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In this chapter, we focus on validity, modeling, and analysis issues in technology-based 
assessment. For present purposes, we de�ne technology-based assessment (TBA) as a 
measurement used for decision-making primarily in education, but also in the work-
place, that employs digital computing in most, if not all, aspects of its creation, delivery, 
presentation, scoring, or reporting. 

As of this writing, TBAs were being used for consequential decision-making pur-
poses widely in the United States, as well as in some other countries and in some inter-
national assessments. Among the more prominent of such programs are the National 
Assessment of Educational Progress (NAEP), the Programme for International 
Student Assessment (PISA), the Australian National Assessment Program, the GRE, 
the TOEFL, the Graduate Management Admission Test, the United States Medical 
Licensing Examination (USMLE), the Law School Admission Test, and the California 
Assessment of Student Performance and Progress (CAASPP). CAASPP is particularly 
notable because of its test-taker volume, which may be the largest of any such measure. 
On a single day, June 7, 2019, that volume exceeded 670,000 students, with well over 3 
million individuals taking the examinations in the spring 2019 cycle ( Johnson, 2019). 
Although many testing programs, especially those outside the United States, continue 
to test on paper, the number of major testing programs that have become digital, cou-
pled with the large size of CAASPP, demonstrates that technology delivery is feasible 
at scale. �e transition has proven to be, as one of the authors of this chapter had earlier 
suggested, “inevitable and inexorable” (Benne�, 2002). 

What is motivating this transition? Brie�y stated, the most salient reasons revolve 
around three areas. First is the need to align the medium of testing with that of learning and 
of the information economy’s workplace. Absent that alignment, assessment runs the risk 
of appearing, and becoming, irrelevant to its constituents. �e second reason is the belief 
that assessment processes can be conducted more e�ciently, with savings in time and cost. 
Scores, for example, can in some instances be generated and reported immediately. �ird is 
the measurement of constructs that are impossible to evaluate in traditional testing modes. 
Examples include using technology tools for such activities as reading in hyperlinked envi-
ronments, information search and synthesis, writing, modeling, and collaborative prob-
lem-solving (Institute for Education Sciences, n.d., 2018; Mullis & Prendergast, 2017). 

�e transition that has occurred since the 1990s in the United States and elsewhere 
can be described at a high level in terms of three stages or generations (Benne�, 1998, 
2010a). �e �rst generation is essentially an infrastructure-building e�ort. �e cost and 
time required to put that infrastructure into place are typically substantial, involving 
obtaining hardware and so�ware, hiring personnel, providing training, and creating 
myriad new processes and procedures. To control cost and complication, tests in this 
generation o�en look li�le di�erent from paper assessments in their realized design 
and question format. �is generation’s tests primarily serve institutional purposes 
like school accountability, leverage technology minimally (e.g., through incremental 
advances like adaptive testing), and are generally organized as singular events (e.g., for 
state accountability purposes, as annual, end-of-year administrations). 
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In the second generation, goals begin to shi� toward achieving some degree of 
qualitative change and to leveraging the technology more e�ectively for e�ciency 
improvement (Benne�, 1998, 2010a). With respect to the former goal, a diversity 
of less traditional item formats may be employed, including those sometimes called 
“technology-enhanced” (e.g., involving multimedia stimuli, dragging and dropping 
onscreen text or objects, highlighting segments of text). Additionally, new constructs 
may be introduced (e.g., writing on computer), so that what is assessed begins to 
change fundamentally. E�ciency improvements extend beyond delivery via automated 
approaches to item generation (Gierl & Haladyna, 2013; Irvine & Kyllonen, 2010), test 
assembly (Veldkamp & Paap, 2017), and scoring (Shermis & Burstein, 2013; see also 
Shermis et al., this volume), as well as to using the Internet for such processes as item 
review, standard se�ing, human online scoring, reporting, and other communications 
with test users. 

Reinvention characterizes the third generation of assessments (Benne�, 1998, 
2010a). What in the two earlier generations was an evolution dictated primarily by 
technology now shi�s to one driven by substance. In this generation, theory-based 
models and cognitive principles combine with more traditional content considerations 
to provide the substantive basis for assessment design (see Hu� et al., this volume). 
Second, these assessments integrate the needs of individuals more fully with those of 
institutions. A special case of this development is greater integration with instruction, 
including the repeated sampling of performance over time. �ird and �nally, the use of 
complex simulations and other interactive performance tasks allows new skills to be 
measured and traditional ones to be evaluated in more meaningful ways. 

Of note with respect to the focus of this chapter is that the Standards for Educational 
and Psychological Testing (Standards; American Educational Research Association 
[AE�] et al., 2014) contains no section or set of standards speci�cally devoted to 
technology-based assessment. �e document does, however, make clear that “com-
puter . .  . tests need to be held to the same requirements of technical quality as other 
tests” (p. 197) and that the “interpretation of scores on technology-based tests are 
evaluated by the same standards for validity, reliability/precision, and fairness as tests 
administered through more traditional means” (p. 188). In this sense, an assessment’s 
purpose, with its a�endant claims for score interpretation and use, remains the central 
consideration in determining the appropriate level of technical quality. 

With the above as an introduction, the goals of this chapter are to present (a) major 
issues in validity, modeling, and analysis for TBAs and (b) potential approaches to 
addressing those issues. �e chapter is organized as follows. �e �rst section centers on 
assessments used to support consequential purposes. �is class encompasses decisions 
that, as singular instances, may have highly signi�cant impact on individuals, groups, or 
institutions and that are o�en di�cult to reverse. Examples include school admissions, 
promotion and graduation, educator evaluation, school accountability, intranational 
and international comparisons, and job licensure and certi�cation. In this section, the 
history and current landscape are described for technology-based tests of this type. 
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Discussed are innovative tasks and item types, comparability, the analysis of response 
processes, and the automated scoring of complex constructed-response tasks. 

�e second major section covers assessments employed for in-the-moment instruc-
tional decisions or for describing what a student knows and can do so that near-term 
(but not necessarily real-time) instructional next steps can be taken. As singular 
instances, these decisions usually have less dramatic impact on individuals and are more 
easily reversed than decisions we have termed consequential. �is section also begins 
with a review of the history and current landscape that includes brief consideration 
of common technology-based assessment designs and task types, response processes, 
and scoring methods. �is section closes with a discussion of psychometric models for 
assessment embedded in instructional and learning systems. 

�e chapter’s last major section explores the third-generation idea of combining 
both assessment purposes—that is, consequential decision-making and instructional 
support—in the same assessment. We conclude the chapter by summarizing key points, 
giving recommendations for research, and speculating on future directions. 

ASSESSMENTS USED TO SUPPORT CONSEQUENTIAL 
PURPOSES 

In this section, we outline the landscape regarding TBAs used for consequential pur-
poses in education, as well as in the professions and occupations. We include tests used 
to make consequential decisions about individual test takers, as well as state, federal, 
and international measures intended to provide results for various monitoring and 
accountability purposes. In doing so, we trace major milestones in the development 
and operational deployment of TBAs. 

Even prior to the widespread availability of desktop computers, the potential bene�ts 
of testing by computer were relatively obvious. Such delivery o�ered the possibility of 
immediate scoring and reductions in cost associated with the elimination of printing 
and shipping of test materials. �roughout the 1970s and into the 1980s, advances in 
psychometric research and theory by Lord (1970) and Weiss (1976) revealed how more 
powerful psychometric models, coupled with alternative test delivery schemes enabled 
by computer, could also improve quality. Computer delivery that moved beyond sim-
ple, linear, preassembled test forms to the use of sequential and computer-adaptive tests 
(CAT) o�ered the potential of increased measurement precision throughout the pro�-
ciency range, as well as increased e�ciency (i.e., be�er precision for a �xed amount of 
testing time; Lord, 1980; Weiss, 1982). 

�e operationalization of TBA required an infrastructure to deliver tests securely 
on a large scale. As described by W. D. Way and Robin (2016), this infrastructure 
�rst emerged, surprisingly, from the University of Illinois’s e�orts to expand 
computer-assisted instruction (CAI) as implemented in its Programmed Logic 
for Automatic Teacher Operations system. �at system was further developed and 
commercialized by Control Data Corporation. In partnership with the National 
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Association of Securities Dealers, the Control Data Corporation used this system, circa 
1978, to o�er what was most likely the �rst proctored TBA for consequential decisions, 
in this instance for licensure and certi�cation. 

One of the earliest entities interested in the potential convenience and e�ciency 
of TBA—in particular, through adaptive testing—was the U.S. military (Sands et al., 
1997). Military institutions sponsored considerable research and in�uential confer-
ences on this topic that advanced the measurement �eld substantially (Weiss, 1978, 
1980, 1985). In 1979, a feasibility study was launched to develop an adaptive version 
of the military’s selection and placement test ba�ery, the Armed Services Vocational 
Aptitude Ba�ery. �is test was developed, evaluated, launched for operational testing 
in 1992, and adopted fully in 1996. 

One of the earliest e�orts to deploy TBAs for consequential decisions in education— 
in this case, college placement decisions—began in the mid-1980s, when the College 
Board introduced its computerized-adaptive College Placement Tests (CPTs). �e 
CPTs, delivered on microcomputers, were intended for use at 2- and 4-year institutions 
to help identify incoming students requiring remedial education in English, reading, 
and mathematics. �e development and validation of these tests is described by Ward 
(1988) and Ward et al. (1986). �e College Board’s current college placement test— 
Accuplacer—is a direct descendant of the CPTs. 

A subsequent major milestone was the development and introduction by ETS 
(Educational Testing Service) in 1993 of a CAT version of the GRE General Test, for 
use in graduate admissions decisions (Mills, 1999). Designed to award scores that were 
comparable to its paper-and-pencil predecessor, this work produced a key innovation: 
an item-selection algorithm capable of balancing psychometric considerations with 
constraints related to item content, format, and exposure, including dealing with pas-
sage-based items (Stocking & Swanson, 1993). �is innovation helped to ensure that 
GRE CAT scores not only were psychometrically e�cient but also met the content 
validity and fairness criteria important to consequential use. In this same decade, 
ETS followed with computer versions for other postsecondary admissions programs, 
including the adaptive Graduate Management Admission Test and the TOEFL CBT, 
with both adaptive and linear sections. 

Whereas the introduction of these TBAs was a notable advance, it also surfaced some 
unanticipated challenges (Wainer & Eignor, 2000). Paper-and-pencil tests could be 
administered to large numbers of students on a few days per year, requiring only a small 
number of di�erent forms. In contrast, because of infrastructure limits, TBAs had to be 
delivered in small centers to fewer students on a more continuous basis. Since demand 
tended to peak at particular times, problems quickly arose with test-taker access to 
centers. As important, it soon became apparent that initial plans for item pool sizes 
and item exposure controls were inadequate to maintain security. Dealing e�ectively 
with these problems substantially increased the costs of CAT TBA relative to paper-
and-pencil administration. Additional problems emerged with respect to preventing 
students from learning how to “game” the CAT (W. D. Way & Robin, 2016). �e vast 
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majority of these problems have been ameliorated over time, with increased access, use 
of alternative models such as multistage adaptive testing (MST), and enhanced schemes 
for exposure control. As of this writing, the two major undergraduate college admis-
sions programs (ACT, formerly American College Testing; and SAT, formerly Scholas-
tic Aptitude Test) have begun to o�er TBA versions, with the SAT having become all 
digital as of 2024 (College Board, 2024). 

�e �rst forays into TBA consisted largely of adaptively delivering multiple-choice 
items, the staple of paper-and-pencil testing programs. Relatively li�le was done to lever-
age the a�ordances of TBAs for presenting more complex tasks focused on measuring 
a broader set of competencies. While this eventuality may have been partly due to the 
limitations of the available computer technology, other contributing factors included 
cost, limits on available testing time, score reliability, comparability with paper versions, 
and fairness concerning the use of performance testing generally. 

It is perhaps not surprising, then, that early a�empts to introduce performance tasks 
occurred with licensure and certi�cation testing, where longer testing times, costs that 
could be passed on to the test taker, and reduced need to maintain comparability with 
prior versions made such innovations more tractable. For example, in the 1990s the 
National Council of Architectural Registration Boards introduced an automatically 
scored, performance-based design section into its licensure examination (Bejar & 
Braun, 1999). Similarly, the National Board of Medical Examiners incorporated com-
puter-based patient management cases into the USMLE (Margolis & Clauser, 2006). 
Finally, the American Institutes of Certi�ed Public Accountants began to administer 
TBAs containing performance tasks (Breithaupt et al., 2006). It is noteworthy that 
all these examinations retained very substantial, complementary multiple-choice sec-
tions to achieve the reliability and generalizability levels needed for licensure decisions. 
(See Margolis et al., this volume, for a comprehensive review of testing in licensure and 
certi�cation.) 

�e �rst waves of consequential TBA testing—in the military, in university place-
ment, in graduate admissions, and in licensure and certi�cation—occurred with TBAs 
delivered on mainframes, then on stand-alone desktop computers in college placement 
o�ces, and next via networked machines at vendor testing centers (e.g., Prometric 
and Pearson VUE) and in university labs. Hardware and so�ware could be reasonably 
standardized, and the use of data networks to transmit test content and response data 
allowed security to be maintained. For K–12 education, in contrast, the use of TBA for 
state-mandated accountability tests, high school end-of-course measures, and gradua-
tion examinations awaited development of a more pervasive infrastructure that could 
accommodate machines resident in the schools. (See Ho & Poliko�, this volume, for a 
comprehensive discussion of assessment for accountability in K–12.) 

With the evolution of the Internet and the proliferation of laptops and tablets, TBA 
became increasingly practical for state-mandated accountability tests. �is history 
dates to about 2000, when Oregon, Virginia, and a few other states each began pilot 
TBA programs (Benne�, 2002). �ose pilot e�orts gradually expanded so that by 
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2007, Oregon, for example, had received approval for a computer-adaptive version 
of its federally mandated K–8 summative assessment (W. D. Way & Robin, 2016). 
�e passage of the American Recovery and Reinvestment Act of 2009, and in partic-
ular the Race to the Top Assessment Program (U.S. Department of Education, n.d.), 
gave a dramatic boost to development by funding several testing consortia, including 
the Smarter Balanced Assessment Consortium and the Partnership for the Assess-
ment of Readiness for College and Careers (PARCC). Smarter Balanced and PARCC 
developed TBAs aligned to the Common Core State Standards in English language 
arts and mathematics. �e tests made use of adaptivity (Smarter Balanced), items 
that employed technology a�ordances (technology-enhanced items [TEIs]), and 
more innovative performance tasks to measure writing, research, and problem-solving 
skills. �e tests were �rst administered operationally in 2015 in a substantial number 
of states. By the 2015–2016 school year, between the adoption of the consortia tests 
and states that had implemented their own TBAs, EdTech Strategies (2015) estimated 
that 85% of the accountability tests in Grades 3 to 8 would be delivered online. More-
over, although many states were using both online and paper-based tests, only three 
states were not using some form of TBA. Primarily a result of political pressures, state 
membership in the consortia has waned substantially, with many states since choosing 
to implement their own TBA programs. Despite the reduction in consortia member-
ship, most states continue to use TBA in whole or in part for their state-mandated 
accountability assessments (Olson, 2019). 

Progressing alongside the development of TBA for state accountability was incor-
poration into the U.S. national assessment. In 1999, NAEP began a series of studies to 
facilitate its transition to TBA. NAEP is a congressionally mandated assessment and 
di�ers from typical testing programs in that group-level results, rather than scores for 
individual students, are reported for the nation, states, selected demographic groups, 
and some large-city school districts. Results are based on samples of schools and 
students, with a highly e�cient matrix-sampling design employed to cover a broad 
content domain while minimizing testing time for any individual. Although the results 
do not carry direct consequences for schools or students, NAEP results receive much 
press coverage and are highly in�uential in shaping national, state, and big-city educa-
tion policy. 

�e NAEP TBA studies investigated the delivery of traditional NAEP paper-based 
assessments in mathematics and in writing via computer (Benne� et al., 2008; Horkay et 
al., 2006; Sandene et al., 2005). Computer delivery occurred on desktop computers via 
the Internet or on disconnected laptops. �ese studies, which involved administering 
the assessments in both modes to randomly equivalent samples, examined issues related 
to comparability of results between computer and paper administration and between 
laptop and desktop administration, as well as issues related to di�erential subgroup per-
formance and the role of computer familiarity. Results were largely favorable, suggest-
ing the prospect of transitioning NAEP to TBA while maintaining trend comparisons 
to previous paper results. A third study explored the use of innovative interactive tasks 
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to examine problem-solving in technology-rich environments (Benne� et al., 2007, 
2010). �is study also yielded promising results. 

