of the tasks included in the NAEP 2014 Technology and Engineering Liter-
acy assessment offer examples. As an instance, the bike lane task consists of five items
(see Figure 9.4). Students are first introduced to the motivating problem of safety when
riding in a lane adjacent to automobile traffic. Initial items ask students to interact with
a runnable road-sharing model that rates bike lane safety based on the manipulable
parameters of automobile speed limit and lane width. In later items, students use the
information gathered to create safe road designs for cyclists and ultimately to reach the
goal of a bike route that optimizes safety, cost, and route length.

The SBT format, when used to measure problem-solving processes, is a compromise
between the discrete items of traditional assessment and the open-ended problem-
solving characteristic of an extended project. When assessing complex problem-solving,
the ability to gather evidence on the process competes with the level of constraint
imposed on the problem space. If we allow the student full freedom within the prob-
lem space, it is more difficult to detect, understand, and score the problem-solving
process used. In unconstrained tasks, the most reliable evidence of competency is typi-
cally the outcome. Unfortunately, the outcome may offer little information with which
to distinguish and subsequently guide learners within the middle and lower regions
of the proficiency distribution. When the task outcome is complex enough to show
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FIGURE 9.4
Selected Screens From the NAEP TEL 2014 Scenario-Based Task Bike Lane

Note. NAEP = National Assessment of Educational Progress; TEL = Technology and Engineering Literacy Assessment. From
2014 Technology and Engineering Literary (TEL): Sample Scenario-Based Tasks, by National Center for Education Statistics,
n.d. https://www.nationsreportcard.gov/tel_2014/#tasks/bikelanes

finer gradations of competence, for example, as in an essay or lab report, making such
distinctions comes at the cost of greater scoring time and effort.

If we instead discretize the problem-solving steps to allow observation of specific
portions of the process, we are inevitably scaffolding problem-solving along a more
constrained, and frequently more linear, path. That constraint could improve mea-
surement or, conceivably, undermine it by giving the test taker aids not typically avail-
able in the criterion situation. Research suggests that the former situation may be the
case. That is, SBTs may in some respects produce better measurement than less-struc-
tured performance tasks, particularly in more effectively aligning the processes mea-
sured with the intended construct (Guo et al. 2019, 2020; Zhang, Deane, et al.,, 2019).
This result could be due to the initial questions in an SBT helping to activate relevant
knowledge and better orient the test taker to the task at hand. In the criterion situation,
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similar orientation can come, for example, from consulting with others and viewing
examples of quality solutions to comparable problems.

Simulation-Enabled Performance Tasks

While SBTs scaffold the problem-solving process to enable observable evidence about
the complex cognition underlying a performance, these tasks are somewhat unnatu-
ral. According to Russell’s definition of construct fidelity (Russell & Moncaleano,
2019), SBTs may provide a realistic context, but because of their structure, the actions
students take might diverge from those that a domain practitioner would employ in
their problem-solving.

Performance assessments come closer to actual domain practice, allowing individ-
uals to demonstrate a skill by carrying out a less structured task. A driving test offers
a good example. However, although it has high construct fidelity, it requires special-
ized equipment (i.e., a car), a human examiner, and an individualized administration. A
compromise position is offered by TBAs that employ simulation-enabled performance
tasks. Such tasks attempt to represent key stimulus features of a given performance situ-
ation, calling on competencies that would be employed in that situation, but reduce the
resource requirements to more manageable levels.

As an example, the USMLE seeks to assess a potential physician’s ability to inde-
pendently diagnose and treat a variety of patient conditions. As noted, in 1999, the
National Board of Medical Examiners incorporated patient case management simula-
tions into the computer-based USMLE (Dillon & Clauser, 2009). In each case man-
agement task, the patient’s condition changes over simulated time. The test taker can
engage in various actions that a doctor might take, including requesting patient history,
getting the results of a physical exam, ordering laboratory tests, making a diagnosis, and
prescribing treatment. While the “physical exam” is implemented using a set of check-
boxes, the lab tests and treatment plan are specified using text input. This format pre-
vents any form of prompting because the test taker will not see a list of available tests or
treatment options (unless there are multiple options that match the test taker’s input).
While these simulations are not similar in fidelity to interacting with a real patient (they
do not include any visual representation of the patient or of test results like X-rays), they
replicate the main aspects of the problem-solving process used in practice. As men-
tioned, simulation-enabled performance tasks have also been employed in the architect
and accountant examinations, among others (Clauser et al., 2016). (See Margolis et al.,
this volume, for more on assessment in licensure and certification.)

Less comprehensive simulation-enabled tasks can be found in school testing pro-
grams. For example, PISA 2015 assessed collaboration skills using a simulated group
assignment in which the test taker negotiates with two automated agents to achieve a
specified goal (OECD, 2018). In this instance, all choices made by the test taker were
selected responses; however, the choices made changed the task situation.

Of special note in simulation-based performance tasks is that technology plays a key
role in observing and making inferences about complex cognitive processes. That is,
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the technology environment provides a reasonably realistic problem setting that allows
the test taker to work through the problem in a high-fidelity manner. The test taker’s
step-by-step decisions can be recorded in computer log files, making inferences about
their problem-solving process feasible and, in principle, scorable.

Appropriate Use of Innovative Items and Tasks

While innovative item types have important advantages, they are generally expensive to
build, more complicated to administer, and less well understood in terms of measure-
ment properties. For consequential testing, such item types should be used only when
substantively appropriate, suited to the target population, and logistically feasible.

With respect to substantive appropriateness, as noted, such innovation can improve
construct fidelity by enhancing problem presentation or response interaction, thereby
evoking more relevant problem-solving processes. Instances include constructs that
involve the use of technology itself, such as technical literacy or data analysis, as well
as constructs for which the technology can provide a more faithful context for the
application of skills, as in scientific inquiry, medical licensure, or remote collaboration
(Bennett et al,, 2010; Clauser et al., 2016; Csapo et al., 2012).

In addition to fit with the intended construct, appropriate use implies a good fit with
the target population. Fit in this context means that all test takers can interact with
items in ways that provide evidence of competency. Essential to this premise is an infra-
structure capable of validly assessing all members of the test-taker population, includ-
ing those with disabilities or who are English learners (see also Rodriguez & Thurlow,
this volume).

Feasibility encompasses assessment design, development, administration, scoring,
and reporting. Innovative items can introduce complications in any or all these phases.
Design and development time and costs are frequently underestimated by staff members
more familiar with traditional assessments. However, the costs tend to be front-loaded
because the deployment of innovative item types requires developing or adopting new
tools and processes, training assessment developers, designing for accessibility, con-
ducting cognitive labs to evaluate whether the intended processes are evoked, etc. Once
this foundation is established, the operational development of innovative items can be
streamlined by using appropriate authoring tools and improved through the telemetry
(i.e., process data) produced by the items. Finally, scoring and reporting requires appro-
priate psychometric models to facilitate defensible inferences.

Validity, Modeling, and Analysis Issues

Innovative items and tasks present new challenges for validity, modeling, and analysis,
especially for tests used to make consequential decisions. Such innovations demand
evidence that new presentation formats and response interactions produce meaning-
ful inferences about the intended constructs. Studies may cover the range of evidence
types recommended for validation generally (AERA et al., 2014), but with added atten-
tion to whether the response processes evoked are consistent with the target construct
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and to what degree construct-irrelevant variance might have been introduced (e.g,
Gallagher et al.,, 2002; Mislevy et al., 1999). For SBTs and simulation-enabled perfor-
mance tasks, potential unfairness due to Task x Person interaction may also be present
(Linn & Burton, 1994; Shavelson et al., 1993).

Task x Person interaction occurs when one test taker is more familiar with,
knowledgeable about, or interested in a particular context or topic than another test
taker. For shorter tasks, this effect can be easily balanced by having a variety of differ-
ent contexts or topics across items. SBTs and simulation-enabled performance tasks,
however, tend to take significant time, making it impractical to include more than a few
tasks. For example, the NAEP Technology and Engineering Literacy assessment tasks
take 10-30 minutes each, leaving little room for additional items with contextual or
topical variations (a problem NAEP addresses through its matrix design and the report-
ing of results at the group level, rather than through individual scores).

For TEIs and many extended-interaction items, well-understood psychometric mod-
els such as item response theory (IRT) can be used because student response data can
be reasonably assumed to meet the statistical assumptions of such models. Any media
or interactivity, however, must be carefully evaluated to ensure that their addition does
not introduce extraneous cognitive load or other forms of construct-irrelevant variance.
Particularly for extended-interaction items, the ease with which the computer interface
islearned and employed can significantly affect performance. To ensure fairness, assess-
ment developers must consider the range of experience levels likely in the target popula-
tion. Similarly, items that use video or audio, or that have fine-motor-skill requirements,
must be created to be accessible from the outset. Universal design methodologies are
the de facto standard for achieving this goal, including such features as braille, stacked
multilingual translations, videos in American Sign Language, and glossaries and test
directions in other languages (e.g., Smarter Balanced, 2024).

SBTs and simulation-enabled performance tasks raise significant issues for modeling
and statistical inference. While SBTs often contain a set of scored items that resembles
a traditional assessment, performance on these items may not necessarily be statisti-
cally independent conditional on proficiency. The overarching narrative and topic that
define the SBT contribute one source of local dependence that may affect estimates of
test precision under standard analysis approaches. When multiple SBTs are used within
a larger assessment, a testlet model (Wainer et al., 2000) can be employed to account
for the added dependencies among item responses within an SBT.

Another source of dependence might come from how items are related over the sce-
nario. Test takers who draw the wrong conclusions in early items may carry those incor-
rect ideas forward. Such is particularly the case when the SBT is structured so that later
items build on previous results, as in the bike lane task. The effect of previous errors
can be mitigated through leveling, in which the test taker is given a correct starting
value for the new item. Leveling is controversial, however, because it does not allow
test takers to follow their own path, nor does it necessarily eliminate the dependency
that could be caused by the test taker’s memory of previous reasoning. Models that can
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accommodate item dependency, such as Bayesian networks, might be suitable in this
context (Almond et al., 2015).

Simulation-enabled performance tasks often have a significant number of correct
responses, especially when the response process itself is key to the target construct.
In such cases, the log files contain fine-grained details such as mouse clicks, keystrokes,
and latencies, which on their own are likely to have very limited meaning. Lending
meaning requires thoughtful planning and development, starting with task design
(Clauser et al., 2016). Such an approach involves creating a task so that it elicits import-
ant features of performance, which can then be aggregated in some fashion for scoring.
This approach was used in the USMLE and in the design section of the Architect Regis-
tration Examination (Bejar, 1991; Braun et al., 2006; Clauser et al., 2016). New analytic
techniques, such as deep learning (LeCun et al., 2015), or novel applications of cogni-
tive-process modeling (LaMar, 2018) may also help in meeting the scoring challenge.
The use of response-process data will be discussed further in the section “Response
Processes” and automated scoring will be discussed in the section “Automatically
Scoring Complex Constructed-Response Tasks.”

Comparability of Results and Score Meaning

As noted earlier, many current TBAs can be characterized as first or early second
generation—that is, they differ modestly from their paper-based predecessor or current
counterparts with respect to item types and the competencies targeted for measure-
ment. However, some of these TBAs also make use of innovative items. Thus, they are
beginning to leverage the affordances associated with digital administration. In this
section, we deal with the implications of such leveraging for the comparability (i.e.,
continuity of meaning) of results.

In one use case—national assessment—the comparability of results from new TBAs
to prior paper-and-pencil (PBA) results is generally desired. Comparability to PBA ver-
sions is sought because one of the defining characteristics of NAEP is the ability to
compare the performance of students in the early 21st century—overall and for var-
ious subgroups—to cohorts from prior decades. In another common use case, K-12
accountability as implemented through Smarter Balanced and PARCC, the TBAs
replace prior, distantly related, paper tests with no expectation of comparability. How-
ever, each of these TBAs may coexist with its own PBA counterpart, the choice of
examination mode being left primarily to states, districts, and schools.

In both use cases, test takers and test users alike may desire, or expect, that results
obtained under either examination mode should be comparable to the other. For
group-score assessments like NAEP, recent results obtained with TBA—for the United
States as a whole, for demographic subgroups, and for states and districts—need to pro-
vide meaningful comparisons to the results from earlier years in which the administra-
tion mode was paper and pencil. Changes in scores need to be interpretable because of
changes in the target competencies (i.e., to construct-relevant factors), not because of
an artifact of the switch from paper to digital delivery. Similarly, for K-12 accountability
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tests, differences in results between districts, schools, classrooms, or individual students
should reflect differences in the constructs of interest, not factors related to examination
mode.

Moreover, in some use cases—for example, TBAs for K-12 accountability—the
TBAs themselves allow for considerable variation in administrative conditions. Both
the Smarter Balanced and the PARCC tests, for example, are delivered on a range of
laptops and tablets, and student responses can be input through keyboards native to the
device, an external keyboard, or, in some cases, touchscreens. Despite this variability,
test users and takers again expect the results—individual and aggregate—to be compa-
rable across these variations.

The definition of what it means for scores from different versions of a test, or from
different tests with similar targeted competencies, to be comparable has received much
attention in the measurement literature, initially within the context of more general
discussions of score linking and equating (Holland, 2007; Holland & Dorans; 2006;
Linn, 1993; Mislevy, 1992; see also Moses, this volume). In this literature, compara-
bility is viewed as a matter of degree, with the strongest level being achieved when
scores from different tests can be considered interchangeable. Less-stringent degrees are
achieved through other forms of scale alignment such as concordances, statistical rela-
tionships between the results of assessments of related constructs that hold in specific
populations.