Based on this early work, subsequent research, and developments in technology 
and testing, as of this writing, the NAEP program has almost completely replaced its 
paper-based assessments with TBAs. In 2011, NAEP conducted its �rst operational 
writing TBA in Grades 8 and 12 (National Center for Education Statistics, 2012). �e 
assessment, which was delivered on NAEP laptops, required students to compose essays 
in response to prompts, just as in earlier paper administrations. However, because the 
assessment was based on a new framework, no a�empt was made to maintain trends 
to prior years. In 2014, NAEP conducted the Technology and Engineering Literacy 
assessment, designed from inception as a TBA (National Center for Educational 
Statistics, n.d.). �is assessment included TEIs as well as scenario-based interactive 
tasks (see the section on “Innovative Item, Task, and Assessment Types”). 

NAEP’s mathematics and reading assessments at Grades 4 and 8 were transitioned 
in 2017 and consisted largely of traditional multiple-choice and constructed-response 
items, along with a limited number of TEIs ( Jewsbury et al., 2020). Plans for future 
assessments in all NAEP subjects presume digital delivery and the increased use of 
innovative item types. While the current TBAs still employ the standard NAEP matrix-
sample designs, adaptive administration has also been explored (Oranje et al., 2014). 

In similar fashion to NAEP, such international group-score assessments as PISA 
and the Trends in International Mathematics and Science Study (TIMSS), are transi-
tioning or have transitioned to TBA. (See Braun & Kirsch, this volume, for a compre-
hensive discussion of assessments in the international context.) Unlike NAEP, these 
assessments continue to support both TBA and paper administration because not all 
participating education systems have the required infrastructure. Consequently, these 
programs work to maintain comparability of results, both to prior assessment cycles 
and within a cycle. 

PISA, which measures the reading, mathematics, and science skills of 15-year-olds 
across many nations and jurisdictions, transitioned to TBA for all three content 
areas (plus �nancial literacy) in 2015 (Organisation for Economic Co-operation and 
Development [OECD], 2017). �e assessments, which were delivered on school desk-
tops and laptops, consisted largely of TBA analogues to existing paper item types. In 
2018, the reading TBA was converted to an MST, whereas the mathematics and science 
assessments remained linear tests. 

TIMSS, which assesses the mathematics and science skills of eighth graders, was 
also in the process of transitioning to a digitally based version (Mullis, 2019). As of 
2019, TIMSS was administered via computers or tablets, as well as in its paper for-
mat, with about half of participating education systems utilizing each mode. In addition 
to traditional items, the eTIMSS digital version included innovative tasks designed to 
simulate real-world and laboratory situations where students can integrate and apply 
processes and content knowledge to solve mathematics problems and conduct scienti�c 
experiments. 



Technology-Based Assessment 

 
 

 

 

 
 
 

 
 

 
 

589 

A third international group-score assessment, the Progress in International Reading 
Literacy Study (PIRLS), has also incorporated a TBA, this one concentrating on the 
reading skills of fourth graders. In 2016, 16 of the 58 education systems that participated 
in the paper-based assessment (including the United States), also took ePIRLS, 
a supplementary measure of online reading skills (Institute for Education Sciences, n.d.; 
Mullis & Prendergast, 2017). �e assessment, which was delivered on either school 
desktop or laptop computers, consisted of two tasks that required test takers to answer 
multiple-choice and constructed-response items pertaining to information presented 
on simulated web pages. 

As we look to the future, it seems reasonable to assume that TBAs will move toward 
a more decentralized delivery model admi�ing a wider range of assessment devices. As 
seen with the consortia-developed K–12 tests, beyond requiring a minimum con�g-
uration, it is impractical to impose strict control over the delivery device. Within and 
across U.S. states, schools own a wide variety of equipment. Furthermore, it is not fea-
sible for test sponsors to provide a common device at that scale. Similar considerations 
exist for international programs like PISA and TIMSS. 

Moreover, disruptive events like the COVID-19 pandemic make it evident that 
consequential testing may need to be carried out remotely at times. In pandemic con-
ditions, gathering in groups is unsafe. �us, consequential testing may increasingly 
need to be administered in homes on test taker–owned equipment, where feasible 
and where the security conditions for such testing are acceptable to both sponsors 
and users. For the purposes of K–12 assessment, approaches such as remote proc-
toring involving live monitoring or video capture, as well as recording and analyzing 
process data (e.g., timing and keystroke sequences), remain controversial as of this 
writing. 

In addition to various exogenous factors, validity and fairness concerns may be mov-
ing consequential testing toward a more decentralized delivery model. As more com-
plex constructs are included and tasks are incorporated that require extensive use of and 
familiarity with the device and interface, issues of comparability and fairness might be 
be�er served by allowing test takers to work on their own equipment. In that way, score 
di�erences might be more likely to re�ect di�erences in the target constructs rather 
than also re�ecting familiarity with an arbitrarily imposed, standardized device con�g-
uration. 

To make consequential testing possible in decentralized testing environments, 
current strategies for ensuring standardization, security, and fairness will need to be 
adapted. As for K–12 accountability testing, some control over testing conditions may 
still be imposed through the speci�cation of minimum device characteristics like screen 
size and resolution, types of keyboards, and transmission bandwidths. Providing free 
online practice materials and tutorials to familiarize test takers with task types, tools, 
and interfaces will also continue to be important. But most likely, these strategies will 
need to be coupled with a careful approach to designing delivery systems, interfaces, 
tools, and tasks to ensure performance is device agnostic. 
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Innovative Item, Task, and Assessment Types 
In the preceding section, we outlined the development and landscape for consequential 
TBA. Next, we consider the building blocks of innovation in such assessments—items, 
tasks, and assessment types. 

Among the potential bene�ts technology brings to assessment design are increased 
construct �delity (Russell, 2016), evoking and supporting more complex cognitive 
processes, and allowing greater observability of the response process. Construct �del-
ity represents the extent to which the response process evoked by the item accurately 
re�ects the targeted measurement construct. Russell and Moncaleano (2019) identi-
�ed two components of construct �delity: the extent to which the problem context 
is consonant with domain practice and the degree to which the response interaction 
aligns with the interactions that would occur in a real-world situation. For most con-
structs, paper-and-pencil items are far from real-world applications in both respects, 
implying that technology enhancement might allow for increases in construct �delity. 

Complexity of cognitive process relates to the length and depth of reasoning that is 
required to correctly respond to the task. Criticism has long been made about traditional 
multiple-choice item formats because they can measure only certain types of cognition 
and because of the impact that focus may have on teaching and learning (Frederiksen, 
1984). Technology-enabled assessments have the potential to measure constructs that 
involve more complex cognitive processes, such as science practices, collaboration 
skills, and investigative research (Benne� et al., 2010; Csapo et al., 2012). �rough use 
of simulated problem contexts, computer-based tasks can support an extended prob-
lem-solving process more appropriate for these domains from which student cognition 
might be modeled at a �ner grain size (Mislevy & DiCerbo, 2012). 

Whereas TBA may be useful in evoking complex cognition, traditional paper-based 
assessments can also call on higher order response processes through the use of text and 
diagrams (Benne�, 2012). An advantage of computer-based assessments, however, is the 
ease with which evidence about response process can be captured. �e more interactive an 
item response, the more process data can be recorded. �us, technology makes complex 
response processes more observable. “Observable” does not necessarily mean scorable; 
as discussed in the section “Response Processes,” challenges in interpreting and scoring 
process data must also be overcome before this evidence can be used meaningfully. 

In the following paragraphs, we examine technological innovations in four broad cat-
egories: TEIs, extended-interaction items, scenario-based tasks, and simulation-based 
performance tasks. �e �rst two categories involve innovations at the item level, while 
the second two encompass innovations for lengthier tasks that may include interdepen-
dent components. 

TEIS 

�e most common items used in computer-based assessments are traditional item types 
with constrained outcome spaces, some of which could have an exact paper-and-pencil 
replica. �ese items might take multiple-choice, matching, sorting, or short-answer 
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formats. �ey may appear as discrete samplings, independent of one another, or as part 
of an item set. For assessments o�ered on both paper and computer, items with exact or 
highly similar counterparts are desirable to increase the comparability of score meaning 
between delivery modes. Additionally, these items produce data that �t commonly 
used scoring and psychometric models, increasing the likelihood that results can be put 
on the same scale as previous paper administrations. 

While the format of such items is basically traditional, technical innovations can be 
introduced in stimulus presentation or response process, thereby making the item a 
“technology-enhanced” one. For example, the use of images, audio clips, animation, 
and video enables a richer presentation of information, which may increase construct 
�delity or evoke more complex cognitive processes, even when the response type is 
highly constrained (Benne� et al., 1999). Figure 9.1 gives an early example that shows 
how multimedia might be employed in an item stimulus as part of a test of U.S. history 
knowledge. �e item allows the student to view and analyze a primary source in a way 
closer to that of a historian. 

For the response process, the a�ordances of mouse and touchscreen technology are 
frequently used to enable drag-and-drop or on-screen drawing as response mechanisms 
(Zenisky & Sireci, 2002). Drag and drop can be used for questions that ask test tak-
ers to move objects into the correct order or for items in which test takers reposition 

FIGURE 9.1 

A Technology Enhanced U.S. History Item Using Multimedia 

Note. Copyright ETS© 1999. Reprinted with permission. 
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objects from one set to match objects in another set. Additionally, drag and drop can 
access a more continuous response space, such as pu�ing objects onto a map or placing 
a marker on a spectrum (ATP, 2017; Wan & Henley, 2012). 

An example is the PISA 2015 interactive science task, Fish Farm. In this item set, 
students are given a brief context statement about the need to develop a particular 
type of alternative seafood source and the challenges encountered in operating such 
a source. Following this context are three independent items (i.e., subsequent items 
do not build directly on preceding ones or lead to a culminating task satisfying a goal 
given in the context statement). One of the set’s items asks students to help design 
a sustainable farm ecosystem by dragging organisms into the appropriate tanks 
(Figure 9.2). �e cognitive complexity of this item is fairly high because it “requires 
students to understand a system and the role of several organisms within that system” 
(OECD, 2018). Whereas this item could be rendered on paper using a diagram and 
labels for the organisms, the ability to move the organisms into the �sh farm allows test 
takers to more naturally construct, evaluate, and revise their model. 

Russell and Moncaleano (2019) judged that most usage of drag and drop in TBA 
failed to increase construct �delity. Interactivity, per se, does not necessarily improve 
the item. In the �sh tank task, the graphical representation allows students to reason 

FIGURE 9.2 

PISA 2015 Interactive Science Item in Which Students Use Drag-and-Drop Interactions 
to Complete a Model of a Fish Farm 

Note. PISA = Programme for International Student Assessment. From Try PISA 2015 Test Questions by OECD, 2018. 
(h�ps://www.oecd.org/pisa/test/pisa2015/#d.en.537240). CC by 3.0 

https://www.oecd.org/pisa/test/pisa2015/#d.en.537240
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more directly about the placement and interactions among the organisms. �us, the 
drag-and-drop functionality is used e�ectively to increase the similarity of the evoked 
cognitive process to ones that a scientist might employ, arguably enhancing construct 
�delity. 

Extended-Interaction Items 

More innovative uses of technology have generally resulted in greater interactivity, 
providing support for and observation of a more extended response process but still 
within the context of a discrete, stand-alone item or item set. �ese items frequently 
involve constructing a complex response to solve a problem. Test takers might be asked 
to graphically represent a process, analyze data, or test a hypothesis using a runnable 
model (a function that accepts input parameters and outputs a result intended to mimic 
reality, as in the “running in hot weather” example that follows). �is type of item is 
distinguished both by the multiple actions a test taker is expected to take and the depth 
of cognitive processing associated with those actions. 

An example of this class is shown in Figure 9.3. In this PISA 2015 item set, test takers 
are asked to use a runnable model to answer questions about factors that increase the 
risk of dehydration or heat stroke for a jogger on a hot day. Test takers are expected to 
interact with the model, running several trials with di�erent se�ings before responding 

FIGURE 9.3 

PISA 2015 Extended-Interaction Item From the Running in Hot Weather Set 

Note. PISA = Programme for International Student Assessment. From Try PISA 2015 Test Questions by OECD, 2018. 
(h�ps://www.oecd.org/pisa/test/pisa2015/#d.en.537240). CC by 3.0 

https://www.oecd.org/pisa/test/pisa2015/#d.en.537240
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to the multiple-choice item prompt. �e interactions allow students to engage with a 
real-world problem, while providing evidence of solution process through event logs 
(discussed in the section “Types of Response Process Data”). �us, this format permits 
measurement of a construct that is not possible to assess with a paper test. 

Another example of extended interactivity can be found in the PISA 2018 literacy 
items, which provide a simulated web browser for test takers to employ in researching a 
topic. While the primary construct is reading comprehension, the item design requires 
students to follow hyperlinks and use tabs for navigation to relevant content. In this 
case, the interactivity is intended to increase construct �delity by replicating the context 
in which one might undertake information search. 

Scenario-Based Tasks 

Whereas TEIs and extended-interaction items can provide richer stimuli and the 
opportunity to observe response processes, their design as independent items 
(including in sets) limits the depth and complexity of problem-solving. To tap deeper 
problem-solving processes, assessment designers may turn to scenario-based tasks 
(SBTs), as de�ned by Deane et al. (2018), O’Reilly et al. (2019), and others. �ese 
tasks are characterized by an overarching narrative, or scenario, which poses a goal for 
the test taker to achieve. �e scenario presentation is followed by a sequence of related 
technology-enhanced and more traditional items that lead to a culminating perfor-
mance in which the test taker a�empts to satisfy the goal (e.g., a proposal for how a 
school might use a generous gi�, backed by reasons and evidence from given sources). 
SBTs break the process leading to this goal into steps, each of which is at the same time 
part of the larger whole but implemented as one or more distinct items. 

Some of the tasks included in the NAEP 2014 Technology and Engineering Liter-
acy assessment o�er examples. As an instance, the bike lane task consists of �ve items 
(see Figure 9.4). Students are �rst introduced to the motivating problem of safety when 
riding in a lane adjacent to automobile tra�c. Initial items ask students to interact with 
a runnable road-sharing model that rates bike lane safety based on the manipulable 
parameters of automobile speed limit and lane width. In later items, students use the 
information gathered to create safe road designs for cyclists and ultimately to reach the 
goal of a bike route that optimizes safety, cost, and route length. 

�e SBT format, when used to measure problem-solving processes, is a compromise 
between the discrete items of traditional assessment and the open-ended problem-
solving characteristic of an extended project. When assessing complex problem-solving, 
the ability to gather evidence on the process competes with the level of constraint 
imposed on the problem space. If we allow the student full freedom within the prob-
lem space, it is more di�cult to detect, understand, and score the problem-solving 
process used. In unconstrained tasks, the most reliable evidence of competency is typi-
cally the outcome. Unfortunately, the outcome may o�er li�le information with which 
to distinguish and subsequently guide learners within the middle and lower regions 
of the pro�ciency distribution. When the task outcome is complex enough to show 
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FIGURE 9.4 

Selected Screens From the NAEP TEL 2014 Scenario-Based Task Bike Lane 

Note. NAEP = National Assessment of Educational Progress; TEL = Technology and Engineering Literacy Assessment. From 
2014 Technology and Engineering Literary (TEL): Sample Scenario-Based Tasks, by National Center for Education Statistics, 
n.d. h�ps://www.nationsreportcard.gov/tel_2014/#tasks/bikelanes 

�ner gradations of competence, for example, as in an essay or lab report, making such 
distinctions comes at the cost of greater scoring time and e�ort. 

If we instead discretize the problem-solving steps to allow observation of speci�c 
portions of the process, we are inevitably sca�olding problem-solving along a more 
constrained, and frequently more linear, path. �at constraint could improve mea-
surement or, conceivably, undermine it by giving the test taker aids not typically avail-
able in the criterion situation. Research suggests that the former situation may be the 
case. �at is, SBTs may in some respects produce be�er measurement than less-struc-
tured performance tasks, particularly in more e�ectively aligning the processes mea-
sured with the intended construct (Guo et al. 2019, 2020; Zhang, Deane, et al., 2019). 
�is result could be due to the initial questions in an SBT helping to activate relevant 
knowledge and be�er orient the test taker to the task at hand. In the criterion situation, 

https://www.nationsreportcard.gov/tel_2014/#tasks/bikelanes
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similar orientation can come, for example, from consulting with others and viewing 
examples of quality solutions to comparable problems. 

Simulation-Enabled Performance Tasks 

While SBTs sca�old the problem-solving process to enable observable evidence about 
the complex cognition underlying a performance, these tasks are somewhat unnatu-
ral. According to Russell’s de�nition of construct �delity (Russell & Moncaleano, 
2019), SBTs may provide a realistic context, but because of their structure, the actions 
students take might diverge from those that a domain practitioner would employ in 
their problem-solving. 

Performance assessments come closer to actual domain practice, allowing individ-
uals to demonstrate a skill by carrying out a less structured task. A driving test o�ers 
a good example. However, although it has high construct �delity, it requires special-
ized equipment (i.e., a car), a human examiner, and an individualized administration. A 
compromise position is o�ered by TBAs that employ simulation-enabled performance 
tasks. Such tasks a�empt to represent key stimulus features of a given performance situ-
ation, calling on competencies that would be employed in that situation, but reduce the 
resource requirements to more manageable levels. 

As an example, the USMLE seeks to assess a potential physician’s ability to inde-
pendently diagnose and treat a variety of patient conditions. As noted, in 1999, the 
National Board of Medical Examiners incorporated patient case management simula-
tions into the computer-based USMLE (Dillon & Clauser, 2009). In each case man-
agement task, the patient’s condition changes over simulated time. �e test taker can 
engage in various actions that a doctor might take, including requesting patient history, 
ge�ing the results of a physical exam, ordering laboratory tests, making a diagnosis, and 
prescribing treatment. While the “physical exam” is implemented using a set of check-
boxes, the lab tests and treatment plan are speci�ed using text input. �is format pre-
vents any form of prompting because the test taker will not see a list of available tests or 
treatment options (unless there are multiple options that match the test taker’s input). 
While these simulations are not similar in �delity to interacting with a real patient (they 
do not include any visual representation of the patient or of test results like X-rays), they 
replicate the main aspects of the problem-solving process used in practice. As men-
tioned, simulation-enabled performance tasks have also been employed in the architect 
and accountant examinations, among others (Clauser et al., 2016). (See Margolis et al., 
this volume, for more on assessment in licensure and certi�cation.) 

Less comprehensive simulation-enabled tasks can be found in school testing pro-
grams. For example, PISA 2015 assessed collaboration skills using a simulated group 
assignment in which the test taker negotiates with two automated agents to achieve a 
speci�ed goal (OECD, 2018). In this instance, all choices made by the test taker were 
selected responses; however, the choices made changed the task situation. 

Of special note in simulation-based performance tasks is that technology plays a key 
role in observing and making inferences about complex cognitive processes. �at is, 
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the technology environment provides a reasonably realistic problem se�ing that allows 
the test taker to work through the problem in a high-�delity manner. �e test taker’s 
step-by-step decisions can be recorded in computer log �les, making inferences about 
their problem-solving process feasible and, in principle, scorable. 

Appropriate Use of Innovative Items and Tasks 

While innovative item types have important advantages, they are generally expensive to 
build, more complicated to administer, and less well understood in terms of measure-
ment properties. For consequential testing, such item types should be used only when 
substantively appropriate, suited to the target population, and logistically feasible. 

With respect to substantive appropriateness, as noted, such innovation can improve 
construct �delity by enhancing problem presentation or response interaction, thereby 
evoking more relevant problem-solving processes. Instances include constructs that 
involve the use of technology itself, such as technical literacy or data analysis, as well 
as constructs for which the technology can provide a more faithful context for the 
application of skills, as in scienti�c inquiry, medical licensure, or remote collaboration 
(Benne� et al., 2010; Clauser et al., 2016; Csapo et al., 2012). 

In addition to �t with the intended construct, appropriate use implies a good �t with 
the target population. Fit in this context means that all test takers can interact with 
items in ways that provide evidence of competency. Essential to this premise is an infra-
structure capable of validly assessing all members of the test-taker population, includ-
ing those with disabilities or who are English learners (see also Rodriguez & �urlow, 
this volume). 

Feasibility encompasses assessment design, development, administration, scoring, 
and reporting. Innovative items can introduce complications in any or all these phases. 
Design and development time and costs are frequently underestimated by sta� members 
more familiar with traditional assessments. However, the costs tend to be front-loaded 
because the deployment of innovative item types requires developing or adopting new 
tools and processes, training assessment developers, designing for accessibility, con-
ducting cognitive labs to evaluate whether the intended processes are evoked, etc. Once 
this foundation is established, the operational development of innovative items can be 
streamlined by using appropriate authoring tools and improved through the telemetry 
(i.e., process data) produced by the items. Finally, scoring and reporting requires appro-
priate psychometric models to facilitate defensible inferences. 

Validity, Modeling, and Analysis Issues 
Innovative items and tasks present new challenges for validity, modeling, and analysis, 
especially for tests used to make consequential decisions. Such innovations demand 
evidence that new presentation formats and response interactions produce meaning-
ful inferences about the intended constructs. Studies may cover the range of evidence 
types recommended for validation generally (AE� et al., 2014), but with added a�en-
tion to whether the response processes evoked are consistent with the target construct 
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and to what degree construct-irrelevant variance might have been introduced (e.g., 
Gallagher et al., 2002; Mislevy et al., 1999). For SBTs and simulation-enabled perfor-
mance tasks, potential unfairness due to Task × Person interaction may also be present 
(Linn & Burton, 1994; Shavelson et al., 1993). 

Task × Person interaction occurs when one test taker is more familiar with, 
knowledgeable about, or interested in a particular context or topic than another test 
taker. For shorter tasks, this e�ect can be easily balanced by having a variety of di�er-
ent contexts or topics across items. SBTs and simulation-enabled performance tasks, 
however, tend to take signi�cant time, making it impractical to include more than a few 
tasks. For example, the NAEP Technology and Engineering Literacy assessment tasks 
take 10–30 minutes each, leaving li�le room for additional items with contextual or 
topical variations (a problem NAEP addresses through its matrix design and the report-
ing of results at the group level, rather than through individual scores). 

For TEIs and many extended-interaction items, well-understood psychometric mod-
els such as item response theory (IRT) can be used because student response data can 
be reasonably assumed to meet the statistical assumptions of such models. Any media 
or interactivity, however, must be carefully evaluated to ensure that their addition does 
not introduce extraneous cognitive load or other forms of construct-irrelevant variance. 
Particularly for extended-interaction items, the ease with which the computer interface 
is learned and employed can signi�cantly a�ect performance. To ensure fairness, assess-
ment developers must consider the range of experience levels likely in the target popula-
tion. Similarly, items that use video or audio, or that have �ne-motor-skill requirements, 
must be created to be accessible from the outset. Universal design methodologies are 
the de facto standard for achieving this goal, including such features as braille, stacked 
multilingual translations, videos in American Sign Language, and glossaries and test 
directions in other languages (e.g., Smarter Balanced, 2024). 

SBTs and simulation-enabled performance tasks raise signi�cant issues for modeling 
and statistical inference. While SBTs o�en contain a set of scored items that resembles 
a traditional assessment, performance on these items may not necessarily be statisti-
cally independent conditional on pro�ciency. �e overarching narrative and topic that 
de�ne the SBT contribute one source of local dependence that may a�ect estimates of 
test precision under standard analysis approaches. When multiple SBTs are used within 
a larger assessment, a testlet model (Wainer et al., 2000) can be employed to account 
for the added dependencies among item responses within an SBT. 

Another source of dependence might come from how items are related over the sce-
nario. Test takers who draw the wrong conclusions in early items may carry those incor-
rect ideas forward. Such is particularly the case when the SBT is structured so that later 
items build on previous results, as in the bike lane task. �e e�ect of previous errors 
can be mitigated through leveling, in which the test taker is given a correct starting 
value for the new item. Leveling is controversial, however, because it does not allow 
test takers to follow their own path, nor does it necessarily eliminate the dependency 
that could be caused by the test taker’s memory of previous reasoning. Models that can 
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accommodate item dependency, such as Bayesian networks, might be suitable in this 
context (Almond et al., 2015). 

Simulation-enabled performance tasks o�en have a signi�cant number of correct 
responses, especially when the response process itself is key to the target construct. 
In such cases, the log �les contain �ne-grained details such as mouse clicks, keystrokes, 
and latencies, which on their own are likely to have very limited meaning. Lending 
meaning requires thoughtful planning and development, starting with task design 
(Clauser et al., 2016). Such an approach involves creating a task so that it elicits import-
ant features of performance, which can then be aggregated in some fashion for scoring. 
�is approach was used in the USMLE and in the design section of the Architect Regis-
tration Examination (Bejar, 1991; Braun et al., 2006; Clauser et al., 2016). New analytic 
techniques, such as deep learning (LeCun et al., 2015), or novel applications of cogni-
tive-process modeling (LaMar, 2018) may also help in meeting the scoring challenge. 
�e use of response-process data will be discussed further in the section “Response 
Processes” and automated scoring will be discussed in the section “Automatically 
Scoring Complex Constructed-Response Tasks.” 

Comparability of Results and Score Meaning 
As noted earlier, many current TBAs can be characterized as �rst or early second 
generation—that is, they di�er modestly from their paper-based predecessor or current 
counterparts with respect to item types and the competencies targeted for measure-
ment. However, some of these TBAs also make use of innovative items. �us, they are 
beginning to leverage the a�ordances associated with digital administration. In this 
section, we deal with the implications of such leveraging for the comparability (i.e., 
continuity of meaning) of results. 

In one use case—national assessment—the comparability of results from new TBAs 
to prior paper-and-pencil (PBA) results is generally desired. Comparability to PBA ver-
sions is sought because one of the de�ning characteristics of NAEP is the ability to 
compare the performance of students in the early 21st century—overall and for var-
ious subgroups—to cohorts from prior decades. In another common use case, K–12 
accountability as implemented through Smarter Balanced and PARCC, the TBAs 
replace prior, distantly related, paper tests with no expectation of comparability. How-
ever, each of these TBAs may coexist with its own PBA counterpart, the choice of 
examination mode being le� primarily to states, districts, and schools. 

In both use cases, test takers and test users alike may desire, or expect, that results 
obtained under either examination mode should be comparable to the other. For 
group-score assessments like NAEP, recent results obtained with TBA—for the United 
States as a whole, for demographic subgroups, and for states and districts—need to pro-
vide meaningful comparisons to the results from earlier years in which the administra-
tion mode was paper and pencil. Changes in scores need to be interpretable because of 
changes in the target competencies (i.e., to construct-relevant factors), not because of 
an artifact of the switch from paper to digital delivery. Similarly, for K–12 accountability 
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tests, di�erences in results between districts, schools, classrooms, or individual students 
should re�ect di�erences in the constructs of interest, not factors related to examination 
mode. 

Moreover, in some use cases—for example, TBAs for K–12 accountability—the 
TBAs themselves allow for considerable variation in administrative conditions. Both 
the Smarter Balanced and the PARCC tests, for example, are delivered on a range of 
laptops and tablets, and student responses can be input through keyboards native to the 
device, an external keyboard, or, in some cases, touchscreens. Despite this variability, 
test users and takers again expect the results—individual and aggregate—to be compa-
rable across these variations. 

�e de�nition of what it means for scores from di�erent versions of a test, or from 
di�erent tests with similar targeted competencies, to be comparable has received much 
a�ention in the measurement literature, initially within the context of more general 
discussions of score linking and equating (Holland, 2007; Holland & Dorans; 2006; 
Linn, 1993; Mislevy, 1992; see also Moses, this volume). In this literature, compara-
bility is viewed as a ma�er of degree, with the strongest level being achieved when 
scores from di�erent tests can be considered interchangeable. Less-stringent degrees are 
achieved through other forms of scale alignment such as concordances, statistical rela-
tionships between the results of assessments of related constructs that hold in speci�c 
populations. 

Interchangeable scores can o�en be obtained in the context of consequential tests, 
like SAT and ACT, which traditionally produced di�erent parallel forms administered 
in the same mode (primarily PBA) for use at each scheduled test administration. Such 
forms are constructed so that the assessed content and psychometric characteristics are 
tightly controlled to enhance comparability. As a result, the test takers at a given level of 
pro�ciency can be expected, on average, to achieve the same test score and to be mea-
sured with the same degree of precision, regardless of the test form administered. More-
over, score meaning—in terms of the competencies measured—can also be assumed to 
be the same, regardless of the form given. 

It is noteworthy that even within this highly constrained context, it is rarely the case 
that the raw scores from di�erent forms (e.g., simple number-correct scores or even IRT-
based estimates) can be treated as interchangeable. However, with proper data collec-
tion designs and appropriate analysis procedures, scores from these alternate forms can 
be equated (i.e., adjusted for any unintended di�erences in di�culty and/or expressed 
on form-invariant scales, like the well-known ACT and SAT scales). For most practi-
cal purposes, a�er equating, the resulting scale scores from di�erent forms of the same 
test can be treated as interchangeable in terms of the constructs measured, as well as 
psychometric characteristics, when making inferences about individual test takers or 
groups. 

In considering the comparability of scores from PBA and TBA forms, interchangeability 
may be a reasonable and desirable goal when the content, item types, and delivery paradigm 
(e.g., linear versus adaptive) of the two modes are kept as close as possible. In situations 
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where the identical (or nearly equivalent) set of items is being delivered, there is a long 
history and considerable body of empirical evidence with di�erent kinds of tests and test-
ing populations, o�en referred to collectively as mode comparability studies. �ough �nd-
ings from this body of research are somewhat mixed, the evidence suggests that—as is 
o�en the case with di�erent PBA forms of the same test—some degree of equating adjust-
ment to TBA raw scores may be required if results are to be treated interchangeably with 
those of the corresponding PBAs. Papers by Paek (2005), Kingston (2009), Drasgow et 
al. (2006), Lo�ridge et al. (2010), and W. D. Way et al. (2006) o�ered pertinent reviews 
for tests that provide individual scores. Jewsbury et al. (2020) gave an additional recent 
example from NAEP pertinent to group-score assessments. 

In some use cases (e.g., the Smarter Balanced K–12 accountability tests and the PISA 
transition to TBA), design di�erences between PBA and TBA also exist—for example, 
the paper version being linear and the computer one item-level or multistage adaptive. 
Changes in test delivery that involve an item-level CAT or an MST could, in some cases, 
be expected to a�ect the psychometric properties of scores, usually by improving the 
precision of results for low- and high-performing test takers relative to test takers in the 
middle of the score distribution. Hence, strictly speaking, scores from the linear PBA 
and adaptive TBA may not be interchangeable in the same sense as scores on parallel 
forms from the PBA test, the di�erences in precision at particular ability levels being 
intentional and desirable. However, through the imposition of content and format con-
straints and the conduct of appropriately designed equating studies (see, e.g., Dorans, 
2000; Schae�er et al., 1995, 1998), adaptive versions of linear PBAs can be instantiated 
such that scores can be treated as equivalent measures of the same construct for practi-
cal purposes. 

As of this writing, however, the TBA versions of a test can be expected to di�er at 
least to some degree from their PBA counterparts in ways that go beyond a simple 
move to adaptive delivery. Even �rst- and second-generation TBAs frequently contain 
some number of TEIs for which exact PBA counterparts do not exist. As a result, subtle 
cross-mode di�erences in the assessed target competencies are inevitable. Similarly, 
construct-irrelevant factors—such as familiarity with and ease of working within the 
digital and paper testing environments, respectively—might also reduce the degree of 
comparability. Di�erent approaches to scoring constructed-response items represent 
an additional threat to interchangeable scores. For example, absent training, human 
raters have been found to di�erentially grade handwri�en versus computer-entered 
responses (Russell & Tao, 2004a, 2004b; Sandene et al. 2005, pp. 14–15). 

�e Standards (AE� et al., 2014, p. 105) requires a clear rationale and support-
ing evidence for claims that scale scores earned on alternate forms of a test may be 
used interchangeably. Given the goal of leveraging the a�ordances of digital delivery, 
achieving interchangeability is unlikely, perhaps unnecessary in many use cases, and 
probably undesirable if it limits improvements in measurement precision and bet-
ter representation of important constructs. However, even when strict equivalence 
is not claimed, the Standards requires a rationale and direct evidence of the degree of 
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score comparability commensurate with intended uses and claims (p. 106). Similarly, 
U.S.  Department of Education guidance on peer review of state assessment systems 
(U.S. Department of Education, 2018) suggests that when a state administers di�erent 
versions of its assessment (e.g., TBA and PBA, or TBA on di�erent devices), the state 
should provide comparability evidence generally consistent with the expectations of 
current professional standards. 

What sorts of evidence traditionally have been, and should be, provided to document 
the degree of comparability between TBA and PBA results? Whereas the Standards 
contains no speci�c guidance, there is a substantial literature that addresses the topic 
generally. Some of this literature is located within the broader context of establishing 
comparability of scores obtained under standardized conditions to those obtained from 
test variations such as accommodations, adaptations, or di�erent languages, where 
interchangeable scores are rarely practically achievable. Particularly pertinent discus-
sions can be found in Kolen (1999), Wang and Kolen (2001), Sireci (2005), Winter 
(2010), Lo�ridge et al. (2010), Randall et al. (2012), DePascale et al. (2016), and 
Berman et al. (2020). 

�ere is considerable agreement in this literature regarding the sources of evidence 
required. �ese sources include studies that examine: 

• similarity of the dimensional structures; 
• similarity of item-level psychometric properties (e.g., classical test theory indices 

of di�culty and discrimination, IRT curves, IRT model �t in cases where the 
TBA and PBA versions contain identical or corresponding items); 

• similarity of predictive and concurrent statistical relationships between assess-
ment scores and other related educational variables; 

• similarity of measurement precision through comparisons of overall standard 
errors of measurement and standard error curves across the pro�ciency range; 

• similarity of overall score distributions, including means, degree of dispersion, 
and shape; and 

• similarity of score di�erences and extent of di�erential item functioning for 
important subgroups de�ned by gender, race/ethnicity, disability, socioeco-
nomic status, or computer familiarity. 