Interchangeable scores can often be obtained in the context of consequential tests,
like SAT and ACT, which traditionally produced different parallel forms administered
in the same mode (primarily PBA) for use at each scheduled test administration. Such
forms are constructed so that the assessed content and psychometric characteristics are
tightly controlled to enhance comparability. As a result, the test takers at a given level of
proficiency can be expected, on average, to achieve the same test score and to be mea-
sured with the same degree of precision, regardless of the test form administered. More-
over, score meaning—in terms of the competencies measured—can also be assumed to
be the same, regardless of the form given.

It is noteworthy that even within this highly constrained context, it is rarely the case
that the raw scores from different forms (e.g., simple number-correct scores or even IRT-
based estimates) can be treated as interchangeable. However, with proper data collec-
tion designs and appropriate analysis procedures, scores from these alternate forms can
be equated (i.e., adjusted for any unintended differences in difficulty and/or expressed
on form-invariant scales, like the well-known ACT and SAT scales). For most practi-
cal purposes, after equating, the resulting scale scores from different forms of the same
test can be treated as interchangeable in terms of the constructs measured, as well as
psychometric characteristics, when making inferences about individual test takers or
groups.

In considering the comparability of scores from PBA and TBA forms, interchangeability
may be areasonable and desirable goal when the content, item types, and delivery paradigm
(e.g., linear versus adaptive) of the two modes are kept as close as possible. In situations
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where the identical (or nearly equivalent) set of items is being delivered, there is a long
history and considerable body of empirical evidence with different kinds of tests and test-
ing populations, often referred to collectively as mode comparability studies. Though find-
ings from this body of research are somewhat mixed, the evidence suggests that—as is
often the case with different PBA forms of the same test—some degree of equating adjust-
ment to TBA raw scores may be required if results are to be treated interchangeably with
those of the corresponding PBAs. Papers by Paek (2005), Kingston (2009), Drasgow et
al. (2006), Lottridge et al. (2010), and W. D. Way et al. (2006) offered pertinent reviews
for tests that provide individual scores. Jewsbury et al. (2020) gave an additional recent
example from NAEP pertinent to group-score assessments.

In some use cases (e.g., the Smarter Balanced K-12 accountability tests and the PISA
transition to TBA), design differences between PBA and TBA also exist—for example,
the paper version being linear and the computer one item-level or multistage adaptive.
Changes in test delivery that involve an item-level CAT or an MST could, in some cases,
be expected to affect the psychometric properties of scores, usually by improving the
precision of results for low- and high-performing test takers relative to test takers in the
middle of the score distribution. Hence, strictly speaking, scores from the linear PBA
and adaptive TBA may not be interchangeable in the same sense as scores on parallel
forms from the PBA test, the differences in precision at particular ability levels being
intentional and desirable. However, through the imposition of content and format con-
straints and the conduct of appropriately designed equating studies (see, e.g., Dorans,
2000; Schaeffer et al., 1995, 1998), adaptive versions of linear PBAs can be instantiated
such that scores can be treated as equivalent measures of the same construct for practi-
cal purposes.

As of this writing, however, the TBA versions of a test can be expected to differ at
least to some degree from their PBA counterparts in ways that go beyond a simple
move to adaptive delivery. Even first- and second-generation TBAs frequently contain
some number of TEIs for which exact PBA counterparts do not exist. As a result, subtle
cross-mode differences in the assessed target competencies are inevitable. Similarly,
construct-irrelevant factors—such as familiarity with and ease of working within the
digital and paper testing environments, respectively—might also reduce the degree of
comparability. Different approaches to scoring constructed-response items represent
an additional threat to interchangeable scores. For example, absent training, human
raters have been found to differentially grade handwritten versus computer-entered
responses (Russell & Tao, 2004a, 2004b; Sandene et al. 2005, pp. 14-15).

The Standards (AERA et al., 2014, p. 105) requires a clear rationale and support-
ing evidence for claims that scale scores earned on alternate forms of a test may be
used interchangeably. Given the goal of leveraging the affordances of digital delivery,
achieving interchangeability is unlikely, perhaps unnecessary in many use cases, and
probably undesirable if it limits improvements in measurement precision and bet-
ter representation of important constructs. However, even when strict equivalence
is not claimed, the Standards requires a rationale and direct evidence of the degree of
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score comparability commensurate with intended uses and claims (p. 106). Similarly,
U.S. Department of Education guidance on peer review of state assessment systems
(U.S. Department of Education, 2018) suggests that when a state administers different
versions of its assessment (e.g., TBA and PBA, or TBA on different devices), the state
should provide comparability evidence generally consistent with the expectations of
current professional standards.

What sorts of evidence traditionally have been, and should be, provided to document
the degree of comparability between TBA and PBA results? Whereas the Standards
contains no specific guidance, there is a substantial literature that addresses the topic
generally. Some of this literature is located within the broader context of establishing
comparability of scores obtained under standardized conditions to those obtained from
test variations such as accommodations, adaptations, or different languages, where
interchangeable scores are rarely practically achievable. Particularly pertinent discus-
sions can be found in Kolen (1999), Wang and Kolen (2001), Sireci (2005), Winter
(2010), Lottridge et al. (2010), Randall et al. (2012), DePascale et al. (2016), and
Berman et al. (2020).

There is considerable agreement in this literature regarding the sources of evidence
required. These sources include studies that examine:

« similarity of the dimensional structures;

. similarity of item-level psychometric properties (e.g., classical test theory indices
of difficulty and discrimination, IRT curves, IRT model fit in cases where the
TBA and PBA versions contain identical or corresponding items);

« similarity of predictive and concurrent statistical relationships between assess-
ment scores and other related educational variables;

« similarity of measurement precision through comparisons of overall standard
errors of measurement and standard error curves across the proficiency range;

« similarity of overall score distributions, including means, degree of dispersion,
and shape; and

« similarity of score differences and extent of differential item functioning for
important subgroups defined by gender, race/ethnicity, disability, socioeco-
nomic status, or computer familiarity.

Whereas a comprehensive evaluation of comparability would involve all these sources
of evidence listed, rarely in practice is that possible. In analogous fashion with valid-
ity, degree of comparability remains an integrative judgment by test professionals, test
users, and other stakeholders as to whether claims based on comparisons of PBA and
TBA versions are adequately supported.

From a fairness perspective, perhaps the most important sources of evidence for
tests used for consequential purposes are associated with what Winter (2010) labeled
“score-level comparability” (the last three sources listed above). Direct evidence is
usually gathered from mode comparability studies in which TBA and PBA results
are obtained from groups that can be assumed to be equivalent with respect to the
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distribution of the target competencies associated with the test. Data from such
studies serve two roles. The first role is to provide evidence of score-level comparabil-
ity. The second role is to, when necessary, determine an adjustment from one or the
other modes to account for the effects—that is, differences in overall test performance
(means, standard deviations, or shapes). Depending on other sources of evidence,
the adjustment can, in the best case, render the scores effectively interchangeable or,
where claims of interchangeability are not justified, increase the degree of comparabil-
ity and fairness inherent in score use.

Mode-Study Data Collection Designs

Mode comparability studies have made extensive use of the data collection designs
traditionally employed for equating and linking (see, for example, Kolen & Brennan,
2004; and Moses, this volume). Single-group designs have many advantages, in principle.
In these designs, test takers are given both the PBA and the TBA versions, usually with
the order of administration randomly counterbalanced (e.g., Gallagher et al., 2002).
Because the same test takers are tested in both modes, issues related to sampling vari-
ability between groups are minimized. Moreover, this design provides the most direct
evidence of the construct equivalence of the TBA and PBA versions. The correlation
between scores in the two modes and the similarity of internal dimensional structure,
psychometric properties, and relationships with other variables can all be directly eval-
uated on the same group of test takers. If IRT methods are employed, the appropriateness
of jointly scaling both tests can also be directly appraised by examining model fit.

However, there are several challenges with implementing such designs. It is often not
feasible to administer tests in both modes to the same test takers because of concerns
about burden and so-called order effects (i.e., the fact that the relationships between the
TBA and PBA versions may differ depending on administration sequence). Lottridge
etal. (2010) described several such studies where differential order effects were found.

A somewhat more practical alternative that offers many of the advantages of sin-
gle-group designs is the random-groups design (i.e., where test takers are randomly
assigned to administration mode). Because test takers are assessed in only one mode,
issues of burden and order are not relevant. When data from large, randomly equiva-
lent groups of test takers are available, almost all the sources of evidence recommended
above can be produced, the major exception being correlations and joint IRT scaling.
NAEDP has relied, and continues to rely, on such designs in carrying out its transition
from PBA to TBA (e.g,, Bennett et al., 2008; Jewsbury et al., 2020). As part of its 2015
field test, PISA also employed this design to aid in its TBA transition (von Davier et al.,
2019).

Operational research from NAEP, described in detail by Jewsbury et al. (2020), is a
particularly good example. Data from the random-groups design were used to adjust
for mode effects associated with TBA, as well as to provide comprehensive analyses
(including classical test theory and IRT), documenting the evidence for the compara-
bility of NAEP results across modes after adjustment. In this study, NAEP administered
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the PBA and TBA versions of its fourth- and eighth-grade 2017 mathematics and
reading assessments to random samples of test takers, with random assignment to mode
carried out largely within each NAEP-participating school. This within-school design
was chosen to produce highly similar samples, taking each mode at all the jurisdiction
levels for which NAEP reports results (nationally, by state, and for large urban districts),
and to give reasonable statistical power for detecting mode differences at the state and
subgroup levels.

National-level results comparing item-level statistics across modes (biserial
correlations, differential item functioning statistics, IRT parameter estimates), as well
as various other psychometric characteristics (e.g., dimensionality), provided solid evi-
dence that the two versions were measuring highly similar target competencies. How-
ever, other test-level analyses indicated that, without adjustment, results from the TBA
versions of the 2017 reading and mathematics assessments would be systematically
lower for both fourth- and eighth-grade test takers, with larger mode effects for fourth
graders. After making a single adjustment to the TBA NAEP scale-score distributions to
equate the mean and standard deviation for the national samples taking the assessment
in each mode, results were shown to be highly similar for the major national reporting
subgroups (e.g., sex, race/ethnicity), for states, and for participating large urban dis-
tricts. That is, with very few exceptions, the observed differences due to mode were
within the bounds of sampling error. The few statistically significant differences that
were observed showed little consistency across grades and subject.

PISA employed a somewhat different approach (von Davier et al., 2019). In the
2015 field test, a number of countries provided data from randomly equivalent sam-
ples of 15-year-olds for both PBAs and TBAs of reading, mathematics, and science.
The investigators combined descriptive analyses—that is, visual inspection of resid-
ual plots and indices of item-level model fit—with statistical evaluation of a series of
constrained IRT models that they refer to as “mode-effect models.” The mode-effect
models imposed increasing degrees of measurement invariance. These analyses identi-
fied some items for which comparable functioning could not be supported. However,
for most items, the evidence suggested that the IRT parameters were equivalent across
modes. These items were then treated as equivalent in the operational 2015 analyses so
that results from both PBA and TBA could be reported on a common scale comparable
to prior PISA assessment cycles (OECD, 2017, chap. 9).

Whereas the random-groups approach can be quite effective, it too may frequently
be intractable because it relies heavily on random assignment and requires large sam-
ple sizes for sufficient statistical power. Whereas NAEP was able to achieve both
requirements, those requirements may not be easily met in other operational contexts
(e.g., where the test-taking population has uneven access to computers or where impos-
ing an administration mode is not acceptable to the test taker or institution). In such
situations, data collection by necessity will involve self-selected, nonequivalent groups,
that is, groups in which similarity of the distribution of target competencies for the
TBA and PBA versions cannot be assumed.
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With nonequivalent groups, mode comparability studies have typically adopted one
of two strategies (or their combination). The first strategy is to use statistical approaches
that employ demographic and other related performance data to control for preexist-
ing group differences in the targeted constructs. Approaches such as propensity-score
matching (Rosenbaum & Rubin, 1985), coarsened exact matching (Iacus et al.,
2011), or weighting-based approaches (Haberman, 2015) can be employed to create
pseudo-equivalent groups. These matched groups can then be used to conduct the desired
comparability analyses, including the calculation of any mode adjustment. Numerous
examples of this approach can be found (Lottridge et al., 2010; W. D. Way et al., 2006,
2007, 2008; Yu et al., 2004).

A second strategy is to rely on common-item assumptions—that is, the assumption
that identical or nearly identical items appearing in both modes exhibit the same psy-
chometric characteristics (e.g., difficulty and discrimination). When employed in the
context of nonequivalent groups, this strategy can be thought of as a variant of the
common-item or anchor test nonequivalent groups design (Kolen, 2007). Numerous IRT
methods can be applied, including concurrent calibration and approaches based on
separate calibration of PBA and TBA data, followed by some form of parameter link-
ing on test characteristic curve transformations. In addition, non-IRT methods can be
brought to bear (see, for example, Kolen & Brennan, 2006, chaps. 4-6). Usually, the
analyses proceed by first assuming that all identical/similar items function comparably
and then selectively relaxing this assumption based on various diagnostic indices, such
as model fit and analysis of outliers.