Whereas a comprehensive evaluation of comparability would involve all these sources 
of evidence listed, rarely in practice is that possible. In analogous fashion with valid-
ity, degree of comparability remains an integrative judgment by test professionals, test 
users, and other stakeholders as to whether claims based on comparisons of PBA and 
TBA versions are adequately supported. 

From a fairness perspective, perhaps the most important sources of evidence for 
tests used for consequential purposes are associated with what Winter (2010) labeled 
“score-level comparability” (the last three sources listed above). Direct evidence is 
usually gathered from mode comparability studies in which TBA and PBA results 
are obtained from groups that can be assumed to be equivalent with respect to the 
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distribution of the target competencies associated with the test. Data from such 
studies serve two roles. �e �rst role is to provide evidence of score-level comparabil-
ity. �e second role is to, when necessary, determine an adjustment from one or the 
other modes to account for the e�ects—that is, di�erences in overall test performance 
(means, standard deviations, or shapes). Depending on other sources of evidence, 
the adjustment can, in the best case, render the scores e�ectively interchangeable or, 
where claims of interchangeability are not justi�ed, increase the degree of comparabil-
ity and fairness inherent in score use. 

Mode-Study Data Collection Designs 

Mode comparability studies have made extensive use of the data collection designs 
traditionally employed for equating and linking (see, for example, Kolen & Brennan, 
2004; and Moses, this volume). Single-group designs have many advantages, in principle. 
In these designs, test takers are given both the PBA and the TBA versions, usually with 
the order of administration randomly counterbalanced (e.g., Gallagher et al., 2002). 
Because the same test takers are tested in both modes, issues related to sampling vari-
ability between groups are minimized. Moreover, this design provides the most direct 
evidence of the construct equivalence of the TBA and PBA versions. �e correlation 
between scores in the two modes and the similarity of internal dimensional structure, 
psychometric properties, and relationships with other variables can all be directly eval-
uated on the same group of test takers. If IRT methods are employed, the appropriateness 
of jointly scaling both tests can also be directly appraised by examining model �t. 

However, there are several challenges with implementing such designs. It is o�en not 
feasible to administer tests in both modes to the same test takers because of concerns 
about burden and so-called order e�ects (i.e., the fact that the relationships between the 
TBA and PBA versions may di�er depending on administration sequence). Lo�ridge 
et al. (2010) described several such studies where di�erential order e�ects were found. 

A somewhat more practical alternative that o�ers many of the advantages of sin-
gle-group designs is the random-groups design (i.e., where test takers are randomly 
assigned to administration mode). Because test takers are assessed in only one mode, 
issues of burden and order are not relevant. When data from large, randomly equiva-
lent groups of test takers are available, almost all the sources of evidence recommended 
above can be produced, the major exception being correlations and joint IRT scaling. 
NAEP has relied, and continues to rely, on such designs in carrying out its transition 
from PBA to TBA (e.g., Benne� et al., 2008; Jewsbury et al., 2020). As part of its 2015 
�eld test, PISA also employed this design to aid in its TBA transition (von Davier et al., 
2019). 

Operational research from NAEP, described in detail by Jewsbury et al. (2020), is a 
particularly good example. Data from the random-groups design were used to adjust 
for mode e�ects associated with TBA, as well as to provide comprehensive analyses 
(including classical test theory and IRT), documenting the evidence for the compara-
bility of NAEP results across modes a�er adjustment. In this study, NAEP administered 
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the PBA and TBA versions of its fourth- and eighth-grade 2017 mathematics and 
reading assessments to random samples of test takers, with random assignment to mode 
carried out largely within each NAEP-participating school. �is within-school design 
was chosen to produce highly similar samples, taking each mode at all the jurisdiction 
levels for which NAEP reports results (nationally, by state, and for large urban districts), 
and to give reasonable statistical power for detecting mode di�erences at the state and 
subgroup levels. 

National-level results comparing item-level statistics across modes (biserial 
correlations, di�erential item functioning statistics, IRT parameter estimates), as well 
as various other psychometric characteristics (e.g., dimensionality), provided solid evi-
dence that the two versions were measuring highly similar target competencies. How-
ever, other test-level analyses indicated that, without adjustment, results from the TBA 
versions of the 2017 reading and mathematics assessments would be systematically 
lower for both fourth- and eighth-grade test takers, with larger mode e�ects for fourth 
graders. A�er making a single adjustment to the TBA NAEP scale-score distributions to 
equate the mean and standard deviation for the national samples taking the assessment 
in each mode, results were shown to be highly similar for the major national reporting 
subgroups (e.g., sex, race/ethnicity), for states, and for participating large urban dis-
tricts. �at is, with very few exceptions, the observed di�erences due to mode were 
within the bounds of sampling error. �e few statistically signi�cant di�erences that 
were observed showed li�le consistency across grades and subject. 

PISA employed a somewhat di�erent approach (von Davier et al., 2019). In the 
2015 �eld test, a number of countries provided data from randomly equivalent sam-
ples of 15-year-olds for both PBAs and TBAs of reading, mathematics, and science. 
�e investigators combined descriptive analyses—that is, visual inspection of resid-
ual plots and indices of item-level model �t—with statistical evaluation of a series of 
constrained IRT models that they refer to as “mode-e�ect models.” �e mode-e�ect 
models imposed increasing degrees of measurement invariance. �ese analyses identi-
�ed some items for which comparable functioning could not be supported. However, 
for most items, the evidence suggested that the IRT parameters were equivalent across 
modes. �ese items were then treated as equivalent in the operational 2015 analyses so 
that results from both PBA and TBA could be reported on a common scale comparable 
to prior PISA assessment cycles (OECD, 2017, chap. 9). 

Whereas the random-groups approach can be quite e�ective, it too may frequently 
be intractable because it relies heavily on random assignment and requires large sam-
ple sizes for su�cient statistical power. Whereas NAEP was able to achieve both 
requirements, those requirements may not be easily met in other operational contexts 
(e.g., where the test-taking population has uneven access to computers or where impos-
ing an administration mode is not acceptable to the test taker or institution). In such 
situations, data collection by necessity will involve self-selected, nonequivalent groups, 
that is, groups in which similarity of the distribution of target competencies for the 
TBA and PBA versions cannot be assumed. 
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With nonequivalent groups, mode comparability studies have typically adopted one 
of two strategies (or their combination). �e �rst strategy is to use statistical approaches 
that employ demographic and other related performance data to control for preexist-
ing group di�erences in the targeted constructs. Approaches such as propensity-score 
matching (Rosenbaum & Rubin, 1985), coarsened exact matching (Iacus et al., 
2011), or weighting-based approaches (Haberman, 2015) can be employed to create 
pseudo-equivalent groups. �ese matched groups can then be used to conduct the desired 
comparability analyses, including the calculation of any mode adjustment. Numerous 
examples of this approach can be found (Lo�ridge et al., 2010; W. D. Way et al., 2006, 
2007, 2008; Yu et al., 2004). 

A second strategy is to rely on common-item assumptions—that is, the assumption 
that identical or nearly identical items appearing in both modes exhibit the same psy-
chometric characteristics (e.g., di�culty and discrimination). When employed in the 
context of nonequivalent groups, this strategy can be thought of as a variant of the 
common-item or anchor test nonequivalent groups design (Kolen, 2007). Numerous IRT 
methods can be applied, including concurrent calibration and approaches based on 
separate calibration of PBA and TBA data, followed by some form of parameter link-
ing on test characteristic curve transformations. In addition, non-IRT methods can be 
brought to bear (see, for example, Kolen & Brennan, 2006, chaps. 4–6). Usually, the 
analyses proceed by �rst assuming that all identical/similar items function comparably 
and then selectively relaxing this assumption based on various diagnostic indices, such 
as model �t and analysis of outliers. 

As a basis for evaluating comparability, both approaches to the nonequivalent groups 
situation come with challenges that can compromise their e�ectiveness. Statistical 
matching requires su�ciently strong ancillary data related to test performance that 
accounts for the di�erences between the groups with respect to the targeted compe-
tencies. When such ancillary data are not available, the matching will not produce 
equivalent groups. As such, conclusions regarding comparability, or adjustments to 
achieve comparability based on equating the score distributions in the matched groups, 
may be suspect. It is important to note that ine�ective matching could potentially a�ect 
conclusions in both directions. �at is, one could be led to conclude that scores are not 
comparable when in fact they are or to miss a systematic directional bias that was inad-
vertently removed through faulty matching. 

A possible example of this situation can be seen with the PARCC K–12 reading and 
mathematics accountability tests, which existed in both TBA and PBA form. �ough 
not strictly identical with respect to all item types, the two modes were intended to pro-
duce comparable results. Comparability studies were conducted based on �eld test data 
in 2014 (Brown et al., 2015) and on the �rst year of operational data in 2015 (Liu et al., 
2016). �e �rst of these studies was originally intended to use a random-groups design, 
but challenges in implementation made it necessary to rely on a post hoc matching 
approach. In contrast, the second study was designed to employ nonequivalent groups 
with propensity-score matching. In each study, a comprehensive analysis was done 
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using most of the generally recommended evidence types (AE� et al., 2014). Both 
studies presented solid evidence that highly similar constructs were being assessed by 
the two modes. Moreover, though small mean di�erences usually favoring PBA were 
noted for particular test subject/grade combinations, the di�erences in average scores 
between modes were, for the most part, negligible. �us, the general conclusion was 
that results could be compared across modes for accountability purposes. 

Despite this conclusion, subsequent studies and analyses of operational PARCC 
results have suggested that, in at least some districts and states, scores on the PBA ver-
sion were systematically higher to a greater degree than would have been expected from 
the mode comparability study results (Backes & Cowen, 2018; Duque, 2017). One 
reason that evidence of noncomparability has surfaced may be that the earlier matching 
procedures did not work as intended, a possibility expressed in the 2016 PARCC Tech-
nical Report (Pearson, 2017, pp. 143–144). However, other considerations—such as 
di�erences in the relationship between TBA and PBA results across groups, states, and 
time—represent alternative, or at least contributory, factors. Several of these consider-
ations are discussed in the following paragraphs. 

Relying on common-item assumptions e�ectively assumes that, at least on average 
across all the items common to both modes of presentation, consistent main e�ects on 
item di�culty and discrimination favoring one or the other mode are negligible. Stud-
ies employing this approach are most typically carried out within an IRT framework. In 
one variation, IRT item parameter estimates based on data from one mode (the refer-
ence mode) are applied to the data from the other mode. Analyses of model �t are done 
to identify items for which the assumption of common parameters appears untenable, 
and these items are then deleted from the set. For these identi�ed items, as well as items 
unique to the other mode, separate item parameter estimates based on data from the 
new mode are obtained, with the parameters for the remainder of the items �xed at 
their reference-mode values. �e full set of item parameters is then used to produce 
results that are directly on the reference-mode scale. 

In situations where the tests have been carefully created to measure similar constructs 
across modes and the assumptions of negligible main e�ect are tenable, this approach 
can achieve comparability of score distributions, as well as provide clues regarding 
item features that interact to introduce cross-mode noncomparability (e.g., when the 
mechanics of response entry for a TEI are more complicated than answering the anal-
ogous question on paper). �e la�er information can be quite valuable in producing 
future comparable versions. However, the assumption of negligible main e�ects can-
not be e�ectively evaluated based on the mode-study data collected with the non-
equivalent groups design. �is situation stems from the fact that main e�ects on item 
parameters due to mode are not separable in the IRT analysis from group di�erences 
on the target construct since the two causes are perfectly confounded. Moving forward, 
these di�erences will manifest themselves as a systematic source of noncomparabil-
ity between scores in the two modes. A�empts are sometimes made to combine the 
common-item approach with matching strategies to disentangle the mode e�ects from 
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group di�erences (ETS et al., 2016; Liu et al., 2016). However, the e�ectiveness of this 
strategy is subject to the limitations discussed previously. 

Much of the conceptual framework and methodologies within which psychometri-
cians have approached issues of comparability (particularly of score distributions) was 
developed when consequential testing was done as PBA under generally strict standard-
ization of administration conditions and testing formats. To be sure, testing conditions 
across PBA sessions varied in small, presumably inconsequential ways. �e basic PBA 
administration infrastructure could be assumed to be stable, reasonably homogeneous, 
and familiar to the vast majority of current and future test takers. �ese assumptions of 
homogeneity and stability undergirded the argument that standardized test scores were 
fair, valid, and reliable and that results from such assessments could be con�dently and 
meaningfully compared over time. 

Early forays into consequential TBA (e.g., for military selection, licensure, graduate 
admissions) occurred largely with adults at test centers where the variability in equipment 
(desktop computers) was limited and under the control of the testing organizations. 
Given these conditions, it was also reasonable to assume that the TBA administration 
infrastructure was stable and homogeneous. �us, similar claims for the fairness, valid-
ity, and comparability of TBA results could be made. Against this backdrop, historical 
approaches to evaluating comparability (particularly of score distributions) seemed 
appropriate. Unintended di�erences in di�culty due to mode, for example, could be 
identi�ed and adjusted for once, much the way adjustments have been made to alternate 
forms of admissions tests like the SAT and ACT. �at adjustment could then be applied 
to results produced by future forms of the TBA, rendering them comparable to past 
PBA results and to one another. 

However, the technology landscape for TBA is di�erent and far more variable, par-
ticularly in K–12, where laptop computers and tablets are used for instruction as well 
as testing. Di�erences in displays (size, resolution), input mechanisms (keyboards, 
mouse, touchscreen), and operating systems carry the potential to inadvertently intro-
duce construct-irrelevant di�erences and impact psychometric properties, not only 
in comparison to PBA versions, but also among the “same” TBA taken on di�erent 
devices. 

NAEP provides a good example of the challenges that consequential testing pro-
grams face. To remain relevant, NAEP has already transitioned many of its assessments 
(reading, mathematics, U.S. history, civics, geography, and science). Up through 2024, 
NAEP’s operational approach has been to standardize by administering the assessment 
on the same device con�guration brought into the participating schools by NAEP per-
sonnel. �is approach is an a�empt to provide, at any given time, a stable and consistent 
infrastructure capable of delivering the full range of NAEP assessment tasks and of 
producing comparable scores. 

However, maintaining a stable delivery architecture over time is becoming unten-
able. Hardware, so�ware, and interface design life cycles make change inevitable. 
New delivery devices, operating systems, and assessment so�ware are periodically 
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introduced. Concomitantly, as NAEP gains experience with its digital delivery system, 
the program itself will want to make user interface and task design improvements. �ese 
changes will a�ect to varying degrees how the test taker interacts with the test, which 
could in turn materially change the meaning of results over time. �is evolution will be 
continuous and inexorable. 

Of course, when NAEP was a paper-and-pencil assessment, changes in assessment 
procedures and content were also periodically introduced. At these limited change 
points, bridge studies (using random-groups designs) were conducted to adjust for the 
potential impact of the changes on assessment results and to con�rm the valid reporting 
of trend. For PBA administrations, results from the sequence of assessments occurring 
before and a�er the change could be safely assumed to be comparable since the basic 
underlying test delivery system (e.g., booklets, pencils) represented a constant delivery 
infrastructure. However, in the TBA era, conducting mode-comparability studies at 
major change points may not be practical, economically feasible, or enough to con�rm 
valid trend reporting. Even with a relatively stable assessment in content and procedures, 
the constant evolution of the delivery infrastructure may be too great. 

In contrast to NAEP, Smarter Balanced and PARCC have taken a di�erent approach, 
electing to support TBA delivery across a wide range of digital devices. �is strategy 
presents a di�erent challenge: how to accumulate and present evidence of compara-
bility across a potentially large number of di�erent devices. As is true for mode e�ects, 
the research on device e�ects has generally used some version of the designs described 
earlier. Reviews by DePascale et al. (2016) and W. D. Way et al. (2016) summarized 
some of the key �ndings about the impact of such factors as screen size, input device, 
and item type, as well as how these factors interact with such things as content area. 
But given the continuing rapid evolution of TBA, a strategy of amassing comparability 
evidence (as historically done for PBA and TBA) would appear to be Sisyphean consid-
ering the plethora of existing TBA device con�gurations. And as noted, the COVID-19 
pandemic brought the administration of some TBA programs to the home, where an 
even greater array of device con�gurations may be found. 

Considering this reality, a more expansive approach to comparability is required. 
W. D. Way et al. (2016) argued that we have moved from an era of standardization 
to one of personalization. In that la�er era, consequential testing is more accurately 
viewed as a collection of variations, many of which are intended to adapt the experi-
ence to the individual in a way that maximizes their access to assessment content (see 
also Benne�, 1999, regarding “generalized accommodation,” and Benne�, 2024). From 
this point of view, it will be necessary to supplement, if not entirely replace, studies 
documenting the comparability of results between variations with mixed methods 
interdisciplinary approaches. Such approaches should provide test, item, and interface 
design principles usable across a wide range of assessment situations. �e knowledge 
obtained would inform the engineering of personalized testing conditions in a way that 
maximizes validity and fairness by increasing the likelihood that results can be treated 
as comparable across a range of devices. 
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As W. D. Way et al. (2016) so aptly put it, 

What is clear is that the evolution of technology will only continue and that schools 

will continue to adopt different technologies in different time frames and will have 

little patience for a measurement field that is unprepared to accept these technol-

ogies for testing purposes. Establishing a framework and a process for evaluating 

new devices and new technologies is perhaps more important than understanding 

the impact to comparability of any specific device or technology. (p. 274) 

D. Way and Strain-Seymour (2021) have taken a step in that direction by proposing 
a framework for device and interface features that might a�ect test performance and, 
thereby, perhaps o�er a path to greater comparability through the personalization in 
the manner W. D. Way et al. (2016) suggested. �at idea is consistent with an emerging 
alternative view of standardization in educational testing more generally. For example, 
Sireci (2020) argued for UNDERSTANDization, in which the �rst step is to appreciate 
the implications of diversity within the student population and then critically evalu-
ate the ways in which traditional standardized procedures may lead to biased estimates 
for some individuals and groups. �e third step involves adjusting those procedures to 
eliminate potential biases. 

Some precedent for this view exists in the way in which testing programs now handle 
accessibility. For example, Smarter Balanced o�ers accessibility features in three cate-
gories: accommodations (available to those students with documented need through 
either an Individualized Education Program or a 504-accommodation plan), desig-
nated supports (available to any student for whom school o�cials have indicated the 
need), and universal tools (available to all students; Smarter Balanced, 2023). Universal 
tools include English glossary (i.e., pop-up de�nitions for selected construct-irrelevant 
words), highlighter, strikethrough, zoom, and notepad. Among the designated supports 
are masking, color contrast, text to speech (for all items except reading passages), glos-
sary translation in 10 languages and several dialects, and translated test directions in 
19 languages. Accommodations are provided through braille, closed captioning (for 
listening items), American Sign Language video presentation (for listening and math 
items), and text to speech (for reading passages in Grades 6 and above), among other 
mechanisms. 

Smarter Balanced test administrations, thus, may vary considerably across students 
depending on the category of accessibility features for which they are eligible and the 
features utilized within that category. �is variation is intended to follow the guiding 
principle that, when selectively metered, accessibility supports can contribute to more 
valid measurement because the assessment is more appropriately customized to student 
characteristics. 

�e beginnings of a scienti�c framework within which to conceptualize comparability 
for students with special needs may exist in the research on the so-called interaction 
hypothesis and on di�erential boost. �e interaction hypothesis indicates that 
accommodated tests (e.g., the availability of text to speech) should result in students 
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with special needs achieving higher scores than they otherwise would, coupled with 
no di�erence for general education students taking the same accommodated test. In 
contrast, di�erential boost focuses on the expected increase in scores for students 
legitimately needing the accommodation, ignoring any e�ect (or lack thereof) on 
general education students. Sireci and O’Riordan (2020) provided a comprehensive 
review of issues related to accommodations and comparability, Sireci et al. (2005) 
gave a discussion of the interaction hypothesis among students with special needs, and 
Pennock-Roman and Rivera (2011) did the same for English learners. 

�ough comparability is emphasized in many consequential use cases, it is important 
to acknowledge that too large an emphasis may have the unintended negative conse-
quence of inhibiting advances in measurement science and practice. Comparability of 
scores to previous versions of an assessment may be undesirable if it is obtained at the 
cost of innovation in test design and task types that provide the potential for improved 
measurement precision and tapping important constructs. �us, as testing programs 
transition from PBA to TBA, they must carefully weigh the costs and bene�ts of main-
taining comparability to past results. 

When severing comparability to past results, new reporting scales are typically 
introduced, which can be extremely disruptive to test takers, test users, and other stake-
holders. Testing programs that do so o�en provide concordance tables showing pairs of 
scores, new and old, having the same percentile rank in a particular population of test 
takers. Such statistical relationships can be helpful during the transition when stake-
holders may be required to make consequential decisions about test takers, some of 
whom have scores on the prior reporting scale and others on the new scale. Concor-
dances, however, carry their own risks of misuse and misinterpretation. �e reported 
statistical relationship does not imply interchangeability of results and score meaning. 
In situations where the knowledge, skills, and abilities measured by the old and new 
version of the test are substantially di�erent, the statistical relationships may not hold 
in populations di�erent from those on which the concordance was established or in 
subgroups of the population. (See, for example, Dorans & Walker, 2007; Pommerich, 
2007; and Sawyer, 2007, for a discussion of the uses and limitations of concordances.) 

Strategies like instituting innovations incrementally to avoid disrupting compara-
bility at a single time point represent a di�erent approach to balancing the trade-o�s. 
�e strategy being used by NAEP for its assessments in reading, mathematics, and sci-
ence appears to follow such an evolutionary approach. In its initial stages, the transition 
concentrated on moving the current paper assessment to digital delivery. Later stages 
introduced innovative item types like SBTs and simulation-enhanced performance 
tasks. Subsequent stages include a 2025 �eld test of web-based delivery on school-pro-
vided devices and possibly further explorations of adaptive testing. 

Introducing such innovations in stages—and evaluating their impact on the compa-
rability of results through careful experimental study and other empirical approaches 
(see, for example, Jewsbury et al., 2020)—will help NAEP develop validity evidence 
for supporting construct-based inferences from existing trend lines. If supported 
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by empirical study, changes in results from the original assessments to the newer 
innovative ones can be interpreted as due largely to construct-relevant factors, over-
all and for most or all subgroups of interest. �e evidence supporting construct-based 
inferences is likely most sound for those assessments close to the transition points— 
and to the comparability studies—where the innovations were introduced. �e validity 
of construct-based inferences may be less well supported for assessments farther apart 
in time, given the potential cumulative e�ect on score meaning of the multiple innova-
tions and the absence of studies directly comparing the modi�ed and original versions. 
Given the rapid changes in technology and the potential advances in assessment prac-
tice, increased ambiguity as to the meaning of changes in results over longer time spans 
may be the price paid for maintaining a relevant assessment system. 

In other instances, where an evolutionary approach is not practical or desirable, 
breaking with the past may represent the wiser course. NAEP again provides an exam-
ple where decisions to forego comparability with prior assessments were made. �e 
most recent instance concerns the transition of the writing assessments at Grades 8 and 
12 from paper to TBA in 2011 (U.S. Department of Education, 2012). �e new NAEP 
writing assessment was based on a di�erent framework than that used in prior years 
(1998, 2002, and 2007). �e implementation of that framework required the assess-
ment to re�ect the reality that most writing in the second decade of the 21st century in 
educational and work se�ings was already done with the aid of technology. TBA deliv-
ery included the concomitant introduction of resources such as a thesaurus, as well as 
such common computer tools as spell check, cut, copy, and paste—all of which had no 
analogue in the NAEP PBA context. In addition, the new framework called for changes 
to the assessment tasks that required a purpose for writing and a speci�c audience to be 
addressed. NAEP decided that the changes re�ected important social and educational 
developments and chose to begin new trend lines without empirical study of compara-
bility. �e loss of comparability to prior assessment results was seen as a necessary and 
desirable trade-o� in return for maintaining the program’s relevance and position as an 
innovation leader. 

Response Processes 
Whereas a loss or reduction in the comparability of results and score meaning to 
PBA might be viewed as a negative e�ect of the transition to TBA, a more positive 
outcome relates to the availability of data about the response process. �e response 
process describes the cognition in which a test taker engages when encountering an 
item stimulus, formulating an answer, and entering that response (Wilson, 2005; 
Ercikan & Solano-Flores, this volume). For some constructs, the test taker’s cognitive 
process is itself a relevant target of measurement, either instead of, or in addition to, 
the �nal product of that process (e.g., in medical patient management, scienti�c 
inquiry). �is section discusses how technology enables the observation and analysis of 
evidence concerning response processes. Such evidence can be captured and analyzed 
from the data collected in any type of TBA, even ones that include only traditional 
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multiple-choice items. However, the potential value, as well as the challenges of such 
capture and analysis, increases with task complexity. 

�e simplest response processes might involve multiple-choice tests of declarative 
memory: �e respondent is asked to recall a fact, �nd the matching response from a 
�xed list, and mark the appropriate option. �e response process to an algebra item 
might be more complex, perhaps involving multiple steps of problem translation, 
integration, solution planning, and execution. A yet more complex response process is 
evoked when a student is asked to write a persuasive essay. �is task might bring into 
play such aspects as choosing the thesis, outlining and planning the argument, dra�ing 
text, and editing and revising that text. A �nal type of response process is exempli�ed by 
a simulation-enabled science performance task. Here, selecting a hypothesis, choosing 
variables, designing and running an experiment, and interpreting the results would all 
be relevant. 

Next we describe the diverse uses of response process data, a�er a short introduction 
to the types of data that TBAs can collect. �ese uses include validation, quality con-
trol, security, and new insights into group and individual performance. 

Types of Response Process Data 

TBAs can, in principle, provide a stream of process data to supplement the tradi-
tional scored response. Log �les are commonly generated, recording key events in 
the response, as well as in the navigation of the assessment. Design of good log �les 
is a new but important part of assessment development (Hao & Mislevy, 2018). On 
the one hand, whereas every keystroke, �nger swipe, mouse action, and latency can 
be recorded, the resulting data will constitute a large, potentially uninterpretable, 
collection. Recording too li�le, on the other hand, may lose valuable information. In 
general, it is recommended to record as much information as possible because new 
analytic techniques are emerging for dealing with the data. 

No ma�er the actual item format, TBAs can provide latency data for each student on 
each item. For example, when a student loads an item, when they select a response, and 
when they submit can be recorded. For reading comprehension items, timestamps can 
denote how long a test taker stayed on a single screen; for a writing task they can indi-
cate how long the test taker paused before beginning to write and between characters, 
words, and sentences. �e more interactive an item, the more timestamped events can 
be collected. 

As the called-for interaction increases, more details of the process used to complete 
a task can be inferred from the log �le. In writing tasks, for example, the recorded 
keystrokes can allow for a real-time recreation of exactly how an essay was composed. 
Mouse actions can also be recorded for items that involve more complex response for-
mats. For highly interactive tasks, such as simulation-enabled performances, each step 
can be logged, providing a �ne-grained record of the test taker’s path to solution. 

It is useful to consider the di�erent levels of inference that might be made about a test 
taker’s response process from log �les. �e lowest level is descriptive, based on the raw 
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data. �ese data might include each keystroke, cursor movement, and mouse action, 
along with assessment-generated events such as the running of a video clip. While data 
at this level are o�en more di�cult to interpret, they may be used to create a playback, 
or description, of a student performance. Such playbacks can be used for quality assur-
ance, validity studies, and performance ratings by humans and as a formative resource 
for instructors or test takers. �is level of data is also objective. If the log records a 
mouse click on a speci�c bu�on at a particular time, it is almost certain that the click 
occurred as recorded. 

A next level of inference is the action or decision layer. At this more semantic level, 
mouse clicks or keystrokes may be interpreted as indications that the test taker decided 
to take an action within the task. �us, a mouse click becomes “selecting response X” 
or, in the context of a science simulation, “running a new trial.” While these inferences 
are relatively low level, one cannot be sure that the test taker intended the interaction as 
it might be interpreted. 

�e highest semantic level identi�es strategies, plans, and knowledge. �is level 
requires the combination of multiple events into a meaningful pa�ern in the context 
of the task. For example, we might infer that a student implemented a “control-of-
variables” strategy to test a particular hypothesis (LaMar et al., 2017) or that a student 
wrote an outline as a plan for their intended essay. 

It is worth noting that timing data can strengthen or weaken inferences. For example, 
we might infer that a test taker did not take the time required to develop a strategy or 
even read the question prompt. �is judgment would indicate that the events recorded 
in the log �le were more likely associated with random noise than with planful actions 
and strategies. 

Utility of Response Process Data 

Because the test-taker response process is central to the integrity of educational mea-
surement, process data have multiple uses throughout the assessment life cycle. Assess-
ment designers have long employed student cognitive labs to test and re�ne items in 
development (e.g., see Connolly & Wantman, 1964, for an early example). �ink-aloud 
protocols or retrospective interviews aim to make observable how the test taker works 
through questions so that item functioning can be improved. 

With the help of automatically generated process data, far larger test-taker samples 
can be evaluated than are possible with these more labor-intensive methods. In the 
early stages of assessment design, such data can be used to identify usability problems 
with the computer interface and to select which tasks are most likely to evoke response 
processes involving the target construct. Items that allow for shortcut solutions or the 
use of construct-irrelevant skills can be identi�ed and modi�ed or dropped. Whereas 
gathering some types of validity evidence is a routine part of assessment design (e.g., 
item alignment, cognitive labs), most evidence is generally gathered from pilot, �eld 
test, and operational administrations because those events provide the sample sizes 
needed for psychometric analysis. Examining automatically gathered process data could 
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complement these analyses (Ercikan & Pellegrino, 2017). For example, Zhang, Deane, 
et al. (2019) compared the psychometric properties of a scenario-based English lan-
guage arts assessment design to alternative structures and found that a single scenario 
functioned best with the essay appearing a�er (rather than before) a series of lead-in 
tasks. �ese psychometric analyses were complemented by process investigations that 
evaluated how students wrote their essays. �ose investigations showed that the scenar-
io-based design reduced the impact of general writing �uency processes on essay score, 
thereby presumably giving students with less keyboard facility or lower verbal �uency 
more opportunity to display their argumentation skills (Guo et al., 2020; Zhang et al., 
2017). (See Padilla & Benitez, 2014, for a detailed discussion of theory, relationship to 
other evidence types, and methods in using processes for validation.) 

Once an assessment is deployed, response process data can be a valuable tool for test 
security and data integrity (Qian et al., 2016). For example, item response times can 
be used to identify unusual pa�erns that may suggest cheating (Marianti et al., 2014). 
Test takers who use a hidden answer key or memorize answers from an illicit examina-
tion copy are likely to have a mismatch between their item completion times and the 
distribution of times from the test-taker population. Such a mismatch may occur in part 
because, by virtue of not having to engage item solution processes, the former group 
moves through items more quickly than do honest test takers. Similarly, a test taker who 
is copying from another test taker will show not only great similarity to that individual’s 
responses, but also synchronicity in timing with those responses. �e detection of any 
such events can allow the possibility of real-time alerts to examination proctors. 

Process data can also be used as part of quality assurance to identify when something 
has gone wrong in administration or scoring. With the addition of technology, qual-
ity assurance must include digital delivery, user-interface functionality, data recording, 
automated scoring, and data transfer and storage. Increasingly, assessment developers 
look to the best practices of so�ware engineering for proper quality assurance method-
ologies because the assessment is a so�ware product. Similar to how so�ware engineers 
create unit tests during development, assessment developers can specify constraints on 
the expected response pa�erns while they cra� the items. Cognitive labs can also be 
used to generate estimates of those pa�erns. During both pilot testing and �nal deploy-
ment, large deviations from the expected pa�erns would then be �agged for investiga-
tion. 

A�er the completion of a test administration, process data can be used to understand 
performance in greater detail than is possible through test scores alone. Such data can, 
for example, illuminate group di�erences in scores (e.g., Benne� et al., 2021; Guo et al., 
2019; Zhang, Benne� et al., 2019). Grei� et al. (2015) used process data from PISA 
TBA items to uncover inquiry strategy use and di�erential strategy use by country. Such 
understanding might lead to adjustments to scoring practices (when it is found that 
scoring privileges one type of solution), teaching (when important solution approaches 
are not being taught), or instruction (when it is found that a population group is not 
bene�ting su�ciently from existing teaching practices). 
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At the individual level, process data could be used for formative feedback to the 
teacher or test taker. �ose data might be used to identify test takers who are likely to 
be guessing (Lee & Jia, 2014), as well as those who appear to hold particular miscon-
ceptions or procedural weaknesses. In a more open-ended problem space, the level of 
depth at which an individual is engaging might also be described. Such evidence might 
enable identi�cation of not only those who need additional guidance, but also those 
who could bene�t from further challenge. 

Analysis and Scoring of Response Process Data 

�e simplest process data consist of response times augmenting the raw item response. 
�us, for every item, the response, its score, and the total time taken are available for 
analysis. Models of test speededness (van der Linden, 2017) that account for student 
changes in strategy due to time constraints and models that predict guessing and 
cheating behaviors have been applied to such data (Guo et al., 2016; van der Linden 
& Lewis, 2015). �e remainder of this section will deal with more complex-response 
interactions, leading to more data available for each item response. 