As abasis for evaluating comparability, both approaches to the nonequivalent groups
situation come with challenges that can compromise their effectiveness. Statistical
matching requires sufficiently strong ancillary data related to test performance that
accounts for the differences between the groups with respect to the targeted compe-
tencies. When such ancillary data are not available, the matching will not produce
equivalent groups. As such, conclusions regarding comparability, or adjustments to
achieve comparability based on equating the score distributions in the matched groups,
may be suspect. It is important to note that ineffective matching could potentially affect
conclusions in both directions. That is, one could be led to conclude that scores are not
comparable when in fact they are or to miss a systematic directional bias that was inad-
vertently removed through faulty matching.

A possible example of this situation can be seen with the PARCC K-12 reading and
mathematics accountability tests, which existed in both TBA and PBA form. Though
not strictly identical with respect to all item types, the two modes were intended to pro-
duce comparable results. Comparability studies were conducted based on field test data
in 2014 (Brown et al., 2015) and on the first year of operational data in 2015 (Liu et al,,
2016). The first of these studies was originally intended to use a random-groups design,
but challenges in implementation made it necessary to rely on a post hoc matching
approach. In contrast, the second study was designed to employ nonequivalent groups
with propensity-score matching. In each study, a comprehensive analysis was done
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using most of the generally recommended evidence types (AERA et al.,, 2014). Both
studies presented solid evidence that highly similar constructs were being assessed by
the two modes. Moreover, though small mean differences usually favoring PBA were
noted for particular test subject/grade combinations, the differences in average scores
between modes were, for the most part, negligible. Thus, the general conclusion was
that results could be compared across modes for accountability purposes.

Despite this conclusion, subsequent studies and analyses of operational PARCC
results have suggested that, in at least some districts and states, scores on the PBA ver-
sion were systematically higher to a greater degree than would have been expected from
the mode comparability study results (Backes & Cowen, 2018; Duque, 2017). One
reason that evidence of noncomparability has surfaced may be that the earlier matching
procedures did not work as intended, a possibility expressed in the 2016 PARCC Tech-
nical Report (Pearson, 2017, pp. 143-144). However, other considerations—such as
differences in the relationship between TBA and PBA results across groups, states, and
time—represent alternative, or at least contributory, factors. Several of these consider-
ations are discussed in the following paragraphs.

Relying on common-item assumptions effectively assumes that, at least on average
across all the items common to both modes of presentation, consistent main effects on
item difficulty and discrimination favoring one or the other mode are negligible. Stud-
ies employing this approach are most typically carried out within an IRT framework. In
one variation, IRT item parameter estimates based on data from one mode (the refer-
ence mode) are applied to the data from the other mode. Analyses of model fit are done
to identify items for which the assumption of common parameters appears untenable,
and these items are then deleted from the set. For these identified items, as well as items
unique to the other mode, separate item parameter estimates based on data from the
new mode are obtained, with the parameters for the remainder of the items fixed at
their reference-mode values. The full set of item parameters is then used to produce
results that are directly on the reference-mode scale.

In situations where the tests have been carefully created to measure similar constructs
across modes and the assumptions of negligible main effect are tenable, this approach
can achieve comparability of score distributions, as well as provide clues regarding
item features that interact to introduce cross-mode noncomparability (e.g., when the
mechanics of response entry for a TEI are more complicated than answering the anal-
ogous question on paper). The latter information can be quite valuable in producing
future comparable versions. However, the assumption of negligible main effects can-
not be effectively evaluated based on the mode-study data collected with the non-
equivalent groups design. This situation stems from the fact that main effects on item
parameters due to mode are not separable in the IRT analysis from group differences
on the target construct since the two causes are perfectly confounded. Moving forward,
these differences will manifest themselves as a systematic source of noncomparabil-
ity between scores in the two modes. Attempts are sometimes made to combine the
common-item approach with matching strategies to disentangle the mode effects from
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group differences (ETS et al., 2016; Liu et al., 2016). However, the effectiveness of this
strategy is subject to the limitations discussed previously.

Much of the conceptual framework and methodologies within which psychometri-
cians have approached issues of comparability (particularly of score distributions) was
developed when consequential testing was done as PBA under generally strict standard-
ization of administration conditions and testing formats. To be sure, testing conditions
across PBA sessions varied in small, presumably inconsequential ways. The basic PBA
administration infrastructure could be assumed to be stable, reasonably homogeneous,
and familiar to the vast majority of current and future test takers. These assumptions of
homogeneity and stability undergirded the argument that standardized test scores were
fair, valid, and reliable and that results from such assessments could be confidently and
meaningfully compared over time.

Early forays into consequential TBA (e.g., for military selection, licensure, graduate
admissions) occurredlargelywithadultsat test centers where the variability in equipment
(desktop computers) was limited and under the control of the testing organizations.
Given these conditions, it was also reasonable to assume that the TBA administration
infrastructure was stable and homogeneous. Thus, similar claims for the fairness, valid-
ity, and comparability of TBA results could be made. Against this backdrop, historical
approaches to evaluating comparability (particularly of score distributions) seemed
appropriate. Unintended differences in difficulty due to mode, for example, could be
identified and adjusted for once, much the way adjustments have been made to alternate
forms of admissions tests like the SAT and ACT. That adjustment could then be applied
to results produced by future forms of the TBA, rendering them comparable to past
PBA results and to one another.

However, the technology landscape for TBA is different and far more variable, par-
ticularly in K-12, where laptop computers and tablets are used for instruction as well
as testing. Differences in displays (size, resolution), input mechanisms (keyboards,
mouse, touchscreen), and operating systems carry the potential to inadvertently intro-
duce construct-irrelevant differences and impact psychometric properties, not only
in comparison to PBA versions, but also among the “same” TBA taken on different
devices.

NAEP provides a good example of the challenges that consequential testing pro-
grams face. To remain relevant, NAEP has already transitioned many of its assessments
(reading, mathematics, U.S. history, civics, geography, and science). Up through 2024,
NAEP’s operational approach has been to standardize by administering the assessment
on the same device configuration brought into the participating schools by NAEP per-
sonnel. This approach is an attempt to provide, at any given time, a stable and consistent
infrastructure capable of delivering the full range of NAEP assessment tasks and of
producing comparable scores.

However, maintaining a stable delivery architecture over time is becoming unten-
able. Hardware, software, and interface design life cycles make change inevitable.
New delivery devices, operating systems, and assessment software are periodically
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introduced. Concomitantly, as NAEP gains experience with its digital delivery system,
the program itself will want to make user interface and task design improvements. These
changes will affect to varying degrees how the test taker interacts with the test, which
could in turn materially change the meaning of results over time. This evolution will be
continuous and inexorable.

Of course, when NAEP was a paper-and-pencil assessment, changes in assessment
procedures and content were also periodically introduced. At these limited change
points, bridge studies (using random-groups designs) were conducted to adjust for the
potential impact of the changes on assessment results and to confirm the valid reporting
of trend. For PBA administrations, results from the sequence of assessments occurring
before and after the change could be safely assumed to be comparable since the basic
underlying test delivery system (e.g., booklets, pencils) represented a constant delivery
infrastructure. However, in the TBA era, conducting mode-comparability studies at
major change points may not be practical, economically feasible, or enough to confirm
valid trend reporting. Even with a relatively stable assessment in content and procedures,
the constant evolution of the delivery infrastructure may be too great.

In contrast to NAEP, Smarter Balanced and PARCC have taken a different approach,
electing to support TBA delivery across a wide range of digital devices. This strategy
presents a different challenge: how to accumulate and present evidence of compara-
bility across a potentially large number of different devices. As is true for mode effects,
the research on device effects has generally used some version of the designs described
earlier. Reviews by DePascale et al. (2016) and W. D. Way et al. (2016) summarized
some of the key findings about the impact of such factors as screen size, input device,
and item type, as well as how these factors interact with such things as content area.
But given the continuing rapid evolution of TBA, a strategy of amassing comparability
evidence (as historically done for PBA and TBA) would appear to be Sisyphean consid-
ering the plethora of existing TBA device configurations. And as noted, the COVID-19
pandemic brought the administration of some TBA programs to the home, where an
even greater array of device configurations may be found.

Considering this reality, a more expansive approach to comparability is required.
W. D. Way et al. (2016) argued that we have moved from an era of standardization
to one of personalization. In that latter era, consequential testing is more accurately
viewed as a collection of variations, many of which are intended to adapt the experi-
ence to the individual in a way that maximizes their access to assessment content (see
also Bennett, 1999, regarding “generalized accommodation,” and Bennett, 2024). From
this point of view, it will be necessary to supplement, if not entirely replace, studies
documenting the comparability of results between variations with mixed methods
interdisciplinary approaches. Such approaches should provide test, item, and interface
design principles usable across a wide range of assessment situations. The knowledge
obtained would inform the engineering of personalized testing conditions in a way that
maximizes validity and fairness by increasing the likelihood that results can be treated
as comparable across a range of devices.
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As W.D. Way et al. (2016) so aptly put it,

What is clear is that the evolution of technology will only continue and that schools
will continue to adopt different technologies in different time frames and will have
little patience for a measurement field that is unprepared to accept these technol-
ogies for testing purposes. Establishing a framework and a process for evaluating
new devices and new technologies is perhaps more important than understanding
the impact to comparability of any specific device or technology. (p. 274)

D. Way and Strain-Seymour (2021) have taken a step in that direction by proposing
a framework for device and interface features that might affect test performance and,
thereby, perhaps offer a path to greater comparability through the personalization in
the manner W. D. Way et al. (2016) suggested. That idea is consistent with an emerging
alternative view of standardization in educational testing more generally. For example,
Sireci (2020) argued for UNDERSTANDization, in which the first step is to appreciate
the implications of diversity within the student population and then critically evalu-
ate the ways in which traditional standardized procedures may lead to biased estimates
for some individuals and groups. The third step involves adjusting those procedures to
eliminate potential biases.

Some precedent for this view exists in the way in which testing programs now handle
accessibility. For example, Smarter Balanced offers accessibility features in three cate-
gories: accommodations (available to those students with documented need through
either an Individualized Education Program or a 504-accommodation plan), desig-
nated supports (available to any student for whom school officials have indicated the
need), and universal tools (available to all students; Smarter Balanced, 2023). Universal
tools include English glossary (i.e., pop-up definitions for selected construct-irrelevant
words), highlighter, strikethrough, zoom, and notepad. Among the designated supports
are masking, color contrast, text to speech (for all items except reading passages), glos-
sary translation in 10 languages and several dialects, and translated test directions in
19 languages. Accommodations are provided through braille, closed captioning (for
listening items), American Sign Language video presentation (for listening and math
items), and text to speech (for reading passages in Grades 6 and above), among other
mechanisms.

Smarter Balanced test administrations, thus, may vary considerably across students
depending on the category of accessibility features for which they are eligible and the
features utilized within that category. This variation is intended to follow the guiding
principle that, when selectively metered, accessibility supports can contribute to more
valid measurement because the assessment is more appropriately customized to student
characteristics.

The beginnings of a scientific framework within which to conceptualize comparability
for students with special needs may exist in the research on the so-called interaction
hypothesis and on differential boost. The interaction hypothesis indicates that
accommodated tests (e.g., the availability of text to speech) should result in students
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with special needs achieving higher scores than they otherwise would, coupled with
no difference for general education students taking the same accommodated test. In
contrast, differential boost focuses on the expected increase in scores for students
legitimately needing the accommodation, ignoring any effect (or lack thereof) on
general education students. Sireci and O’Riordan (2020) provided a comprehensive
review of issues related to accommodations and comparability, Sireci et al. (2005)
gave a discussion of the interaction hypothesis among students with special needs, and
Pennock-Roman and Rivera (2011) did the same for English learners.

Though comparability is emphasized in many consequential use cases, it is important
to acknowledge that too large an emphasis may have the unintended negative conse-
quence of inhibiting advances in measurement science and practice. Comparability of
scores to previous versions of an assessment may be undesirable if it is obtained at the
cost of innovation in test design and task types that provide the potential for improved
measurement precision and tapping important constructs. Thus, as testing programs
transition from PBA to TBA, they must carefully weigh the costs and benefits of main-
taining comparability to past results.

When severing comparability to past results, new reporting scales are typically
introduced, which can be extremely disruptive to test takers, test users, and other stake-
holders. Testing programs that do so often provide concordance tables showing pairs of
scores, new and old, having the same percentile rank in a particular population of test
takers. Such statistical relationships can be helpful during the transition when stake-
holders may be required to make consequential decisions about test takers, some of
whom have scores on the prior reporting scale and others on the new scale. Concor-
dances, however, carry their own risks of misuse and misinterpretation. The reported
statistical relationship does not imply interchangeability of results and score meaning.
In situations where the knowledge, skills, and abilities measured by the old and new
version of the test are substantially different, the statistical relationships may not hold
in populations different from those on which the concordance was established or in
subgroups of the population. (See, for example, Dorans & Walker, 2007; Pommerich,
2007; and Sawyer, 2007, for a discussion of the uses and limitations of concordances.)

Strategies like instituting innovations incrementally to avoid disrupting compara-
bility at a single time point represent a different approach to balancing the trade-offs.
The strategy being used by NAEP for its assessments in reading, mathematics, and sci-
ence appears to follow such an evolutionary approach. In its initial stages, the transition
concentrated on moving the current paper assessment to digital delivery. Later stages
introduced innovative item types like SBTs and simulation-enhanced performance
tasks. Subsequent stages include a 2025 field test of web-based delivery on school-pro-
vided devices and possibly further explorations of adaptive testing.

Introducing such innovations in stages—and evaluating their impact on the compa-
rability of results through careful experimental study and other empirical approaches
(see, for example, Jewsbury et al., 2020)—will help NAEP develop validity evidence
for supporting construct-based inferences from existing trend lines. If supported
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by empirical study, changes in results from the original assessments to the newer
innovative ones can be interpreted as due largely to construct-relevant factors, over-
all and for most or all subgroups of interest. The evidence supporting construct-based
inferences is likely most sound for those assessments close to the transition points—
and to the comparability studies—where the innovations were introduced. The validity
of construct-based inferences may be less well supported for assessments farther apart
in time, given the potential cumulative effect on score meaning of the multiple innova-
tions and the absence of studies directly comparing the modified and original versions.
Given the rapid changes in technology and the potential advances in assessment prac-
tice, increased ambiguity as to the meaning of changes in results over longer time spans
may be the price paid for maintaining a relevant assessment system.

In other instances, where an evolutionary approach is not practical or desirable,
breaking with the past may represent the wiser course. NAEP again provides an exam-
ple where decisions to forego comparability with prior assessments were made. The
most recent instance concerns the transition of the writing assessments at Grades 8 and
12 from paper to TBA in 2011 (U.S. Department of Education, 2012). The new NAEP
writing assessment was based on a different framework than that used in prior years
(1998, 2002, and 2007). The implementation of that framework required the assess-
ment to reflect the reality that most writing in the second decade of the 21st century in
educational and work settings was already done with the aid of technology. TBA deliv-
ery included the concomitant introduction of resources such as a thesaurus, as well as
such common computer tools as spell check, cut, copy, and paste—all of which had no
analogue in the NAEP PBA context. In addition, the new framework called for changes
to the assessment tasks that required a purpose for writing and a specific audience to be
addressed. NAEP decided that the changes reflected important social and educational
developments and chose to begin new trend lines without empirical study of compara-
bility. The loss of comparability to prior assessment results was seen as a necessary and
desirable trade-off in return for maintaining the program’s relevance and position as an
innovation leader.

Response Processes

Whereas a loss or reduction in the comparability of results and score meaning to
PBA might be viewed as a negative effect of the transition to TBA, a more positive
outcome relates to the availability of data about the response process. The response
process describes the cognition in which a test taker engages when encountering an
item stimulus, formulating an answer, and entering that response (Wilson, 200S;
Ercikan & Solano-Flores, this volume). For some constructs, the test taker’s cognitive
process is itself a relevant target of measurement, either instead of, or in addition to,
the final product of that process (e.g, in medical patient management, scientific
inquiry). This section discusses how technology enables the observation and analysis of
evidence concerning response processes. Such evidence can be captured and analyzed
from the data collected in any type of TBA, even ones that include only traditional
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multiple-choice items. However, the potential value, as well as the challenges of such
capture and analysis, increases with task complexity.

The simplest response processes might involve multiple-choice tests of declarative
memory: The respondent is asked to recall a fact, find the matching response from a
fixed list, and mark the appropriate option. The response process to an algebra item
might be more complex, perhaps involving multiple steps of problem translation,
integration, solution planning, and execution. A yet more complex response process is
evoked when a student is asked to write a persuasive essay. This task might bring into
play such aspects as choosing the thesis, outlining and planning the argument, drafting
text, and editing and revising that text. A final type of response process is exemplified by
a simulation-enabled science performance task. Here, selecting a hypothesis, choosing
variables, designing and running an experiment, and interpreting the results would all
be relevant.

Next we describe the diverse uses of response process data, after a short introduction
to the types of data that TBAs can collect. These uses include validation, quality con-
trol, security, and new insights into group and individual performance.

Types of Response Process Data

TBAs can, in principle, provide a stream of process data to supplement the tradi-
tional scored response. Log files are commonly generated, recording key events in
the response, as well as in the navigation of the assessment. Design of good log files
is a new but important part of assessment development (Hao & Mislevy, 2018). On
the one hand, whereas every keystroke, finger swipe, mouse action, and latency can
be recorded, the resulting data will constitute a large, potentially uninterpretable,
collection. Recording too little, on the other hand, may lose valuable information. In
general, it is recommended to record as much information as possible because new
analytic techniques are emerging for dealing with the data.

No matter the actual item format, TBAs can provide latency data for each student on
each item. For example, when a student loads an item, when they select a response, and
when they submit can be recorded. For reading comprehension items, timestamps can
denote how long a test taker stayed on a single screen; for a writing task they can indi-
cate how long the test taker paused before beginning to write and between characters,
words, and sentences. The more interactive an item, the more timestamped events can
be collected.

As the called-for interaction increases, more details of the process used to complete
a task can be inferred from the log file. In writing tasks, for example, the recorded
keystrokes can allow for a real-time recreation of exactly how an essay was composed.
Mouse actions can also be recorded for items that involve more complex response for-
mats. For highly interactive tasks, such as simulation-enabled performances, each step
can be logged, providing a fine-grained record of the test taker’s path to solution.

It is useful to consider the different levels of inference that might be made about a test
taker’s response process from log files. The lowest level is descriptive, based on the raw
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data. These data might include each keystroke, cursor movement, and mouse action,
along with assessment-generated events such as the running of a video clip. While data
at this level are often more difficult to interpret, they may be used to create a playback,
or description, of a student performance. Such playbacks can be used for quality assur-
ance, validity studies, and performance ratings by humans and as a formative resource
for instructors or test takers. This level of data is also objective. If the log records a
mouse click on a specific button at a particular time, it is almost certain that the click
occurred as recorded.

A next level of inference is the action or decision layer. At this more semantic level,
mouse clicks or keystrokes may be interpreted as indications that the test taker decided
to take an action within the task. Thus, a mouse click becomes “selecting response X”
or, in the context of a science simulation, “running a new trial.” While these inferences
are relatively low level, one cannot be sure that the test taker intended the interaction as
it might be interpreted.

The highest semantic level identifies strategies, plans, and knowledge. This level
requires the combination of multiple events into a meaningful pattern in the context
of the task. For example, we might infer that a student implemented a “control-of-
variables” strategy to test a particular hypothesis (LaMar et al., 2017) or that a student
wrote an outline as a plan for their intended essay.

It is worth noting that timing data can strengthen or weaken inferences. For example,
we might infer that a test taker did not take the time required to develop a strategy or
even read the question prompt. This judgment would indicate that the events recorded
in the log file were more likely associated with random noise than with planful actions
and strategies.

Utility of Response Process Data

Because the test-taker response process is central to the integrity of educational mea-
surement, process data have multiple uses throughout the assessment life cycle. Assess-
ment designers have long employed student cognitive labs to test and refine items in
development (e.g., see Connolly & Wantman, 1964, for an early example). Think-aloud
protocols or retrospective interviews aim to make observable how the test taker works
through questions so that item functioning can be improved.

With the help of automatically generated process data, far larger test-taker samples
can be evaluated than are possible with these more labor-intensive methods. In the
early stages of assessment design, such data can be used to identify usability problems
with the computer interface and to select which tasks are most likely to evoke response
processes involving the target construct. Items that allow for shortcut solutions or the
use of construct-irrelevant skills can be identified and modified or dropped. Whereas
gathering some types of validity evidence is a routine part of assessment design (e.g.,
item alignment, cognitive labs), most evidence is generally gathered from pilot, field
test, and operational administrations because those events provide the sample sizes
needed for psychometric analysis. Examining automatically gathered process data could
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complement these analyses (Ercikan & Pellegrino, 2017). For example, Zhang, Deane,
et al. (2019) compared the psychometric properties of a scenario-based English lan-
guage arts assessment design to alternative structures and found that a single scenario
functioned best with the essay appearing after (rather than before) a series of lead-in
tasks. These psychometric analyses were complemented by process investigations that
evaluated how students wrote their essays. Those investigations showed that the scenar-
io-based design reduced the impact of general writing fluency processes on essay score,
thereby presumably giving students with less keyboard facility or lower verbal fluency
more opportunity to display their argumentation skills (Guo et al., 2020; Zhang et al.,
2017). (See Padilla & Benitez, 2014, for a detailed discussion of theory, relationship to
other evidence types, and methods in using processes for validation.)

Once an assessment is deployed, response process data can be a valuable tool for test
security and data integrity (Qian et al,, 2016). For example, item response times can
be used to identify unusual patterns that may suggest cheating (Marianti et al., 2014).
Test takers who use a hidden answer key or memorize answers from an illicit examina-
tion copy are likely to have a mismatch between their item completion times and the
distribution of times from the test-taker population. Such a mismatch may occur in part
because, by virtue of not having to engage item solution processes, the former group
moves through items more quickly than do honest test takers. Similarly, a test taker who
is copying from another test taker will show not only great similarity to that individual’s
responses, but also synchronicity in timing with those responses. The detection of any
such events can allow the possibility of real-time alerts to examination proctors.

Process data can also be used as part of quality assurance to identify when something
has gone wrong in administration or scoring. With the addition of technology, qual-
ity assurance must include digital delivery, user-interface functionality, data recording,
automated scoring, and data transfer and storage. Increasingly, assessment developers
look to the best practices of software engineering for proper quality assurance method-
ologies because the assessment is a software product. Similar to how software engineers
create unit tests during development, assessment developers can specify constraints on
the expected response patterns while they craft the items. Cognitive labs can also be
used to generate estimates of those patterns. During both pilot testing and final deploy-
ment, large deviations from the expected patterns would then be flagged for investiga-
tion.

After the completion of a test administration, process data can be used to understand
performance in greater detail than is possible through test scores alone. Such data can,
for example, illuminate group differences in scores (e.g., Bennett et al., 2021; Guo et al.,
2019; Zhang, Bennett et al., 2019). Greiff et al. (2015) used process data from PISA
TBA items to uncover inquiry strategy use and differential strategy use by country. Such
understanding might lead to adjustments to scoring practices (when it is found that
scoring privileges one type of solution), teaching (when important solution approaches
are not being taught), or instruction (when it is found that a population group is not
benefiting sufficiently from existing teaching practices).
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At the individual level, process data could be used for formative feedback to the
teacher or test taker. Those data might be used to identify test takers who are likely to
be guessing (Lee & Jia, 2014), as well as those who appear to hold particular miscon-
ceptions or procedural weaknesses. In a more open-ended problem space, the level of
depth at which an individual is engaging might also be described. Such evidence might
enable identification of not only those who need additional guidance, but also those
who could benefit from further challenge.

Analysis and Scoring of Response Process Data

The simplest process data consist of response times augmenting the raw item response.
Thus, for every item, the response, its score, and the total time taken are available for
analysis. Models of test speededness (van der Linden, 2017) that account for student
changes in strategy due to time constraints and models that predict guessing and
cheating behaviors have been applied to such data (Guo et al., 2016; van der Linden
& Lewis, 2015). The remainder of this section will deal with more complex-response
interactions, leading to more data available for each item response.

The rich and varied information contained within complex-response process data
presents a significant challenge for analysis. The log file contains an abundance of low-
level events that do not readily translate into relevant inferences. Consequently, the sta-
tistical methodology used to make those inferences needs to be well understood and
appropriately validated. Here, we discuss a few of the more common approaches, along
with recommendations for analysis and modeling of process data from complex tasks.

Because of the scale and complexity of the data, psychometric methods traditionally
used for the analysis of item responses and test scores are frequently inappropriate. Pro-
cess data are irregular in that the recorded events not only vary in number and meaning
across students but also are context dependent. Furthermore, the parameter space of
models used in the analysis of such data is large and assumptions of conditional statis-
tical independence are clearly violated. For these reasons, new methods from machine
learning or computational statistics may be better suited to these data. Rather than rely-
ing on models that predefine the relationships among variables, in machine learning
these relationships are derived from the data. This derivation, or “learning,” requires a
large amount of data; depending on the complexity of the algorithm and the number of
parameters, data requirements range from thousands to tens of thousands of records.
These methods are extremely useful when there is a large quantity of factors (variables
or parameters) or when the relationships between the factors are complex and ill-
defined. In either case, predefining a full model is impractical.

Machine learning methods are either supervised, which means that a labeled data set
is used to train the models, or unsupervised, in which patterns are identified within the
data without prior labeling. Labeling presents a particular difficulty for educational
applications. While unambiguous classification may be more typical of some tradi-
tional machine learning domains, such as computer vision (either the picture contains
a cat or it does not), “ground truth” is less common in educational and psychological
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assessment. Human raters are frequently used to label data, but allowances should be
made for their known fallibility (e.g., see Ho & Kane, 2013, with respect to the rating
of teaching processes). Performance replays can be constructed from the process data
to aid in human labeling (R. Baker & de Carvalho, 2008), which may improve con-
sistency. Unsupervised learning is used primarily in exploratory analyses as a method
for identifying common patterns within a large data set, frequently involving cluster-
ing or dimensionality reduction. For assessment purposes, such analyses can be par-
ticularly helpful in discovering response processes that are different from the expected
approaches.