�e rich and varied information contained within complex-response process data 
presents a signi�cant challenge for analysis. �e log �le contains an abundance of low-
level events that do not readily translate into relevant inferences. Consequently, the sta-
tistical methodology used to make those inferences needs to be well understood and 
appropriately validated. Here, we discuss a few of the more common approaches, along 
with recommendations for analysis and modeling of process data from complex tasks. 

Because of the scale and complexity of the data, psychometric methods traditionally 
used for the analysis of item responses and test scores are frequently inappropriate. Pro-
cess data are irregular in that the recorded events not only vary in number and meaning 
across students but also are context dependent. Furthermore, the parameter space of 
models used in the analysis of such data is large and assumptions of conditional statis-
tical independence are clearly violated. For these reasons, new methods from machine 
learning or computational statistics may be be�er suited to these data. Rather than rely-
ing on models that prede�ne the relationships among variables, in machine learning 
these relationships are derived from the data. �is derivation, or “learning,” requires a 
large amount of data; depending on the complexity of the algorithm and the number of 
parameters, data requirements range from thousands to tens of thousands of records. 
�ese methods are extremely useful when there is a large quantity of factors (variables 
or parameters) or when the relationships between the factors are complex and ill-
de�ned. In either case, prede�ning a full model is impractical. 

Machine learning methods are either supervised, which means that a labeled data set 
is used to train the models, or unsupervised, in which pa�erns are identi�ed within the 
data without prior labeling. Labeling presents a particular di�culty for educational 
applications. While unambiguous classi�cation may be more typical of some tradi-
tional machine learning domains, such as computer vision (either the picture contains 
a cat or it does not), “ground truth” is less common in educational and psychological 
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assessment. Human raters are frequently used to label data, but allowances should be 
made for their known fallibility (e.g., see Ho & Kane, 2013, with respect to the rating 
of teaching processes). Performance replays can be constructed from the process data 
to aid in human labeling (R. Baker & de Carvalho, 2008), which may improve con-
sistency. Unsupervised learning is used primarily in exploratory analyses as a method 
for identifying common pa�erns within a large data set, frequently involving cluster-
ing or dimensionality reduction. For assessment purposes, such analyses can be par-
ticularly helpful in discovering response processes that are di�erent from the expected 
approaches. 

Both types of machine learning expect input data in which each record is represented 
as a feature vector—that is, a list of variables having numeric values (see also Shermis 
et al., this volume). �e mapping of raw data to feature vectors, known as feature engi-
neering, is a critical step because anything not encoded into the feature vector will not 
be usable for classi�cation or clustering. For example, the content of text documents is 
frequently modeled as a “bag of words” in which the feature vector is simply the count 
of each dictionary word used in the document. �is representation does not include 
word order, encoding “house boat” identically to “boat house.” �e representation vec-
tor could be expanded by adding bigrams (two-word sequences) or part-of-speech tags 
to enable such distinctions. For analyzing response process data, features can include 
the count of speci�c actions taken, the mean time between actions, or the most frequent 
action in a given time slice. Feature detectors can be cra�ed that identify signi�cant 
pa�erns of action within the raw data, which can then be added to the feature vector. 
Once the feature vectors are constructed, machine learning uses a variety of statistical 
techniques to classify or cluster records. 

For assessment, classi�cation can be used to evaluate performance, with categories 
like “high,” “moderate,” and “low.” Classi�cation can also be used to identify records 
that are likely the result of guessing or cheating behaviors. For generating formative 
information from a summative assessment, classi�cation can be used to identify strat-
egies or misconceptions. Machine learning methods applied to the classi�cation of 
process data include support vector machines, K-means clustering, logistic regression, 
classi�cation and regression trees, and deep neural networks (Baradwaj & Pal, 2011; 
Rivas et al., 2019). 

Common to all machine learning is that few assumptions are imposed about the 
relationship between the features in the data and the �nal classi�cations. �e statis-
tical methods iterate to optimize a loss function (e.g., classi�cation match with prior 
labels, or data �t), but may add and delete factors and relationships between factors 
or combine the results from multiple models in a weighted fashion. �is methodology 
makes �nal classi�cations hard to defend because the logic behind the classi�cation is 
not transparent. 

An alternative, or complementary, approach is theory-driven modeling. In these 
methods, the relationships between the data and the inference are de�ned in advance. 
�e models may contain parameters that will be tuned given the data, but the meaning 
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of the classi�cations or inferences are clear ab initio. Bayesian networks are an example 
of modeling complex data with a theory-driven approach. Relationships between the 
features (observable variables) and the targets of inference (unobservable variables, or 
latent nodes) are de�ned by the network structure, while the exact probabilistic rela-
tionships between nodes are learned from the data. 

More commonly in educational assessment, a combination of the above two 
approaches is used. Data mining can identify clusters of common action pa�erns. Con-
tent experts then examine these pa�erns and infer, for example, the strategy that the test 
takers employed. Once a set of interesting strategies is identi�ed, models can be built 
to classify records by strategy or score the performance based on the action pa�erns 
observed. 

One of the more active areas of process data research has been in writing, particularly 
for essays composed as part of standardized assessment. Using a combination of theo-
ry-driven and bo�om-up approaches, this research has found meaningful relationships 
between essay scores and such basic features as the types of pauses that characterize 
composition and the length of writing bursts (Almond et al., 2012; Guo et al., 2018; 
Zhang & Deane, 2015). �eoretically predictable di�erences in feature pa�erns among 
writing task types have also been detected (Deane et al., 2018). Studies have used unsu-
pervised data reduction methods like exploratory factor analysis to select and aggregate 
low-level log �le features into scales (Deane, 2014; Zhang & Deane, 2015) and pro�les 
(Benne� et al., 2022). Meaningful di�erences among writing pro�ciency levels and 
among gender, socioeconomic status, and racial/ethnic groups have been discovered 
using such scales (Benne� et al., 2020, 2021; Guo et al., 2019; Zhang, Benne�, et al., 
2019). 

For an extended interactive performance, a di�erent approach from modeling a set 
of extracted features is to model the behaviors of the individuals within the context 
of the problem that they are solving. Decision models calculate the probability of a 
person making a choice in a particular situation, given the person’s goals and beliefs 
(C. L. Baker et al., 2011). One can think of this approach as if we were programming 
an autonomous agent to perform the task. Given a goal, the agent will need to select 
actions, monitor the results of those actions, and select next steps until the goal is 
met or it gives up. Partially observable Markov decision processes are one example 
that can be applied to such assessment performances (Bellman, 1957; Howard, 1960). 
�is model calculates the probability of a person taking a given action in a particu-
lar state of the problem as a so�-max1 over the expected total rewards for taking that 
action. Goals are encoded into the reward structure, which quanti�es both the rewards 
for reaching di�erent problem states (e.g., a solution to the problem) and the costs 
of taking speci�c actions. Beliefs are encoded into the model’s transition functions 
and state space as subjective understanding of both the probabilistic e�ects of taking 
particular actions and what is possible. Inferences about the test taker’s abilities, goals, 
and beliefs can be made by ��ing the model to the response data produced by the test 
taker (LaMar, 2018). 
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Automatically Scoring Complex Constructed-Response Tasks 
�e preceding section centered on evaluating response processes, a method that could 
be applied to a wide range of test item types and used for a variety of purposes that do 
not necessarily factor into the scores reported on consequential tests. In the current sec-
tion, we focus on scoring per se and on a select class of assessment tasks. In particular, 
the section addresses automatically scoring a variety of complex constructed-response 
tasks requiring judgment of product features, process features, or both. We describe 
the tasks to which such arti�cial intelligence (AI) approaches have been commonly 
applied, give a high-level description of how scoring works, and suggest the types of evi-
dence that ought to be considered for validation (see also Shermis et al., this volume). 

Benne� and Zhang (2016, p. 142) o�ered the following de�nition for automated 
scoring: “the machine grading of constructed responses that are generally not amena-
ble to exact-matching approaches because the speci�c form(s) and/or content of 
the correct answer(s) are not known in advance.” As they noted, that de�nition is quite 
broad, encompassing grading approaches that di�er considerably as a function of the 
constructed-response task being posed and the character of the answers expected from 
a given population of test takers. 

As of this writing, automated scoring is used operationally by many testing programs, 
including for postsecondary admissions (GRE General Test Analytical Writing Assess-
ment, TOEFL iBT, Pearson Test of English), occupational and professional licensure 
(USMLE), and school accountability (selected Smarter Balanced states). �e primary 
motivations are to reduce the cost associated with human scoring and increase the 
speed of reporting. 

�e types of tasks to which automated scoring has been applied operationally include 
essay writing, speaking, architectural design, patient management, accounting, mathe-
matical problem-solving, and relatively short text responses associated with reading a 
passage or justifying a mathematical problem solution (Williamson et al., 2012). One 
important dimension along which such tasks may vary is in being static versus dynamic. 
For instance, in the GRE General Test Analytical Writing Assessment, the product or 
outcome—that is, the submi�ed essay response—is the only aspect graded. In con-
trast, the USMLE includes a section containing 13 computer-based case simulations 
(USMLE, 2018). As mentioned, each simulation presents a patient management prob-
lem that changes as the test taker interacts with it (e.g., the test taker’s decision to run a 
diagnostic test produces a result that must be considered and acted on). Consequently, 
USMLE automated grading must account for the process used to manage the patient, as 
well as such outcomes as the �nal diagnosis and prescribed treatment.2 

Irrespective of the task and AI approach, automated scoring generally includes three 
conceptually separable parts: feature extraction, feature evaluation, and evidence accu-
mulation (Drasgow et al., 2006). In feature extraction, the scorable components of the 
response are computed (e.g., parsing and tagging words for essay scoring; identifying 
what actions were—and were not—taken in managing a patient). Feature evaluation 
entails judging the extracted components (e.g., the agreement of subjects and verbs; 
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the appropriateness and order of actions in patient management). Finally, evidence 
accumulation involves aggregating the feature evaluations to produce one or more 
scores. For essay evaluation, judgments about subject–verb agreement would be com-
bined with those related to other aspects of essay quality (e.g., organization, develop-
ment, content); for patient management, evaluations of the appropriateness and order 
of actions would be combined with those pertaining to the suitability of the diagnosis 
and treatment. 

Within a task type, automated scoring systems can be di�erentiated along multi-
ple dimensions. One important dimension is whether scores are created to predict 
human scores empirically or, alternatively, are generated from theoretical proposi-
tions or rules. Most approaches to automated essay scoring take the �rst path. �at 
is, they employ feature weights empirically derived to predict human scores, for 
example, by linearly regressing those scores on the extracted features (e.g., Burstein 
et al., 2013). �is focus on predicting human scores has been driven by a long tra-
dition of human essay rating, whereby human scores have come to be accepted by 
many users as a “gold standard” (Powers et al., 2015). An alternative approach used 
in some scoring systems is to employ propositions or rules based on some theoretical 
decomposition of what constitutes a quality performance in that task domain. �e 
decomposition is based on expert judgment and may involve having one commi�ee 
develop the rules and another commi�ee verify the rules and the scores those rules 
produce, without ever optimizing the automated algorithm to predict human scores 
per se. �at approach was essentially followed in the automated scoring of architec-
tural design problems (Bejar, 1991; Braun et al., 2006) and in medical patient man-
agement (Clauser et al., 2016). In such approaches, humans are used as experts in 
de�ning scoring features and aggregation rules, as well as for quality control when 
the scores are produced. 

A second dimension along which scoring approaches for a given task type may 
di�er is speci�c to those approaches that seek to maximize agreement with some 
criterion, like human scores. �e dimension is the extent to which transparent versus 
black-box machine learning methods are utilized. For example, in some approaches, 
computable features are developed from a construct theory or from an existing scoring 
rubric. Once computed, those features are combined by weighting them empirically 
to produce a score (or other judgment such as a diagnostic categorization). Divulging 
the computable features and their relative weights permits users to make an evaluation 
of the extent to which those features cover the construct theory or rubric, aspects in 
which the features may fall short, and how the weighting comports with the intended 
construct. In contrast, other approaches to automated scoring extract large numbers of 
computable features without any prior construct or rubric mapping and algorithmically 
use whatever features best predict the chosen criterion (usually human scores).3 Recent 
uses of large language models (LLMs) for essay scoring would appear to work in this 
way, though there may be ways to reduce the black-box problem via combination with 
more interpretable measures (e.g., Mizumoto & Eguchi, 2023). In general, however, 
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such approaches will not be transparent to users and may not even be scrutable to the 
system’s developers. 

�e most common approach to evaluating the quality of automated scoring has been 
to compare the generated scores to those produced by operational human raters under 
the supposition that machine–human agreement equal to or greater than human– 
human agreement constitutes validation. As multiple commentators have pointed 
out, machine–human agreement is best viewed as one piece of evidence in the validity 
argument for automated scores or, said another way, validation should be broadly based 
(A�ali, 2007; Benne� & Zhang, 2016; ETS, 2021; Williamson et al., 2012). 

A considerably more comprehensive validation conceptualization has been o�ered 
by Benne� and Zhang (2016), which considers multiple sources of evidence. �eir 
conceptualization began with the validity argument for human scores. It is necessary 
to evaluate that argument if human scores are to be used as evidence for validating the 
automated scores (Bejar, 2012). With respect to human scores, they asked: 

• Do the test-taker response processes align with the construct de�nition? For 
example, if the computer interface is an unfamiliar one, test-taker time and cogni-
tive resources may be split between �guring out the interface and completing the 
task, thereby contaminating human scores with irrelevant variance. 

• Does the human scoring rubric fully capture the construct de�nition? If the 
rubric unintentionally drives human raters toward a subset of that de�nition, 
then that subset will dominate scores. 

• Are operational human raters using construct-relevant scoring processes? If 
raters are using shortcuts (e.g., avoiding the extremes of the score scale, using 
correlates such as response length), then their scores will be a less meaningful 
evaluation criterion. 

• Do raters agree reasonably highly with one another? If not, their justi�cation as a 
validation criterion will be undermined. 

• Do raters treat unusual responses in appropriate ways (e.g., responses that may 
not �t the existing rubric but clearly indicate a high level of competency; ones 
that a�empt to game their way into a higher score)? 

• Do human ratings of one task predict ratings on other tasks from the same uni-
verse reasonably well? If not, the argument for an underlying construct will be 
called into question. 

• Do the ratings relate in theoretically predictable ways to other measures of the 
same construct and to measures of di�erent constructs? 

• Do the above results hold to reasonably similar degrees across important 
population groups? If not, those di�erences may re�ect unfairness in human 
scoring. 

With respect to the validity argument for automated scores, Benne� and Zhang (2016) 
asked: 
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• Was the model trained and calibrated on an appropriate sample of artifacts from 
the target population? If not, it may encounter responses that it cannot properly 
evaluate. 

• Are the model’s features related to one another empirically in theoretically mean-
ingful ways and do the features and their weighting fully capture the rubric and 
construct de�nition? �is question centers on whether the resulting scores are a 
faithful measure of the intended construct rather than some subset of it or simply 
a measure of one of that construct’s correlates. 

• Do the automated scores agree with human ratings (in the best case, with the 
mean rating taken across multiple experts grading under ideal conditions who 
agree highly among themselves)? Machine agreement with a consensus among 
experts makes for a more reliable and arguably more valid criterion than agree-
ment with a single rating generated under more rushed, operational conditions. 

• How e�ectively does the automated scoring handle unusual responses? 
• How well do the automated scores predict performance on other tasks from the 

universe? 
• Do the scores relate to external criteria in the expected ways? 
• Are the functional characteristics described above invariant across population 

groups?4 

• What are the likely intended and unintended impacts of using automated scoring 
on the behavior of test takers and those who educate them? For example, do 
students indiscriminately use more low-frequency words and complex sentences 
(when simpler vocabulary and constructions might be�er serve given writing 
purposes) because they believe such use will increase their automated scores? 

• How does automated scoring compare on each of these dimensions to human 
scoring? Notable di�erences in functioning between the methods should 
be investigated and explained because they are likely to point to sources of 
inaccuracy, irrelevant variance, or unfairness in one or the other method. 

In closing this section, we o�er several important points. �e �rst point is that it is gen-
erally not the automated scoring engine being evaluated, but the scores it produces. 
�ose scores depend on the nature of the examination questions posed and the pop-
ulation assessed. �e validity of scores may vary to the extent that either questions or 
population characteristics change. 

A second point is that, as noted, agreement with human ratings is questionable as 
the sole criterion for automated score validation. �is statement especially holds if the 
validity argument for the human ratings themselves has not been �rmly established. 
Rather, multiple sources of evidence should be sought to permit a more rigorous and 
complete evaluation of the validity argument for automated scores. To the extent that 
those evidentiary sources suggest the same positive conclusion, the argument will be 
strengthened. 
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�ird, one of those sources of evidence should be an analysis of the features used in 
scoring, their weighting, and the alignment of these features and weights to the con-
struct de�nition. In other words, it is di�cult, if not impossible, to rigorously evalu-
ate the validity of automated scores without a clear understanding of how those scores 
are generated and how that generation method comports with the intended construct. 
Such an understanding presumes transparency of the automated scoring system. �e 
need for such transparency is being increasingly recognized in legal frameworks gov-
erning AI systems used more generally to make decisions that have signi�cant impact 
on people’s lives (G20, 2019; Madiega, 2019; OECD, 2019). �at recognition is, in 
turn, fueling e�orts to create explainable AI (Dwivedi et al., 2023; Futia & Vetro, 2019; 
Kuang, 2017; Maglieri & Comande, 2017; Turek, n. d.). 