Both types of machine learning expect input data in which each record is represented
as a feature vector—that is, a list of variables having numeric values (see also Shermis
et al,, this volume). The mapping of raw data to feature vectors, known as feature engi-
neering, is a critical step because anything not encoded into the feature vector will not
be usable for classification or clustering. For example, the content of text documents is
frequently modeled as a “bag of words” in which the feature vector is simply the count
of each dictionary word used in the document. This representation does not include
word order, encoding “house boat” identically to “boat house.” The representation vec-
tor could be expanded by adding bigrams (two-word sequences) or part-of-speech tags
to enable such distinctions. For analyzing response process data, features can include
the count of specific actions taken, the mean time between actions, or the most frequent
action in a given time slice. Feature detectors can be crafted that identify significant
patterns of action within the raw data, which can then be added to the feature vector.
Once the feature vectors are constructed, machine learning uses a variety of statistical
techniques to classify or cluster records.

For assessment, classification can be used to evaluate performance, with categories
like “high,” “moderate,” and “low.” Classification can also be used to identify records
that are likely the result of guessing or cheating behaviors. For generating formative
information from a summative assessment, classification can be used to identify strat-
egies or misconceptions. Machine learning methods applied to the classification of
process data include support vector machines, K-means clustering, logistic regression,
classification and regression trees, and deep neural networks (Baradwaj & Pal, 2011;
Rivas et al., 2019).

Common to all machine learning is that few assumptions are imposed about the
relationship between the features in the data and the final classifications. The statis-
tical methods iterate to optimize a loss function (e.g., classification match with prior
labels, or data fit), but may add and delete factors and relationships between factors
or combine the results from multiple models in a weighted fashion. This methodology
makes final classifications hard to defend because the logic behind the classification is
not transparent.

An alternative, or complementary, approach is theory-driven modeling. In these
methods, the relationships between the data and the inference are defined in advance.
The models may contain parameters that will be tuned given the data, but the meaning
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of the classifications or inferences are clear ab initio. Bayesian networks are an example
of modeling complex data with a theory-driven approach. Relationships between the
features (observable variables) and the targets of inference (unobservable variables, or
latent nodes) are defined by the network structure, while the exact probabilistic rela-
tionships between nodes are learned from the data.

More commonly in educational assessment, a combination of the above two
approaches is used. Data mining can identify clusters of common action patterns. Con-
tent experts then examine these patterns and infer, for example, the strategy that the test
takers employed. Once a set of interesting strategies is identified, models can be built
to classify records by strategy or score the performance based on the action patterns
observed.

One of the more active areas of process data research has been in writing, particularly
for essays composed as part of standardized assessment. Using a combination of theo-
ry-driven and bottom-up approaches, this research has found meaningful relationships
between essay scores and such basic features as the types of pauses that characterize
composition and the length of writing bursts (Almond et al., 2012; Guo et al., 2018;
Zhang & Deane, 2015). Theoretically predictable differences in feature patterns among
writing task types have also been detected (Deane et al,, 2018). Studies have used unsu-
pervised data reduction methods like exploratory factor analysis to select and aggregate
low-level log file features into scales (Deane, 2014; Zhang & Deane, 2015) and profiles
(Bennett et al., 2022). Meaningful differences among writing proficiency levels and
among gender, socioeconomic status, and racial/ethnic groups have been discovered
using such scales (Bennett et al., 2020, 2021; Guo et al., 2019; Zhang, Bennett, et al.,
2019).

For an extended interactive performance, a different approach from modeling a set
of extracted features is to model the behaviors of the individuals within the context
of the problem that they are solving. Decision models calculate the probability of a
person making a choice in a particular situation, given the person’s goals and beliefs
(C. L. Baker et al., 2011). One can think of this approach as if we were programming
an autonomous agent to perform the task. Given a goal, the agent will need to select
actions, monitor the results of those actions, and select next steps until the goal is
met or it gives up. Partially observable Markov decision processes are one example
that can be applied to such assessment performances (Bellman, 1957; Howard, 1960).
This model calculates the probability of a person taking a given action in a particu-
lar state of the problem as a soft-max' over the expected total rewards for taking that
action. Goals are encoded into the reward structure, which quantifies both the rewards
for reaching different problem states (e.g., a solution to the problem) and the costs
of taking specific actions. Beliefs are encoded into the model’s transition functions
and state space as subjective understanding of both the probabilistic effects of taking
particular actions and what is possible. Inferences about the test taker’s abilities, goals,
and beliefs can be made by fitting the model to the response data produced by the test
taker (LaMar, 2018).
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Automatically Scoring Complex Constructed-Response Tasks

The preceding section centered on evaluating response processes, a method that could
be applied to a wide range of test item types and used for a variety of purposes that do
not necessarily factor into the scores reported on consequential tests. In the current sec-
tion, we focus on scoring per se and on a select class of assessment tasks. In particular,
the section addresses automatically scoring a variety of complex constructed-response
tasks requiring judgment of product features, process features, or both. We describe
the tasks to which such artificial intelligence (AI) approaches have been commonly
applied, give a high-level description of how scoring works, and suggest the types of evi-
dence that ought to be considered for validation (see also Shermis et al., this volume).

Bennett and Zhang (2016, p. 142) offered the following definition for automated
scoring: “the machine grading of constructed responses that are generally not amena-
ble to exact-matching approaches because the specific form(s) and/or content of
the correct answer(s) are not known in advance.” As they noted, that definition is quite
broad, encompassing grading approaches that differ considerably as a function of the
constructed-response task being posed and the character of the answers expected from
a given population of test takers.

As of this writing, automated scoring is used operationally by many testing programs,
including for postsecondary admissions (GRE General Test Analytical Writing Assess-
ment, TOEFL iBT, Pearson Test of English), occupational and professional licensure
(USMLE), and school accountability (selected Smarter Balanced states). The primary
motivations are to reduce the cost associated with human scoring and increase the
speed of reporting.

The types of tasks to which automated scoring has been applied operationally include
essay writing, speaking, architectural design, patient management, accounting, mathe-
matical problem-solving, and relatively short text responses associated with reading a
passage or justifying a mathematical problem solution (Williamson et al., 2012). One
important dimension along which such tasks may vary is in being static versus dynamic.
For instance, in the GRE General Test Analytical Writing Assessment, the product or
outcome—that is, the submitted essay response—is the only aspect graded. In con-
trast, the USMLE includes a section containing 13 computer-based case simulations
(USMLE, 2018). As mentioned, each simulation presents a patient management prob-
lem that changes as the test taker interacts with it (e.g,, the test taker’s decision to run a
diagnostic test produces a result that must be considered and acted on). Consequently,
USMLE automated grading must account for the process used to manage the patient, as
well as such outcomes as the final diagnosis and prescribed treatment.”

Irrespective of the task and Al approach, automated scoring generally includes three
conceptually separable parts: feature extraction, feature evaluation, and evidence accu-
mulation (Drasgow et al., 2006). In feature extraction, the scorable components of the
response are computed (e.g., parsing and tagging words for essay scoring; identifying
what actions were—and were not—taken in managing a patient). Feature evaluation
entails judging the extracted components (e.g., the agreement of subjects and verbs;
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the appropriateness and order of actions in patient management). Finally, evidence
accumulation involves aggregating the feature evaluations to produce one or more
scores. For essay evaluation, judgments about subject-verb agreement would be com-
bined with those related to other aspects of essay quality (e.g., organization, develop-
ment, content); for patient management, evaluations of the appropriateness and order
of actions would be combined with those pertaining to the suitability of the diagnosis
and treatment.

Within a task type, automated scoring systems can be differentiated along multi-
ple dimensions. One important dimension is whether scores are created to predict
human scores empirically or, alternatively, are generated from theoretical proposi-
tions or rules. Most approaches to automated essay scoring take the first path. That
is, they employ feature weights empirically derived to predict human scores, for
example, by linearly regressing those scores on the extracted features (e.g., Burstein
et al, 2013). This focus on predicting human scores has been driven by a long tra-
dition of human essay rating, whereby human scores have come to be accepted by
many users as a “gold standard” (Powers et al., 2015). An alternative approach used
in some scoring systems is to employ propositions or rules based on some theoretical
decomposition of what constitutes a quality performance in that task domain. The
decomposition is based on expert judgment and may involve having one committee
develop the rules and another committee verify the rules and the scores those rules
produce, without ever optimizing the automated algorithm to predict human scores
per se. That approach was essentially followed in the automated scoring of architec-
tural design problems (Bejar, 1991; Braun et al., 2006) and in medical patient man-
agement (Clauser et al., 2016). In such approaches, humans are used as experts in
defining scoring features and aggregation rules, as well as for quality control when
the scores are produced.

A second dimension along which scoring approaches for a given task type may
differ is specific to those approaches that seek to maximize agreement with some
criterion, like human scores. The dimension is the extent to which transparent versus
black-box machine learning methods are utilized. For example, in some approaches,
computable features are developed from a construct theory or from an existing scoring
rubric. Once computed, those features are combined by weighting them empirically
to produce a score (or other judgment such as a diagnostic categorization). Divulging
the computable features and their relative weights permits users to make an evaluation
of the extent to which those features cover the construct theory or rubric, aspects in
which the features may fall short, and how the weighting comports with the intended
construct. In contrast, other approaches to automated scoring extract large numbers of
computable features without any prior construct or rubric mapping and algorithmically
use whatever features best predict the chosen criterion (usually human scores).’ Recent
uses of large language models (LLMs) for essay scoring would appear to work in this
way, though there may be ways to reduce the black-box problem via combination with
more interpretable measures (e.g., Mizumoto & Eguchi, 2023). In general, however,
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such approaches will not be transparent to users and may not even be scrutable to the
system’s developers.

The most common approach to evaluating the quality of automated scoring has been
to compare the generated scores to those produced by operational human raters under
the supposition that machine—human agreement equal to or greater than human-
human agreement constitutes validation. As multiple commentators have pointed
out, machine-human agreement is best viewed as one piece of evidence in the validity
argument for automated scores or, said another way, validation should be broadly based
(Attali, 2007; Bennett & Zhang, 2016; ETS, 2021; Williamson et al., 2012).

A considerably more comprehensive validation conceptualization has been offered
by Bennett and Zhang (2016), which considers multiple sources of evidence. Their
conceptualization began with the validity argument for human scores. It is necessary
to evaluate that argument if human scores are to be used as evidence for validating the
automated scores (Bejar, 2012). With respect to human scores, they asked:

« Do the test-taker response processes align with the construct definition? For
example, if the computer interface is an unfamiliar one, test-taker time and cogni-
tive resources may be split between figuring out the interface and completing the
task, thereby contaminating human scores with irrelevant variance.

« Does the human scoring rubric fully capture the construct definition? If the
rubric unintentionally drives human raters toward a subset of that definition,
then that subset will dominate scores.

« Are operational human raters using construct-relevant scoring processes? If
raters are using shortcuts (e.g., avoiding the extremes of the score scale, using
correlates such as response length), then their scores will be a less meaningful
evaluation criterion.

« Do raters agree reasonably highly with one another? If not, their justification as a
validation criterion will be undermined.

« Do raters treat unusual responses in appropriate ways (e.g., responses that may
not fit the existing rubric but clearly indicate a high level of competency; ones
that attempt to game their way into a higher score)?

« Do human ratings of one task predict ratings on other tasks from the same uni-
verse reasonably well? If not, the argument for an underlying construct will be
called into question.

« Do the ratings relate in theoretically predictable ways to other measures of the
same construct and to measures of different constructs?

« Do the above results hold to reasonably similar degrees across important
population groups? If not, those differences may reflect unfairness in human
scoring.

With respect to the validity argument for automated scores, Bennett and Zhang (2016)
asked:
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« Was the model trained and calibrated on an appropriate sample of artifacts from
the target population? If not, it may encounter responses that it cannot properly
evaluate.

« Are the model’s features related to one another empirically in theoretically mean-
ingful ways and do the features and their weighting fully capture the rubric and
construct definition? This question centers on whether the resulting scores are a
faithful measure of the intended construct rather than some subset of it or simply
a measure of one of that construct’s correlates.

« Do the automated scores agree with human ratings (in the best case, with the
mean rating taken across multiple experts grading under ideal conditions who
agree highly among themselves)? Machine agreement with a consensus among
experts makes for a more reliable and arguably more valid criterion than agree-
ment with a single rating generated under more rushed, operational conditions.

« How effectively does the automated scoring handle unusual responses?

« How well do the automated scores predict performance on other tasks from the
universe?

« Do the scores relate to external criteria in the expected ways?

« Are the functional characteristics described above invariant across population
g1roups?4

«  What are the likely intended and unintended impacts of using automated scoring
on the behavior of test takers and those who educate them? For example, do
students indiscriminately use more low-frequency words and complex sentences
(when simpler vocabulary and constructions might better serve given writing
purposes) because they believe such use will increase their automated scores?

« How does automated scoring compare on each of these dimensions to human
scoring? Notable differences in functioning between the methods should
be investigated and explained because they are likely to point to sources of
inaccuracyj irrelevant variance, or unfairness in one or the other method.

In closing this section, we offer several important points. The first point is that it is gen-
erally not the automated scoring engine being evaluated, but the scores it produces.
Those scores depend on the nature of the examination questions posed and the pop-
ulation assessed. The validity of scores may vary to the extent that either questions or
population characteristics change.