A �nal point is that our e�orts to build a strong validity argument for constructed-re-
sponse scoring, whether automated or human, should ramp up as the consequences 
associated with test results increase. �is stipulation holds even when those construct-
ed-response scores are not the major portion of the test. Such is the case because, when 
the decisions emanating from test results have signi�cant and hard-to-reverse impact, it 
is the testing program’s responsibility to ensure that, to the maximum extent practica-
ble, all test components are meaningful and fair indicators of pro�ciency. 

ASSESSMENTS USED TO SUPPORT 
INSTRUCTIONAL DECISION-MAKING 

�e section “Assessments Used to Support Consequential Purposes” dealt with conse-
quential TBA, where decisions based on a single result may have a dramatic in�uence 
on an individual, group, or institution and may not be easily reversed. In the current 
section, we focus on TBA uses that generate more easily reversible decisions with less 
dramatic e�ect in any given instance. In particular, we discuss the current landscape for 
TBAs used to support instructional decision-making in real time at the individual stu-
dent level. We will brie�y trace some of the important milestones in the development of 
such embedded, technology-based formative assessment, noting relevant innovations 
in design, task type, scoring, and modeling.5 (See also Brookhart & DePascale, this vol-
ume, for a discussion of formative assessment.) 

�e use of technology-based assessment for instructional decision-making is pre-
mised on the principle that individualizing instruction, as would be done in one-to-one 
tutoring, is more e�ective than targeting instruction to the group. �is principle was 
implemented through mechanical devices known as teaching machines, which used 
simple forms of assessment to direct instruction. One of the earliest such machines was 
created by Pressey (1926, 1927), whose initial purpose was to build a testing device 
for presenting and scoring responses to multiple-choice questions. Realizing its value 
for instruction, he incorporated such rudimentary mastery criteria as not eliminating a 
question until it had been answered twice correctly. Following publication of Skinner’s 
(1958) seminal “Teaching Machines” article, the same basic ideas led to CAI, which 
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a�orded more complex branching possibilities based on the student’s prior response(s) 
(Suppes, 1972; Van Meer, 2003). 

�e 1980s saw the advent of intelligent tutoring systems (Sleeman & Brown, 1982), 
today more commonly called adaptive learning or personalized learning systems. 
Whereas teaching machines, and the CAI implementations that succeeded them, were 
built on behaviorist conceptions of learning, intelligent tutors brought cognitive learn-
ing models to bear and combined them with AI approaches (Anderson et al., 1985). 
�ose domain-speci�c cognitive models and AI methods were used to track a student’s 
knowledge state dynamically as it evolved during an instructional sequence and pro-
gressively adjust instruction as a function of that changing knowledge state. �is real-
time assessment was initially deterministic, meaning that uncertainty was not factored 
into the evaluation of the student’s state. �ese deterministic systems were followed by 
ones that incorporated probabilistic modeling, typically in the form of Bayesian net-
works, into their real-time assessment of student knowledge state (Corbe� & Ander-
son, 1995; Mislevy & Gitomer, 1995; VanLehn & Martin, 1998). 

Many of the intelligent tutors created over the past several decades did not go 
beyond the prototype development stage and, consequently, were not widely used 
in classroom se�ings (Shute & Zapata-Rivera, 2010). One tutor that has been 
widely used is Carnegie Learning’s MATHia, a direct descendant of Anderson and 
colleagues’ extensive, long-term research program at Carnegie Mellon University 
(Anderson et al., 1985, 1995; Pane et al., 2013; Ri�er et al., 2007). A second widely 
used tutor is ALEKS (Assessment and Learning in Knowledge Spaces), based on the 
research of Falmagne and associates at the University of California, Irvine (Doignon & 
Falmagne, 1999; Falmagne et al., 1990). Both ALEKS, now a product of McGraw–Hill 
Education, and MATHia are used at the school level as well as in higher education. A 
third, more recently developed example is Woot Math, which helps students in Grades 
3–8 learn core math concepts, starting with rational numbers (Milne et al., n.d.). Rather 
than the more elaborate cognitive-domain modeling approach taken in MATHia, Woot 
Math concentrates selectively on a small number of ideas and misconceptions identi-
�ed as key by expert teachers and researchers. Of note is that, in addition to selecting 
tasks based in part on Rasch models, the system adaptively determines how fast each 
student should move along the instructional sequence, o�ers help based on Bayesian 
models of each student’s understanding, presents additional instructional modules, and 
inserts new levels with review tasks. 

A �nal example can be drawn from the class of tutors known as personalized learn-
ing apps, which can be accessed on mobile phones, tablets, or conventional comput-
ers. As an instance from this class, the Duolingo language learning app (h�ps://www. 
duolingo.com/) o�ered as of this writing instruction in three dozen or so languages, 
with the more common language courses having on the order of 150-200 brief lessons. 
Lessons are organized around topics common to language learning (e.g., shopping, 
food, entertainment), into which new vocabulary and linguistic structures are progres-
sively integrated. Each lesson is composed of an optional synopsis of the content to 

https://duolingo.com
https://www
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be covered and exercises taking various forms (e.g., matching, selecting and arranging 
words to form a sentence, speaking a presented sentence). Adaptivity and such learning 
sciences’ principles as spaced repetition are employed in exercise selection via prob-
abilistic models (Protalinski, 2020; Se�les & Meeder, 2016), although the particular 
models used operationally have not been identi�ed. 

Intelligent tutors, and their CAI and teaching machine predecessors, had in common 
that instruction was generally built around the presentation and solution of a series of 
discrete problems designed to evaluate student standing. In contrast, educational games 
and simulations o�en present a more thematically integrated problem-solving experi-
ence as a means of facilitating and monitoring learning. �at experience may require 
more problem-solving steps, and the state of the game or simulation may change in 
response to student actions. �us, educational so�ware based on games, as well as on 
simulations, is o�en more performance oriented. 

Like intelligent tutors, games and instructional simulations can, in principle, be built 
on cognitive-domain models, use AI, and incorporate probabilistic methods to estimate 
skill level. Estimation can be dynamic, allowing real-time modulation of the state of the 
problem situation in play or of the di�culty level of the problem situation to be pre-
sented next. As of this writing, we could locate no commercially available, widely used, 
and well-documented examples that possessed all these features. Several commercially 
available games and simulations, however, do possess one or more of these a�ributes. 

As an example, Math Garden allows students to practice basic addition, subtraction, 
multiplication, and division skills (Klinkenberg et al., 2011). �e game is in many ways 
quite traditional, presenting a series of drill-type math problems for which correct 
solutions add garden �owers and garner coins for buying virtual prizes. In addition, no 
cognitive domain model or AI is employed. Presentation is adapted at the item level 
using estimates of student competency that incorporate both speed and accuracy. Esti-
mates are dynamically generated via the Elo (1978) rating system (originally developed 
for chess competitions). 

An example from science is Inq-ITS (Gobert et al., 2018; h�ps://www.inqits.com/). 
�is system employs a collection of laboratory simulations that allows students to 
design and conduct experiments. Inq-ITS uses the Next Generation Science Standards 
as its cognitive-domain framework, coaching students through the NGSS practices of 
designing investigations, using evidence to make claims, and backing up those claims 
with evidence and reasoning. �e system employs machine learning techniques to eval-
uate student responses, generate real-time alerts for teachers, and give students feed-
back on speci�c aspects of their inquiry practice. Bayesian knowledge tracing, described 
in the next section, is employed to estimate student skill levels (LaMar et al., 2017, pp. 
143–145). 

�e formative assessment designs, tasks, scoring, and modeling methods used in 
intelligent tutors, games, and simulations can run from simple to complex. Common 
to most systems of interest are presenting a sequence of problems created to facili-
tate learning some set of domain competencies, scoring in real time, probabilistically 

https://www.inqits.com
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estimating knowledge state (or skill level) from that scored performance, and using that 
estimate to in some way modulate the current task or choice of the subsequent one. In 
the following paragraphs, we brie�y discuss similarities and di�erences among these 
systems in the problems employed, presentation design, response requirements and 
evaluation, and feedback. 

As noted, the problems that these systems present may be discrete or part of a the-
matically related sequence. �ematically related sequences are o�en introduced by a 
scenario intended to give a real-world context, motivate the student, and indicate a goal 
to be achieved. One or more problems typically follow. In an intelligent tutor, a problem 
statement, related stimuli, and any associated tools are available to the student. A game 
would add mechanics (i.e., rules and procedures for play) and such motivating elements 
as points for correct responding, graphics, and audio. In educational simulations, the 
student interacts with an invented milieu that is intended to represent the key features 
of some real-world environment, such that the invented environment mimics the real 
one. �e simulated environment may include runnable models that process inputs and 
produce outputs like their real-world counterparts (e.g., behaving like a patient with 
a speci�c medical condition). Problems may also be presented outside the simulated 
environment, in which case the student responds to those problems based on his or 
her interactions with the simulation. Alternatively, or in addition, the students’ inter-
actions with the simulation may constitute evidence for evaluating knowledge state. 
Regardless, the simulated environment itself becomes part of the problem. 

With respect to presentation, in intelligent tutors, presentation is typically adaptive. 
Games and simulations, however, may have linear, item-level adaptive, or multistage 
adaptive designs. In linear designs, all students encounter the same problems in the 
same order. Many educational games take this approach, allowing a student to progress 
to a higher level only when some criterion performance has been reached (e.g., a �xed 
number of problems answered correctly). In item-level adaptive designs, the di�culty 
of the next problem is determined at least in part by performance on earlier problems. 
Multistage designs di�er from item-level adaptive ones primarily in the frequency of 
adaptation, adjusting the di�culty of tasks at the stage level, rather than at the item 
level. 

As to response requirements and evaluation, in intelligent tutors, games, and sim-
ulations, such requirements may involve entering a number, clicking on a hot spot, 
moving objects on screen, writing text, or manipulating sliders, dials, or other compo-
nents. Responses in all three types of systems can be evaluated in terms of the resulting 
product, the process used to generate that product, or both, depending on the under-
lying domain model. However, even when the domain model speci�es that evidence 
of pro�ciency lies in the correctness of an outcome (e.g., a mathematical result), 
examining the process used to generate that outcome can be the basis for action. �at 
action could take the form of feedback (e.g., providing hints, pointing out errors in 
process, showing a worked example), choosing new problems, or making other adjust-
ments to instruction. 
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Feedback itself may be provided before or a�er responding. A response that is not 
given quickly enough may trigger some event to occur. �at event could be visible, as in 
the provision of a hint, or invisible, as in updating the estimation of the student’s knowl-
edge state. Feedback may also immediately and visibly follow an action—for example, 
an English-language-learning game character might o�er a puzzled look if a grammati-
cally incorrect sentence is entered. 

Probabilistic Models for Assessment Embedded 
in Instructional and Learning Systems 
As indicated in the section immediately above, to provide feedback, as well as to adjust 
instruction, the formative assessment embedded in the learning and instructional sys-
tems of interest uses probabilistic models. In this section, we explore some of these 
models, their evaluation, and their validation. 

Within tutoring systems, “student models” are used to track relevant parameters for 
various characteristics of interest including pro�ciency, engagement, and a�ective state 
( Johns & Woolf, 2006). �ese models are essential for enabling personalization of the 
tutoring experience, with the most basic model indexing where the student might be in 
relation to mastering the content being taught. In such models, pro�ciency is estimated 
dynamically from the student’s performance to enable real-time adjustment to instruc-
tion. Estimation is done through some form of psychometric (or other probabilistic) 
model. 

Although adaptive tests also dynamically estimate pro�ciency, they presume no 
change in pro�ciency over the course of the assessment. In contrast, pro�ciency 
should be expected to change because of interacting with a tutoring system. In addi-
tion, the system must be able to generate frequent formative feedback. E�ective feed-
back requires speci�c, accurate, actionable observations about student performance 
(Ha�ie & Timperly, 2007; Shute, 2008). �us, models need to be able to estimate 
speci�c strengths, weaknesses, and, in some domains, misconceptions. 

For adaptive learning systems like intelligent tutors, the purpose of the student 
model extends beyond direct feedback to enabling the selection of appropriate next-
instructional steps. �ese interventions might be in the form of hints, encouragement, 
explanatory text or video, a worked example, or selection of the next problem. 

At a high level, the student model can be decomposed into the representation of the 
student’s state and the method used for updating that representation. Approaches to 
representing student state vary considerably, but some common ones include overlay 
models, which characterize the student’s knowledge as a subset of an expert’s knowl-
edge; perturbation (or buggy) models, which catalog both the student’s correct and 
incorrect ideas or misconceptions; and stereotype models, which represent the student 
through membership in prede�ned classes (Chrysa�adi & Virvou, 2013; Desmarais & 
Baker, 2012). �e methods for estimating and updating these models also vary widely, 
but frequently they involve a combination of a hidden Markov model (HMM) and a 
more traditional psychometric model. 
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�e dynamic nature of updating estimates of student state makes the HMM a 
particularly suitable statistical tool. �e HMM (see Figure 9.5) speci�es how an unob-
served latent variable, for example, mastery of skill K, might change over time based on 
observed variables, xi , for example, answers given to problems within the learning system. 
�e statistical relationship between the unobserved variable and the observed one is 
known as the emission probability, p x( = 1| K ). For many student models, this emis-i i 

sion probability takes the form of a psychometric model (e.g., IRT, cognitive diagnos-
tic model, CDM; Rupp et al., 2010). �e probability of the latent variable changing 
between student actions is known as the transition probability, p K( = 1| K ) . Within i i−1 

adaptive learning systems, this probability is related to the learning rate. Additional 
parameters, frequently represented as x , can include amount of time between occur-
rences and a quanti�cation of the intervening instruction. 

P(Ki = 1|Ki−1) 

P(xi = 1|Ki) 

K1 K2 K3 

x1 x2 x3 

FIGURE 9.5 

A Hidden Markov Model for Estimating Student State Over Time 

Because the form and content of adaptive learning systems vary widely, the modeling 
approaches also vary. For learning systems that primarily present a series of problems 
for the student to work through (e.g., ASSISTments, He�ernan & He�ernan, 2014; 
Andes, vanLehn et al., 2005), the key inference at any given moment is whether the 
student has mastered a particular, narrowly de�ned skill. �is inference allows the 
tutor to introduce a new skill once the current one has been mastered. �us, an over-
lay model is frequently employed to represent the student, with a discrete set of Bool-
ean variables tracking mastery of the skills or knowledge components of interest. �e 
most common updating method for this purpose is Bayesian knowledge tracing (BKT; 
Corbe� & Anderson, 1995), which takes the form of an HMM. In BKT, the probability 
of a student having mastered a skill L on their nth a�empt is modeled as the sum of the 
probability they had previously mastered it at the (n − 1)th a�empt and the probability 
that they had not previously mastered it but now have mastered it (transitioned) on this 
a�empt ( T

n 
): 

p L  p L  |X ) (1 p L  |X ) p T( ) = ( + − ( ) ( ) (1)n n−1 n−1 n−1 n−1 * n 
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�e emission probabilities in BKT usually take the form of a CDM (Rupp et al., 2010), 
which models correctness of response based on a set of skills represented as Booleans, 
either mastered or nonmastered. CDM models include slipping and guessing parame-
ters to account for an incorrect response when the requisite skills are present (slipping) 
and a correct response when the requisite skills have not been mastered (guessing). 
Combinations of skills can be modeled either as conjunctive or as compensatory, allow-
ing the �exibility to apply appropriate cognitive theory for the domain. 

Another common approach to student modeling within adaptive learning systems 
is performance factor analysis (Pavlik et al., 2009). Such models characterize student 
knowledge in terms of continuous variables and make use of an updating mechanism 
that is a variation of IRT with a learning parameter (slope). 

More recently, advances in recurrent neural networks have been applied to the prob-
lem of estimating and updating student pro�ciency variables in what is known as deep 
knowledge tracing (DKT; Piech et al., 2015). DKT uses the same inputs and outputs 
as BKT, but rather than computing probabilities of skill mastery and using them to esti-
mate subsequent performance, the probabilities of success on future items are predicted 
directly with a recurrent neural network, usually using a long short-term memory layer 
to ensure that past performance has an extended impact on future predictions. At the 
time of this writing, several extensions to DKT have been developed that augment the 
input vectors with both item information (including di�culty and skill tapped) and 
additional performance information, such as the amount of time taken to solve the 
item (Ai et al., 2019). Structural improvements to the predictive models have also been 
proposed, including applying regularization to prevent large variance in the predictive 
output (Yeung & Yeung, 2018). While the recurrent neural networks approach requires 
a large training data set, the �exibility of these models to utilize complex inputs, incor-
porate domain-speci�c data transformations, and interface with other models makes 
it likely that DKT and other uses of deep neural networks will have a major impact on 
adaptive learning technology in the near future. 