A second point is that, as noted, agreement with human ratings is questionable as
the sole criterion for automated score validation. This statement especially holds if the
validity argument for the human ratings themselves has not been firmly established.
Rather, multiple sources of evidence should be sought to permit a more rigorous and
complete evaluation of the validity argument for automated scores. To the extent that
those evidentiary sources suggest the same positive conclusion, the argument will be
strengthened.
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Third, one of those sources of evidence should be an analysis of the features used in
scoring, their weighting, and the alignment of these features and weights to the con-
struct definition. In other words, it is difficult, if not impossible, to rigorously evalu-
ate the validity of automated scores without a clear understanding of how those scores
are generated and how that generation method comports with the intended construct.
Such an understanding presumes transparency of the automated scoring system. The
need for such transparency is being increasingly recognized in legal frameworks gov-
erning Al systems used more generally to make decisions that have significant impact
on people’s lives (G20, 2019; Madiega, 2019; OECD, 2019). That recognition is, in
turn, fueling efforts to create explainable Al (Dwivedi et al., 2023; Futia & Vetro, 2019;
Kuang, 2017; Maglieri & Comande, 2017; Turek, n. d.).

A final point is that our efforts to build a strong validity argument for constructed-re-
sponse scoring, whether automated or human, should ramp up as the consequences
associated with test results increase. This stipulation holds even when those construct-
ed-response scores are not the major portion of the test. Such is the case because, when
the decisions emanating from test results have significant and hard-to-reverse impact, it
is the testing program’s responsibility to ensure that, to the maximum extent practica-
ble, all test components are meaningful and fair indicators of proficiency.

ASSESSMENTS USED TO SUPPORT
INSTRUCTIONAL DECISION-MAKING

The section “Assessments Used to Support Consequential Purposes” dealt with conse-
quential TBA, where decisions based on a single result may have a dramatic influence
on an individual, group, or institution and may not be easily reversed. In the current
section, we focus on TBA uses that generate more easily reversible decisions with less
dramatic effect in any given instance. In particular, we discuss the current landscape for
TBAs used to support instructional decision-making in real time at the individual stu-
dentlevel. We will briefly trace some of the important milestones in the development of
such embedded, technology-based formative assessment, noting relevant innovations
in design, task type, scoring, and modeling.’ (See also Brookhart & DePascale, this vol-
ume, for a discussion of formative assessment. )

The use of technology-based assessment for instructional decision-making is pre-
mised on the principle that individualizing instruction, as would be done in one-to-one
tutoring, is more effective than targeting instruction to the group. This principle was
implemented through mechanical devices known as teaching machines, which used
simple forms of assessment to direct instruction. One of the earliest such machines was
created by Pressey (1926, 1927), whose initial purpose was to build a testing device
for presenting and scoring responses to multiple-choice questions. Realizing its value
for instruction, he incorporated such rudimentary mastery criteria as not eliminating a
question until it had been answered twice correctly. Following publication of Skinner’s
(1958) seminal “Teaching Machines” article, the same basic ideas led to CAI, which
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afforded more complex branching possibilities based on the student’s prior response(s)
(Suppes, 1972; Van Meer, 2003).

The 1980s saw the advent of intelligent tutoring systems (Sleeman & Brown, 1982),
today more commonly called adaptive learning or personalized learning systems.
Whereas teaching machines, and the CAI implementations that succeeded them, were
built on behaviorist conceptions of learning, intelligent tutors brought cognitive learn-
ing models to bear and combined them with Al approaches (Anderson et al., 1985).
Those domain-specific cognitive models and Al methods were used to track a student’s
knowledge state dynamically as it evolved during an instructional sequence and pro-
gressively adjust instruction as a function of that changing knowledge state. This real-
time assessment was initially deterministic, meaning that uncertainty was not factored
into the evaluation of the student’s state. These deterministic systems were followed by
ones that incorporated probabilistic modeling, typically in the form of Bayesian net-
works, into their real-time assessment of student knowledge state (Corbett & Ander-
son, 1995; Mislevy & Gitomer, 1995; VanLehn & Martin, 1998).

Many of the intelligent tutors created over the past several decades did not go
beyond the prototype development stage and, consequently, were not widely used
in classroom settings (Shute & Zapata-Rivera, 2010). One tutor that has been
widely used is Carnegie Learning’s MATHia, a direct descendant of Anderson and
colleagues’ extensive, long-term research program at Carnegie Mellon University
(Anderson et al., 1985, 1995; Pane et al., 2013; Ritter et al., 2007). A second widely
used tutor is ALEKS (Assessment and Learning in Knowledge Spaces), based on the
research of Falmagne and associates at the University of California, Irvine (Doignon &
Falmagne, 1999; Falmagne et al., 1990). Both ALEKS, now a product of McGraw-Hill
Education, and MATHia are used at the school level as well as in higher education. A
third, more recently developed example is Woot Math, which helps students in Grades
3-8learn core math concepts, starting with rational numbers (Milne et al., n.d.). Rather
than the more elaborate cognitive-domain modeling approach taken in MATHia, Woot
Math concentrates selectively on a small number of ideas and misconceptions identi-
fied as key by expert teachers and researchers. Of note is that, in addition to selecting
tasks based in part on Rasch models, the system adaptively determines how fast each
student should move along the instructional sequence, offers help based on Bayesian
models of each student’s understanding, presents additional instructional modules, and
inserts new levels with review tasks.

A final example can be drawn from the class of tutors known as personalized learn-
ing apps, which can be accessed on mobile phones, tablets, or conventional comput-
ers. As an instance from this class, the Duolingo language learning app (https://www.
duolingo.com/ ) offered as of this writing instruction in three dozen or so languages,
with the more common language courses having on the order of 150-200 brief lessons.
Lessons are organized around topics common to language learning (e.g., shopping,
food, entertainment), into which new vocabulary and linguistic structures are progres-
sively integrated. Each lesson is composed of an optional synopsis of the content to
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be covered and exercises taking various forms (e.g., matching, selecting and arranging
words to form a sentence, speaking a presented sentence). Adaptivity and such learning
sciences’ principles as spaced repetition are employed in exercise selection via prob-
abilistic models (Protalinski, 2020; Settles & Meeder, 2016), although the particular
models used operationally have not been identified.

Intelligent tutors, and their CAI and teaching machine predecessors, had in common
that instruction was generally built around the presentation and solution of a series of
discrete problems designed to evaluate student standing. In contrast, educational games
and simulations often present a more thematically integrated problem-solving experi-
ence as a means of facilitating and monitoring learning. That experience may require
more problem-solving steps, and the state of the game or simulation may change in
response to student actions. Thus, educational software based on games, as well as on
simulations, is often more performance oriented.

Like intelligent tutors, games and instructional simulations can, in principle, be built
on cognitive-domain models, use Al, and incorporate probabilistic methods to estimate
skill level. Estimation can be dynamic, allowing real-time modulation of the state of the
problem situation in play or of the difficulty level of the problem situation to be pre-
sented next. As of this writing, we could locate no commercially available, widely used,
and well-documented examples that possessed all these features. Several commercially
available games and simulations, however, do possess one or more of these attributes.

As an example, Math Garden allows students to practice basic addition, subtraction,
multiplication, and division skills (Klinkenberg et al., 2011). The game is in many ways
quite traditional, presenting a series of drill-type math problems for which correct
solutions add garden flowers and garner coins for buying virtual prizes. In addition, no
cognitive domain model or Al is employed. Presentation is adapted at the item level
using estimates of student competency that incorporate both speed and accuracy. Esti-
mates are dynamically generated via the Elo (1978) rating system (originally developed
for chess competitions).

An example from science is Inq-ITS (Gobert et al., 2018; https: //www.ingits.com/).
This system employs a collection of laboratory simulations that allows students to
design and conduct experiments. Ing-ITS uses the Next Generation Science Standards
as its cognitive-domain framework, coaching students through the NGSS practices of
designing investigations, using evidence to make claims, and backing up those claims
with evidence and reasoning. The system employs machine learning techniques to eval-
uate student responses, generate real-time alerts for teachers, and give students feed-
back on specific aspects of their inquiry practice. Bayesian knowledge tracing, described
in the next section, is employed to estimate student skill levels (LaMar et al., 2017, pp.
143-145).

The formative assessment designs, tasks, scoring, and modeling methods used in
intelligent tutors, games, and simulations can run from simple to complex. Common
to most systems of interest are presenting a sequence of problems created to facili-
tate learning some set of domain competencies, scoring in real time, probabilistically
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estimating knowledge state (or skill level) from that scored performance, and using that
estimate to in some way modulate the current task or choice of the subsequent one. In
the following paragraphs, we briefly discuss similarities and differences among these
systems in the problems employed, presentation design, response requirements and
evaluation, and feedback.

As noted, the problems that these systems present may be discrete or part of a the-
matically related sequence. Thematically related sequences are often introduced by a
scenario intended to give a real-world context, motivate the student, and indicate a goal
to be achieved. One or more problems typically follow. In an intelligent tutor, a problem
statement, related stimuli, and any associated tools are available to the student. A game
would add mechanics (i.e., rules and procedures for play) and such motivating elements
as points for correct responding, graphics, and audio. In educational simulations, the
student interacts with an invented milieu that is intended to represent the key features
of some real-world environment, such that the invented environment mimics the real
one. The simulated environment may include runnable models that process inputs and
produce outputs like their real-world counterparts (e.g., behaving like a patient with
a specific medical condition). Problems may also be presented outside the simulated
environment, in which case the student responds to those problems based on his or
her interactions with the simulation. Alternatively, or in addition, the students’ inter-
actions with the simulation may constitute evidence for evaluating knowledge state.
Regardless, the simulated environment itself becomes part of the problem.

With respect to presentation, in intelligent tutors, presentation is typically adaptive.
Games and simulations, however, may have linear, item-level adaptive, or multistage
adaptive designs. In linear designs, all students encounter the same problems in the
same order. Many educational games take this approach, allowing a student to progress
to a higher level only when some criterion performance has been reached (e.g., a fixed
number of problems answered correctly). In item-level adaptive designs, the difficulty
of the next problem is determined at least in part by performance on earlier problems.
Multistage designs differ from item-level adaptive ones primarily in the frequency of
adaptation, adjusting the difficulty of tasks at the stage level, rather than at the item
level.

As to response requirements and evaluation, in intelligent tutors, games, and sim-
ulations, such requirements may involve entering a number, clicking on a hot spot,
moving objects on screen, writing text, or manipulating sliders, dials, or other compo-
nents. Responses in all three types of systems can be evaluated in terms of the resulting
product, the process used to generate that product, or both, depending on the under-
lying domain model. However, even when the domain model specifies that evidence
of proficiency lies in the correctness of an outcome (e.g, a mathematical result),
examining the process used to generate that outcome can be the basis for action. That
action could take the form of feedback (e.g., providing hints, pointing out errors in
process, showing a worked example), choosing new problems, or making other adjust-
ments to instruction.
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Feedback itself may be provided before or after responding. A response that is not
given quickly enough may trigger some event to occur. That event could be visible, as in
the provision of a hint, or invisible, as in updating the estimation of the student’s knowl-
edge state. Feedback may also immediately and visibly follow an action—for example,
an English-language-learning game character might offer a puzzled look if a grammati-
cally incorrect sentence is entered.

Probabilistic Models for Assessment Embedded

in Instructional and Learning Systems

As indicated in the section immediately above, to provide feedback, as well as to adjust
instruction, the formative assessment embedded in the learning and instructional sys-
tems of interest uses probabilistic models. In this section, we explore some of these
models, their evaluation, and their validation.

Within tutoring systems, “student models” are used to track relevant parameters for
various characteristics of interest including proficiency, engagement, and affective state
(Johns & Woolf, 2006). These models are essential for enabling personalization of the
tutoring experience, with the most basic model indexing where the student might be in
relation to mastering the content being taught. In such models, proficiency is estimated
dynamically from the student’s performance to enable real-time adjustment to instruc-
tion. Estimation is done through some form of psychometric (or other probabilistic)
model.

Although adaptive tests also dynamically estimate proficiency, they presume no
change in proficiency over the course of the assessment. In contrast, proficiency
should be expected to change because of interacting with a tutoring system. In addi-
tion, the system must be able to generate frequent formative feedback. Effective feed-
back requires specific, accurate, actionable observations about student performance
(Hattie & Timperly, 2007; Shute, 2008). Thus, models need to be able to estimate
specific strengths, weaknesses, and, in some domains, misconceptions.

For adaptive learning systems like intelligent tutors, the purpose of the student
model extends beyond direct feedback to enabling the selection of appropriate next-
instructional steps. These interventions might be in the form of hints, encouragement,
explanatory text or video, a worked example, or selection of the next problem.

At a high level, the student model can be decomposed into the representation of the
student’s state and the method used for updating that representation. Approaches to
representing student state vary considerably, but some common ones include overlay
models, which characterize the student’s knowledge as a subset of an expert’s knowl-
edge; perturbation (or buggy) models, which catalog both the student’s correct and
incorrect ideas or misconceptions; and stereotype models, which represent the student
through membership in predefined classes (Chrysafiadi & Virvou, 2013; Desmarais &
Baker, 2012). The methods for estimating and updating these models also vary widely,
but frequently they involve a combination of a hidden Markov model (HMM) and a
more traditional psychometric model.
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The dynamic nature of updating estimates of student state makes the HMM a
particularly suitable statistical tool. The HMM (see Figure 9.5) specifies how an unob-
served latent variable, for example, mastery of skill K, might change over time based on
observedvariables, ~ , for example, answers given to problems within thelearning system.
The statistical relationship between the unobserved variable and the observed one is
known as the emission probability, p(x; = 1|K;). For many student models, this emis-
sion probability takes the form of a psychometric model (e.g., IRT, cognitive diagnos-
tic model, CDM; Rupp et al., 2010). The probability of the latent variable changing
between studentactionsis known as the transition probability, p(K, = 1|K,_,).Within
adaptive learning systems, this probability is related to the learning rate. Additional
parameters, frequently represented as ¢, can include amount of time between occur-
rences and a quantification of the intervening instruction.

P(K, =1|K, ;)

FIGURE 9.5
A Hidden Markov Model for Estimating Student State Over Time

Because the form and content of adaptive learning systems vary widely, the modeling
approaches also vary. For learning systems that primarily present a series of problems
for the student to work through (e.g, ASSISTments, Heffernan & Heffernan, 2014;
Andes, vanLehn et al.,, 2005), the key inference at any given moment is whether the
student has mastered a particular, narrowly defined skill. This inference allows the
tutor to introduce a new skill once the current one has been mastered. Thus, an over-
lay model is frequently employed to represent the student, with a discrete set of Bool-
ean variables tracking mastery of the skills or knowledge components of interest. The
most common updating method for this purpose is Bayesian knowledge tracing (BKT;
Corbett & Anderson, 1995), which takes the form of an HMM. In BKT, the probability
of a student having mastered a skill L on their nth attempt is modeled as the sum of the
probability they had previously mastered it at the (n — 1)th attempt and the probability
that they had not previously mastered it but now have mastered it (transitioned) on this
attempt ( T, ):

p(L,) = p(L, |X, )+ (1= p(L,_ X, ))=p(T,) (1)
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The emission probabilities in BKT usually take the form of a CDM (Rupp et al., 2010),
which models correctness of response based on a set of skills represented as Booleans,
either mastered or nonmastered. CDM models include slipping and guessing parame-
ters to account for an incorrect response when the requisite skills are present (slipping)
and a correct response when the requisite skills have not been mastered (guessing).
Combinations of skills can be modeled either as conjunctive or as compensatory, allow-
ing the flexibility to apply appropriate cognitive theory for the domain.

Another common approach to student modeling within adaptive learning systems
is performance factor analysis (Pavlik et al., 2009). Such models characterize student
knowledge in terms of continuous variables and make use of an updating mechanism
that is a variation of IRT with a learning parameter (slope).

More recently, advances in recurrent neural networks have been applied to the prob-
lem of estimating and updating student proficiency variables in what is known as deep
knowledge tracing (DKT; Piech et al,, 2015). DKT uses the same inputs and outputs
as BKT, but rather than computing probabilities of skill mastery and using them to esti-
mate subsequent performance, the probabilities of success on future items are predicted
directly with a recurrent neural network, usually using a long short-term memory layer
to ensure that past performance has an extended impact on future predictions. At the
time of this writing, several extensions to DKT have been developed that augment the
input vectors with both item information (including difficulty and skill tapped) and
additional performance information, such as the amount of time taken to solve the
item (Ai et al., 2019). Structural improvements to the predictive models have also been
proposed, including applying regularization to prevent large variance in the predictive
output (Yeung & Yeung, 2018). While the recurrent neural networks approach requires
a large training data set, the flexibility of these models to utilize complex inputs, incor-
porate domain-specific data transformations, and interface with other models makes
it likely that DKT and other uses of deep neural networks will have a major impact on
adaptive learning technology in the near future.

Models that are more deeply grounded in learning theory have also proven useful for
interpreting behavior in solving complex tasks. In particular, the ACT-R cognitive archi-
tecture (Anderson et al., 1997) has been used to predict student actions in multistep
problem-solving using a technique known as model tracing (Corbett etal., 1995). ACT-R
models cognition at a fairly low level, including declarative memory, working memory,
and procedural knowledge in the form of if-then production rules. These models pre-
dict not only keystroke-level student actions, but also the time between actions, provid-
ing additional predictions that can be used for model validation. Because there are so
many parameters involved in an ACT-R model, individual parameter estimation is not
attempted. Instead, student actions are compared to an ideal student, or expert, model.
In some adaptive learning systems, this comparison is sufficient because any off-path
action triggers tutoring until the student returns to the ideal path.

Bayesian models and estimation have been popular in adaptive learning systems,
including the intelligent tutors built on ACT-R (Koedinger & Corbett, 2006). One
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attraction is that Bayesian estimation can occur iteratively as each new data point
updates the models’ probability distributions. This real-time updating allows the
system to act on an estimate as soon as it passes a set certainty threshold. In ACT-R
tutors, this “knowledge-tracing” technique allows the system to select tasks that exer-
cise knowledge components the student is not likely to have already mastered (Aleven
etal, 2017).

One particular type of Bayesian model, the Bayesian network (Bayes nets), is
frequently used to represent complex relationships between the evidence emerging
from student performance and the latent variables that make up the student model
(Chrysafiadi & Virvou, 2013). A Bayes net is a directed acylic graph in which nodes
represent variables and relationships between nodes are described with conditional
probability distributions. In adaptive learning systems, the variables represented are
almost always categorical, making these relationships conditional probability tables
(CPT).

Figure 9.6 shows a simple Bayes net that might be part of a psychometric model (note
that there are too few observable variables for this model to be identifiable given the
number of latent variables). The observable variables ( x,, x,, x,) are indicators (behav-
iors) from a student performance, while K,and K, are latent variables that explain
differences in performance. In this example, we include an intermediary latent node
S, that could indicate a particular strategy students might implement. The observable
behaviors x, and x, are indicators of use of this strategy and, as such, are not condition-
ally independent given K, but are conditionally independent given §. Observable x,
has two parents ( K, Kz) making this variable a within-observable multidimensional
measurement model. The way in which K and K, interact to produce the observable
x; can be flexibly defined by the CPT of x,, allowing for compensatory, noncompen-
satory, and more complex relationships to be modeled.

FIGURE 9.6

A Simple Bayesian Network

Note. The gray nodes represent latent variables and the white nodes are observed variables.
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A Bayes net can be updated when new observations are made, giving a running
dynamic probability distribution for the latent variables. One of the most attractive
properties of using Bayes nets for student models is that complex relationships between
cognitive and affective latent variables can be modeled to explain specific behaviors.
Thus, for learning systems that employ dynamic estimation from student interactions
in a simulation, game, or other complex performance, the Bayes net is a natural choice.
These models can also be found in formative assessments that include both complex
evidence and student models (Almond et al., 2007, 2015).

Evaluation of Student Models in Instructional

and Learning Systems

The overall functioning of adaptive learning systems has generally been evaluated
based on the achievement gains produced as compared to a traditional curriculum
(e.g., Pane et al., 2013). While such gains may suggest that the system is working prop-
erly, they do not necessarily confirm the validity of the student models. Similarly, the
absence of learning gains does not necessarily imply a failure of the models. Because
the function of the student model is to enable feedback or adaptation of tutoring, the
model’s value might best be judged with respect to how effectively it achieves these
goals during the learning session. Experimentally contrasting a linear presentation
of problems with one dictated by knowledge tracing, for example, can identify the
student model’s impact on achievement (Corbett et al., 2000, as cited in Aleven et al.,
2017, p. 528).

Other evidence as to the quality of model functioning can be provided by how well
the models predict the student’s next action or the success of their next solution attempt.
Because this prediction is seen as a classification task, researchers in the learning system
and data-mining communities have frequently used a classifier accuracy metric known
as area under the curve. Area under the curve is calculated by plotting the probability of
a true positive by the probability of a false positive over the range of possible threshold
values for the classifier. The area under the curve would thus be 1.0 for a perfect classi-
fier and 0.5 for random selection.

COMBINING CONSEQUENTIAL DECISION-MAKING
AND INSTRUCTIONAL SUPPORT: CAN TECHNOLOGY-
BASED ASSESSMENT DO BOTH?

Earlier sections addressed assessments used to support consequential purposes and
assessments used to support instructional decision-making. The affordances of tech-
nology make it easier to imagine the possibility of generating information from the
same assessment that might simultaneously serve consequential decision-making and
instructional-support purposes. Several approaches might be taken to satisfy this dual
end, with the approaches differing in fundamental ways, especially in foregrounding
one or the other purpose.
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The least radical approach would entail generating formative information from
consequential TBA. Here, the consequential purpose would be central and the forma-
tive purpose supplementary. As an example, a state English language arts accountability
assessment will typically produce total scores, proficiency levels, and other scores. One
or more of the other scores may come from a response to an essay task, including scores
summarizing overall writing quality as well as ones characterizing such writing traits as
content and conventions. To be sure, such trait information provides only a very mini-
mal level of formative information. More valuable might be a description of how the stu-
dent wrote the essay, generated by capturing and analyzing the keystrokes used to create
it (Zhang, Bennett, et al., 2019). For instance, was there evidence of planning (e.g., the
rudiments of an outline early in the writing session), verbal fluency (e.g., long bursts of
text), word-level monitoring (e.g., correction of typos), or global monitoring (jumps
from one cursor position to another followed by insertions and deletions)? Were there
indications of difficulty in typing (signaled by consistently lengthy intervals between
key presses) or of problems in word finding (e.g., long pauses between words)? Possibly
more valuable for the teacher and student would be the ability to replay, in speeded-up
time, the essay as it was written, thereby giving an opportunity for discussion and reflec-
tion on the writing process (Vandermeulen et al., 2020). A process description and
replay could lead to the realization that typing practice was needed or that instruction
in planning or in how to edit should be provided.

The above approach clearly foregrounds consequential assessment by building into
it secondary mechanisms for more effectively supporting instructional decisions.
Those mechanisms will be far fromideal. Such feedback will occurlate in the school year,
be limited to that which can be either wrung from the existing assessment or designed
into it without compromising its primary purpose or practicality, and be divorced from
the context of classroom instruction. Along with other reasons, these limitations have
motivated third-generation proposals that attempt to better balance the two assessment
purposes. That is, these proposals move toward foregrounding instructional support
decisions, with information for consequential decisions coming as a by-product.
Periodic, or through-year, assessment offers one version of this idea (Bennett, 2010b;
Bennett & Gitomer, 2009; Northwest Evaluation Association, 2019).

In through-year assessment, measures are repeated at various time points. A key ben-
efit of this model is that consequential decisions (e.g., school accountability) would
no longer be based on a single measure taken at one time point, but rather on some
aggregation of the through-year observations. Also, more frequent feedback would be
provided from each of the through-year events.

Many features of this idea could in principle be varied, including the number of TBAs
administered, what content they cover, when they are given, the extent to which dis-
tricts and schools can choose the ordering, and how results are accumulated into a per-
formance index. The greater the variation in these features across schools or districts,
the lower will be the comparability of the results (Bennett, 2020). The highest level of
comparability would generally result from administering a fixed number of assessments
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created from the same content specifications at selected time points to each student
under the same conditions and scored with the same aggregation rules. Administering
different forms of a comprehensive interim assessment during 1-week windows in fall,
winter, and spring would be a simple example, though the extent to which it would fore-
ground instructional support decisions might be arguable (Shepard et al., 2011). More
attuned to instructional support decisions would be a regimen in which each assess-
ment focused on a different critical competency associated with grade-level standards.
Such a design would either require all schools to follow the same instructional sequence
or allow them to choose the order of administration, complicating comparability and
test security. (See Georgia Department of Education, 2018, pp. 80-82, for a description
of such an assessment piloted under the federal Every Student Succeeds Act Innovative
Assessment Demonstration Authority.)

In through-year models, many rules for aggregating results are possible, each derived
from a different conception of achievement (Wise, 2011). Weighting the results as a
composite with the greatest emphasis given to the most recent assessment would reflect
aview of achievement as competency accumulation. A different weighting could mimic
the way grades are averaged over quizzes, midterms, and final exams, with this more
even weighting suggesting a view of achievement as a collection of accomplishments.
A third possibility is to aggregate results based on test information, which would
emphasize precision in measuring the dimension common to the several assessments.
Finally, taking some function of the difference between the first and last result con-
ceptualizes achievement as the extent of growth. Psychometric models related to these
different types of aggregation have been explored by Mislevy and Zwick (2012), Fu and
colleagues (Fu & Feng, 2018; Fu et al., 2012, 2013), and Rijmen (2009).

Perhaps the most radical proposal for foregrounding instructional support decisions
while generating information for consequential decisions as a by-product is to use a
record of daily learning interactions, potentially removing the need for separate assess-
ments entirely (Bennett, 1998, pp. 11-14; Gee & Shaffer, 2010; Pellegrino et al., 2001,
pp- 283-287; Tucker, 2012).° There are many attractions to this third-generation idea,
including the sociocognitive one that the contexts for learning and assessment become
identical. That is, both activities draw on the very same content, knowledge represen-
tations, and tools (Bennett, 2015), increasing the value of the derived information for
adjusting instruction. An example of how this idea might work instructionally can be
found among adaptive learning systems like MATHia (Ritter et al., 2007). As noted,
these intelligent tutors estimate from real-time learning interactions what a student
knows and can do with respect to a content domain and then base moment-to-moment
adjustments on that dynamically computed estimate.

Using this type of data for consequential decision-making, however, would be very
challenging (Bennett, 2015). One obvious concern is that the assessment model is
essentially an extreme case of through-year assessment—that is, one without con-
straints. The reality is that, within a state and even within many districts, students in
the same grade use many different electronic learning applications. These applications
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vary in their content coverage, emphases, and order; knowledge representations and
tools; rigor and quality of problems posed; and scoring criteria and methods, among
other things. Further, some environments are likely to be employed more frequently
with certain demographic groups, thereby confounding group and measure. A related,
but broader concern is that the evaluation instrument is no longer independent of the
school or district, leading to the perception that these entities are appraising them-
selves. Also possibly problematic is the continuous recording of behavior for use in
consequential decision-making, which raises both privacy concerns and such educa-
tional ones as the potential for discouraging experimentation in teaching and learning.
Discouraging experimentation would be unfortunate because such behavior serves a
critical function in learning (Kapur, 2010).

Several possibilities exist for reconciling more effectively the goals of consequential
assessmentwith those of assessment for instructional support. These possibilities revolve
around systems of assessment—that is, TBAs designed to function synergistically in
their pursuit of different goals because trying to fashion a single method for achiev-
ing competing goals leads to a suboptimal solution for each goal. One such proposal
follows the competitive sports model (Bennett, 2015), a variation of through-year
assessment. During instruction, students utilize whatever electronic and other learning
environments their schools employ, with learning interactions recorded and used for
guiding (and occasionally describing) instruction but never for consequential purposes
(as in the practice periods before, and often interspersed within, a sports competition).
Students and teachers are informed when an assessment for consequential purposes is
to occur (i.e., the actual competition). That assessment is common in design, content
specifications, administration window, and scoring across all schools and districts. For
state policy makers, such a system could provide the data needed to evaluate how well
individual schools were performing in educating all groups of students (from some
aggregation of the common assessments’ results), along with descriptive data about
what students in each school were doing (from sampling the recordings of learning
behavior). The latter data might allow instruction to be described at an unprecedented
level of detail, greatly enhancing our understanding of learning activity, content, and
rigor differences occurring across teachers, classes, schools, districts, and demographic
groups.

SUMMARY AND CONCLUSION

This chapter considered three broad classes of TBA: ones used to support consequen-
tial purposes, ones used to support real-time instructional decision-making, and third-
generation ones that attempt to combine both purposes.

For consequential testing programs, the rationale for moving to TBA is tripar-
tite: align the testing medium with that of learning and of the information economy
workplace, conduct assessment processes more efficiently, and measure what previ-
ously could not be measured as well or at all. In the United States, a first-generation
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infrastructure exists for achieving these goals. Many state assessments, national and
international group-score assessments (NAEP, PISA, Programme for the International
Assessment of Adult Competencies [PIACC]), graduate and professional admissions
measures (GRE General Test, TOEFL iBT'), and occupational and professional assess-
ments (USMLE, Architect Registration Examination, Praxis) are routinely delivered by
computer in educational institutions or in dedicated centers. Other assessments, most
prominently college entrance examinations, are beginning to be delivered in that mode
as well.

As a result of the COVID-19 pandemic, some consequential programs have moved
to include delivery via remote human and AI proctoring to test takers’ homes and
offices. Such administration had been used successfully on a small scale in a few niches
for several years (e.g., competency-based education at the university level and, more
recently, English language assessment via the Duolingo English Test). The COVID-19
pandemic, however, greatly accelerated testing at test-taker locations. In 2020, the GRE
General Test, TOEFL iBT, Praxis, HiSet (a high school equivalency examination), the
Law School Admission Test, and the International English Language Testing System
added home options. Whereas there has been relatively little published research on the
technical quality of assessments so delivered, we expect this evolution to continue as
need drives use, with research catching up.

The successful deployment of a robust first-generation delivery infrastructure for
consequential testing has offered a foundation for innovations in assessment design.
Those innovations generally aim to increase construct fidelity by evoking more complex
cognitive processes and allowing responses to be observed in finer detail. Four kinds
of innovative assessment design were distinguished: TEIs, extended-interaction items,
scenario-based tasks, and simulation-based performance tasks. Gathering validity evi-
dence regarding the functioning of these types is critical to asserting that the evoked
processes are in fact the intended ones, that the innovations do not introduce unfair-
ness for groups or individuals, and that the Person x Task interaction associated with
scenario-based and simulated-based performance tasks is appropriately accounted for.

The changes to practice that TBA entails inevitably raise challenges for score compa-
rability. These challenges occur because many programs offer tests in both paper and
technology modes, other programs wish to maintain TBA score continuity with past
paper versions, and still other programs want to ensure constancy of score meaning
when the digital test is offered on multiple technology platforms. Different degrees of
comparability may be appropriate for different use cases and achievable through differ-
ent methods. Comparability may be studied, and the data needed to make score adjust-
ments gathered, via various designs. However, technology is changing rapidly, forcing
assessment programs to change as well. That rapid evolution may make it impractical to
study and adjust continuously for the effects of new assessment implementations. Thus,
it may be necessary to replace an empirically focused approach with one grounded in
design principles directed at maximizing validity and fairness for individuals and groups.
Empirically based methods like those traditionally used for linking may still play a role
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as one of the investigative methods used to derive assessment design principles or to
document the degree to which device-agnostic results were obtained. However, empir-
ical approaches cannot be relied on as the primary mechanism for ensuring and main-
taining comparability. Moreover, the desire to maintain comparability over time needs
to be balanced against giving testing programs license to incorporate the innovation
required to remain relevant in a rapidly changing world.

One of the as-yet underutilized benefits of TBA is certainly its ability to capture evi-
dence of response processes. Such evidence can contribute to the validity argument
for an item or task, help in the identification of guessing or cheating, and indicate strat-
egy use or the presence of misconceptions. Response process data may include actions,
resulting events, and latencies. Those data may index relatively basic cognitive processes
like fluency or higher level strategies, plans, and knowledge. Because of their complex-
ity and scale, process data are often analyzed and modeled using relatively opaque, bot-
tom-up methods like machine learning, as well as ones from computational statistics
that allow for the instantiation of theoretical propositions (e.g., Bayesian networks).
Combining bottom-up and theory-driven approaches holds promise in that machine
learning can be employed to help build the theory to be implemented in, for example,
a Bayesian network.

In contrast to response process data, the automated scoring of complex constructed
responses is used operationally in many consequential testing programs. This use
is driven by the need to cut costs and increase reporting speed. Such scoring usually
focuses on an end product, such as an essay or an architectural design, although process
data are also included in some instances (e.g., medical patient management). Multiple
approaches can be used to score a given task type. Important distinctions among meth-
ods relate to whether the automated scores are created to predict human scores empir-
ically or generated from theoretical propositions or rules. A second distinction specific
to approaches that seek to maximize agreement with a criterion like human scores is the
extent to which transparent versus black-box methods are employed. Whereas valida-
tion of scoring has usually focused on agreement with human scores, such agreement is
best viewed as one piece of evidence in a more comprehensive validity argument. That
more comprehensive argument may, among other things, need to include an evaluation
of the validity of using the human scores as a criterion. Additionally, how automated
scores are produced, and the alignment of that method with the intended construct,
should be a consideration. Because of concerns over the use of Al in society generally,
we should expect significant work on explainable, transparent scoring methods.

The chapter’s second major section dealt with assessments used to support instruc-
tional decision-making. Such assessment is incorporated into intelligent tutoring (or
adaptive/personalized learning) systems, educational games, and simulations. Intel-
ligent tutors typically deliver instruction built around discrete problems, which may
be similar to the TEIs and extended-interaction items found in consequential tests,
whereas games and simulations often present a more thematically integrated prob-
lem-solving experience utilizing performance tasks. Tutors, games, and simulations
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may employ some combination of cognitive domain model, Al, and probabilistic
method to estimate competency dynamically and, thereby, modulate the current prob-
lem or choice of the subsequent one. Competency is tracked through a student model
that includes a representation of the student’s knowledge state (referenced to the larger
cognitive domain model) and a method for updating that representation. Probabilis-
tic methods employed in that updating have included BKT and Bayesian networks.
MATHia, ALEKS, and the Duolingo language-learning apps are examples of such
tutors in widespread use. Examples of games or simulations that appear to personalize
learning via such methods include Math Garden and Ing-ITS.

In tutors, games, and simulations, response evaluation can focus on the product (e.g.,
answer to a math problem), the process used to generate it, or both, depending on the
underlying cognitive domain model. However, even when the model specifies that evi-
dence of proficiency lies in the correctness of a product, analyzing the process can sug-
gest appropriate next steps in the form of feedback, selecting new problems, or making
other instructional adjustments.

Used in some commercial instructional applications are automated scoring tech-
nologies, most commonly for writing or speaking, that share methodology with those
employed for consequential assessment. Examples in composition include MyLab
Writing and Criterion. These systems evolved separately from intelligent tutors. As a
result, the former systems do not generally use cognitive domain models or probabilistic
methods to estimate and represent student competency or to personalize instruction,
instead only rating and giving feedback on each response in isolation. We should expect
to see systems that use automated scoring to support instruction converge with intelli-
gent tutors because the two approaches offer complementary capabilities.

The last section in this chapter described third-generation approaches that
combine instructional support with consequential purposes. Approaches differ in
the extent to which instructional support decisions or consequential decisions are
foregrounded. Included were generating formative information from consequen-
tial TBA, through-year assessment, and generating consequential information from
ongoing learning interactions. The last approach, while seemingly attractive, raises
questions of comparability, privacy, and the potential for negative educational con-
sequences. An approach based on the competitive sports model was proposed as a
path that might offer the desired benefits while mitigating the issues raised by more
radical models.

What might be productive directions for research? There are many possibilities and
here we suggest but a few. One important direction for both consequential testing and
instructional support purposes might be to build the foundation for operationalizing
the use of process data. For example, research should be directed at identifying whether
diagnostic profiles can be identified suggestive of differential instructional action.
Placement in a profile could be part of the formative output from a consequential test
(e.g., a writing assessment) or as part of personalized instruction. Questions concern
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whether meaningful, distinct classes of behavior can be identified (e.g., dysfluent writer
vs. fluent writer), whether placement of individuals in such classes is stable across tasks
from the same domain, whether the addition of product information adds value, and
whether instruction based on such placement results in more learning than a profile-
agnostic alternative.

An associated direction concerns how best to report process data, whether in con-
junction with a profile or not. If the reporting goal is to encourage reflection as to how
one went about problem-solving, then performance replay should be studied. Key
questions include identifying the replay formats that best facilitate reflection, learner
action, and change in competency.

A third direction relates to the impact of simultaneously incorporating cognitive
domain models, Al, and probabilistic methods into games and simulations. These
capabilities are not yet commonly found together in commercial products. Experi-
ments could be conducted to estimate the incremental effect of using such additions to
increase personalization. A similar direction could be taken with respect to the inser-
tion of cognitive domain models and probabilistic methods in learning systems that use
automated scoring.

A fourth direction is associated with the implications of LLMs for validity, mod-
eling, and analysis. The potential uses of LLMs are wide ranging, including item
generation, constructed-response scoring, feedback, and reporting, among other
possibilities (Bulut et al., 2024; Hao et al., 2024). This direction is notable because
of the great interest evident in the field and the potential for improvements in efhi-
ciency and quality it seems to portend. Although this direction may pose new issues,
because LLMs are a subcategory of Al, many of the challenges LLMs bring are the
same ones as already noted in, for example, the section on Automatically Scoring
Complex Constructed Response Tasks (e.g., bias, explainability, the need for valida-
tion criteria to be broadly based), as well as in other publications (e.g., Bejar, 2012;
Bennett & Zhang, 2016).

Finally, calls to merge the purposes of consequential tests and instructional support
are likely to grow as learning activity increasingly occurs online. Research should focus
on studying the technical quality and instructional utility of approaches that attempt
to account in principled ways for the challenges inherent in combining these divergent
purposes. The competitive sports model is one example. Research should attempt to
determine whether it can produce meaningful consequential results at the same time as
it describes and guides instruction.
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NOTES
1. Soft-max is an extension of the logistic function to multiple-category variables, for
example, p(x,)= exfxi .
x

i

2. That USMLE uses both analysis of product and response process in computing
scores raises the question of how automated scoring differs from response pro-
cess analysis in the consequential testing context. As suggested in the section
introduction, automated scoring is generally used to produce one or more quan-
tities for input into computing a test score. Response process analysis, in contrast,
has been more often directed at such purposes as providing validity evidence,
identifying possible guessing or cheating behavior, describing how groups differ
in their approaches to problem-solving, and suggesting how instruction might be
redirected. Automated scoring is widely used in operational consequential assess-
ment. Response process analysis is far less prominent.

3. The methods used here are like the machine learning methods described for the
evaluation of response processes in the prior section.

4. Relatively few studies have looked at this issue, but those that have been con-
ducted suggest the presence of substantively important differences in how algo-
rithms operate across at least some demographic groups (Bridgeman et al., 2012;
Ramineni & Williamson, 2018).
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S. There are many examples of current assessments taking a more traditional mastery
test form that are used to support instruction but are not of the type described
here. Measures like the Smarter Balanced interim assessment blocks are linear tests
constructed to measure mastery of a narrow competency (or set of related nar-
row competencies) (Smarter Balanced, 2019). Results are linked to instructional
resources in the Smarter Balanced Tools for Teachers.

6. Note that the focus here is on learning interactions only. In contrast, some schools
record virtually every student online interaction for purposes of identifying safety
threats (Haskins, 2019).