Models that are more deeply grounded in learning theory have also proven useful for 
interpreting behavior in solving complex tasks. In particular, the ACT-R cognitive archi-
tecture (Anderson et al., 1997) has been used to predict student actions in multistep 
problem-solving using a technique known as model tracing (Corbe� et al., 1995). ACT-R 
models cognition at a fairly low level, including declarative memory, working memory, 
and procedural knowledge in the form of if–then production rules. �ese models pre-
dict not only keystroke-level student actions, but also the time between actions, provid-
ing additional predictions that can be used for model validation. Because there are so 
many parameters involved in an ACT-R model, individual parameter estimation is not 
a�empted. Instead, student actions are compared to an ideal student, or expert, model. 
In some adaptive learning systems, this comparison is su�cient because any o�-path 
action triggers tutoring until the student returns to the ideal path. 

Bayesian models and estimation have been popular in adaptive learning systems, 
including the intelligent tutors built on ACT-R (Koedinger & Corbe�, 2006). One 
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a�raction is that Bayesian estimation can occur iteratively as each new data point 
updates the models’ probability distributions. �is real-time updating allows the 
system to act on an estimate as soon as it passes a set certainty threshold. In ACT-R 
tutors, this “knowledge-tracing” technique allows the system to select tasks that exer-
cise knowledge components the student is not likely to have already mastered (Aleven 
et al., 2017). 

One particular type of Bayesian model, the Bayesian network (Bayes nets), is 
frequently used to represent complex relationships between the evidence emerging 
from student performance and the latent variables that make up the student model 
(Chrysa�adi & Virvou, 2013). A Bayes net is a directed acylic graph in which nodes 
represent variables and relationships between nodes are described with conditional 
probability distributions. In adaptive learning systems, the variables represented are 
almost always categorical, making these relationships conditional probability tables 
(CPT). 

Figure 9.6 shows a simple Bayes net that might be part of a psychometric model (note 
that there are too few observable variables for this model to be identi�able given the 
number of latent variables). �e observable variables ( x x  x )  are indicators (behav-, ,1 2 3 

iors) from a student performance, while K and K  are latent variables that explain 
1 2 

di�erences in performance. In this example, we include an intermediary latent node 
S  that could indicate a particular strategy students might implement. �e observable 
1 

behaviors x and x  are indicators of use of this strategy and, as such, are not condition-
1 2 

ally independent given K , but are conditionally independent given S
1
.  Observable x

1
3 

has two parents ( K K ) making this variable a within-observable multidimensional ,1 2 

measurement model. �e way in which K
1 and K2  interact to produce the observable 

x
3  can be �exibly de�ned by the CPT of x3,  allowing for compensatory, noncompen-

satory, and more complex relationships to be modeled. 

K1 

K2 

S1 

x1 x2 
x3 

FIGURE 9.6 

A Simple Bayesian Network 

Note. �e gray nodes represent latent variables and the white nodes are observed variables. 
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A Bayes net can be updated when new observations are made, giving a running 
dynamic probability distribution for the latent variables. One of the most a�ractive 
properties of using Bayes nets for student models is that complex relationships between 
cognitive and a�ective latent variables can be modeled to explain speci�c behaviors. 
�us, for learning systems that employ dynamic estimation from student interactions 
in a simulation, game, or other complex performance, the Bayes net is a natural choice. 
�ese models can also be found in formative assessments that include both complex 
evidence and student models (Almond et al., 2007, 2015). 

Evaluation of Student Models in Instructional 
and Learning Systems 

�e overall functioning of adaptive learning systems has generally been evaluated 
based on the achievement gains produced as compared to a traditional curriculum 
(e.g., Pane et al., 2013). While such gains may suggest that the system is working prop-
erly, they do not necessarily con�rm the validity of the student models. Similarly, the 
absence of learning gains does not necessarily imply a failure of the models. Because 
the function of the student model is to enable feedback or adaptation of tutoring, the 
model’s value might best be judged with respect to how e�ectively it achieves these 
goals during the learning session. Experimentally contrasting a linear presentation 
of problems with one dictated by knowledge tracing, for example, can identify the 
student model’s impact on achievement (Corbe� et al., 2000, as cited in Aleven et al., 
2017, p. 528). 

Other evidence as to the quality of model functioning can be provided by how well 
the models predict the student’s next action or the success of their next solution a�empt. 
Because this prediction is seen as a classi�cation task, researchers in the learning system 
and data-mining communities have frequently used a classi�er accuracy metric known 
as area under the curve. Area under the curve is calculated by plo�ing the probability of 
a true positive by the probability of a false positive over the range of possible threshold 
values for the classi�er. �e area under the curve would thus be 1.0 for a perfect classi-
�er and 0.5 for random selection. 

COMBINING CONSEQUENTIAL DECISION-MAKING 
AND INSTRUCTIONAL SUPPORT: CAN TECHNOLOGY-
BASED ASSESSMENT DO BOTH? 

Earlier sections addressed assessments used to support consequential purposes and 
assessments used to support instructional decision-making. �e a�ordances of tech-
nology make it easier to imagine the possibility of generating information from the 
same assessment that might simultaneously serve consequential decision-making and 
instructional-support purposes. Several approaches might be taken to satisfy this dual 
end, with the approaches di�ering in fundamental ways, especially in foregrounding 
one or the other purpose. 
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�e least radical approach would entail generating formative information from 
consequential TBA. Here, the consequential purpose would be central and the forma-
tive purpose supplementary. As an example, a state English language arts accountability 
assessment will typically produce total scores, pro�ciency levels, and other scores. One 
or more of the other scores may come from a response to an essay task, including scores 
summarizing overall writing quality as well as ones characterizing such writing traits as 
content and conventions. To be sure, such trait information provides only a very mini-
mal level of formative information. More valuable might be a description of how the stu-
dent wrote the essay, generated by capturing and analyzing the keystrokes used to create 
it (Zhang, Benne�, et al., 2019). For instance, was there evidence of planning (e.g., the 
rudiments of an outline early in the writing session), verbal �uency (e.g., long bursts of 
text), word-level monitoring (e.g., correction of typos), or global monitoring (jumps 
from one cursor position to another followed by insertions and deletions)? Were there 
indications of di�culty in typing (signaled by consistently lengthy intervals between 
key presses) or of problems in word �nding (e.g., long pauses between words)? Possibly 
more valuable for the teacher and student would be the ability to replay, in speeded-up 
time, the essay as it was wri�en, thereby giving an opportunity for discussion and re�ec-
tion on the writing process (Vandermeulen et al., 2020). A process description and 
replay could lead to the realization that typing practice was needed or that instruction 
in planning or in how to edit should be provided. 

�e above approach clearly foregrounds consequential assessment by building into 
it secondary mechanisms for more e�ectively supporting instructional decisions. 
�ose mechanisms will be far from ideal. Such feedback will occur late in the school year, 
be limited to that which can be either wrung from the existing assessment or designed 
into it without compromising its primary purpose or practicality, and be divorced from 
the context of classroom instruction. Along with other reasons, these limitations have 
motivated third-generation proposals that a�empt to be�er balance the two assessment 
purposes. �at is, these proposals move toward foregrounding instructional support 
decisions, with information for consequential decisions coming as a by-product. 
Periodic, or through-year, assessment o�ers one version of this idea (Benne�, 2010b; 
Benne� & Gitomer, 2009; Northwest Evaluation Association, 2019). 

In through-year assessment, measures are repeated at various time points. A key ben-
e�t of this model is that consequential decisions (e.g., school accountability) would 
no longer be based on a single measure taken at one time point, but rather on some 
aggregation of the through-year observations. Also, more frequent feedback would be 
provided from each of the through-year events. 

Many features of this idea could in principle be varied, including the number of TBAs 
administered, what content they cover, when they are given, the extent to which dis-
tricts and schools can choose the ordering, and how results are accumulated into a per-
formance index. �e greater the variation in these features across schools or districts, 
the lower will be the comparability of the results (Benne�, 2020). �e highest level of 
comparability would generally result from administering a �xed number of assessments 
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created from the same content speci�cations at selected time points to each student 
under the same conditions and scored with the same aggregation rules. Administering 
di�erent forms of a comprehensive interim assessment during 1-week windows in fall, 
winter, and spring would be a simple example, though the extent to which it would fore-
ground instructional support decisions might be arguable (Shepard et al., 2011). More 
a�uned to instructional support decisions would be a regimen in which each assess-
ment focused on a di�erent critical competency associated with grade-level standards. 
Such a design would either require all schools to follow the same instructional sequence 
or allow them to choose the order of administration, complicating comparability and 
test security. (See Georgia Department of Education, 2018, pp. 80–82, for a description 
of such an assessment piloted under the federal Every Student Succeeds Act Innovative 
Assessment Demonstration Authority.) 

In through-year models, many rules for aggregating results are possible, each derived 
from a di�erent conception of achievement (Wise, 2011). Weighting the results as a 
composite with the greatest emphasis given to the most recent assessment would re�ect 
a view of achievement as competency accumulation. A di�erent weighting could mimic 
the way grades are averaged over quizzes, midterms, and �nal exams, with this more 
even weighting suggesting a view of achievement as a collection of accomplishments. 
A third possibility is to aggregate results based on test information, which would 
emphasize precision in measuring the dimension common to the several assessments. 
Finally,  taking some function of the di�erence between the �rst and last result con-
ceptualizes achievement as the extent of growth. Psychometric models related to these 
di�erent types of aggregation have been explored by Mislevy and Zwick (2012), Fu and 
colleagues (Fu & Feng, 2018; Fu et al., 2012, 2013), and Rijmen (2009). 

Perhaps the most radical proposal for foregrounding instructional support decisions 
while generating information for consequential decisions as a by-product is to use a 
record of daily learning interactions, potentially removing the need for separate assess-
ments entirely (Benne�, 1998, pp. 11–14; Gee & Sha�er, 2010; Pellegrino et al., 2001, 
pp. 283–287; Tucker, 2012).6 �ere are many a�ractions to this third-generation idea, 
including the sociocognitive one that the contexts for learning and assessment become 
identical. �at is, both activities draw on the very same content, knowledge represen-
tations, and tools (Benne�, 2015), increasing the value of the derived information for 
adjusting instruction. An example of how this idea might work instructionally can be 
found among adaptive learning systems like MATHia (Ri�er et al., 2007). As noted, 
these intelligent tutors estimate from real-time learning interactions what a student 
knows and can do with respect to a content domain and then base moment-to-moment 
adjustments on that dynamically computed estimate. 

Using this type of data for consequential decision-making, however, would be very 
challenging (Benne�, 2015). One obvious concern is that the assessment model is 
essentially an extreme case of through-year assessment—that is, one without con-
straints. �e reality is that, within a state and even within many districts, students in 
the same grade use many di�erent electronic learning applications. �ese applications 
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vary in their content coverage, emphases, and order; knowledge representations and 
tools; rigor and quality of problems posed; and scoring criteria and methods, among 
other things. Further, some environments are likely to be employed more frequently 
with certain demographic groups, thereby confounding group and measure. A related, 
but broader concern is that the evaluation instrument is no longer independent of the 
school or district, leading to the perception that these entities are appraising them-
selves. Also possibly problematic is the continuous recording of behavior for use in 
consequential decision-making, which raises both privacy concerns and such educa-
tional ones as the potential for discouraging experimentation in teaching and learning. 
Discouraging experimentation would be unfortunate because such behavior serves a 
critical function in learning (Kapur, 2010). 

Several possibilities exist for reconciling more e�ectively the goals of consequential 
assessment with those of assessment for instructional support. �ese possibilities revolve 
around systems of assessment—that is, TBAs designed to function synergistically in 
their pursuit of di�erent goals because trying to fashion a single method for achiev-
ing competing goals leads to a suboptimal solution for each goal. One such proposal 
follows the competitive sports model (Benne�, 2015), a variation of through-year 
assessment. During instruction, students utilize whatever electronic and other learning 
environments their schools employ, with learning interactions recorded and used for 
guiding (and occasionally describing) instruction but never for consequential purposes 
(as in the practice periods before, and o�en interspersed within, a sports competition). 
Students and teachers are informed when an assessment for consequential purposes is 
to occur (i.e., the actual competition). �at assessment is common in design, content 
speci�cations, administration window, and scoring across all schools and districts. For 
state policy makers, such a system could provide the data needed to evaluate how well 
individual schools were performing in educating all groups of students (from some 
aggregation of the common assessments’ results), along with descriptive data about 
what students in each school were doing (from sampling the recordings of learning 
behavior). �e la�er data might allow instruction to be described at an unprecedented 
level of detail, greatly enhancing our understanding of learning activity, content, and 
rigor di�erences occurring across teachers, classes, schools, districts, and demographic 
groups. 

SUMMARY AND CONCLUSION 

�is chapter considered three broad classes of TBA: ones used to support consequen-
tial purposes, ones used to support real-time instructional decision-making, and third-
generation ones that a�empt to combine both purposes. 

For consequential testing programs, the rationale for moving to TBA is tripar-
tite: align the testing medium with that of learning and of the information economy 
workplace, conduct assessment processes more e�ciently, and measure what previ-
ously could not be measured as well or at all. In the United States, a �rst-generation 
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infrastructure exists for achieving these goals. Many state assessments, national and 
international group-score assessments (NAEP, PISA, Programme for the International 
Assessment of Adult Competencies [PIACC]), graduate and professional admissions 
measures (GRE General Test, TOEFL iBT), and occupational and professional assess-
ments (USMLE, Architect Registration Examination, Praxis) are routinely delivered by 
computer in educational institutions or in dedicated centers. Other assessments, most 
prominently college entrance examinations, are beginning to be delivered in that mode 
as well. 

As a result of the COVID-19 pandemic, some consequential programs have moved 
to include delivery via remote human and AI proctoring to test takers’ homes and 
o�ces. Such administration had been used successfully on a small scale in a few niches 
for several years (e.g., competency-based education at the university level and, more 
recently, English language assessment via the Duolingo English Test). �e COVID-19 
pandemic, however, greatly accelerated testing at test-taker locations. In 2020, the GRE 
General Test, TOEFL iBT, Praxis, HiSet (a high school equivalency examination), the 
Law School Admission Test, and the International English Language Testing System 
added home options. Whereas there has been relatively li�le published research on the 
technical quality of assessments so delivered, we expect this evolution to continue as 
need drives use, with research catching up. 

�e successful deployment of a robust �rst-generation delivery infrastructure for 
consequential testing has o�ered a foundation for innovations in assessment design. 
�ose innovations generally aim to increase construct �delity by evoking more complex 
cognitive processes and allowing responses to be observed in �ner detail. Four kinds 
of innovative assessment design were distinguished: TEIs, extended-interaction items, 
scenario-based tasks, and simulation-based performance tasks. Gathering validity evi-
dence regarding the functioning of these types is critical to asserting that the evoked 
processes are in fact the intended ones, that the innovations do not introduce unfair-
ness for groups or individuals, and that the Person × Task interaction associated with 
scenario-based and simulated-based performance tasks is appropriately accounted for. 

�e changes to practice that TBA entails inevitably raise challenges for score compa-
rability. �ese challenges occur because many programs o�er tests in both paper and 
technology modes, other programs wish to maintain TBA score continuity with past 
paper versions, and still other programs want to ensure constancy of score meaning 
when the digital test is o�ered on multiple technology platforms. Di�erent degrees of 
comparability may be appropriate for di�erent use cases and achievable through di�er-
ent methods. Comparability may be studied, and the data needed to make score adjust-
ments gathered, via various designs. However, technology is changing rapidly, forcing 
assessment programs to change as well. �at rapid evolution may make it impractical to 
study and adjust continuously for the e�ects of new assessment implementations. �us, 
it may be necessary to replace an empirically focused approach with one grounded in 
design principles directed at maximizing validity and fairness for individuals and groups. 
Empirically based methods like those traditionally used for linking may still play a role 
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as one of the investigative methods used to derive assessment design principles or to 
document the degree to which device-agnostic results were obtained. However, empir-
ical approaches cannot be relied on as the primary mechanism for ensuring and main-
taining comparability. Moreover, the desire to maintain comparability over time needs 
to be balanced against giving testing programs license to incorporate the innovation 
required to remain relevant in a rapidly changing world. 

One of the as-yet underutilized bene�ts of TBA is certainly its ability to capture evi-
dence of response processes. Such evidence can contribute to the validity argument 
for an item or task, help in the identi�cation of guessing or cheating, and indicate strat-
egy use or the presence of misconceptions. Response process data may include actions, 
resulting events, and latencies. �ose data may index relatively basic cognitive processes 
like �uency or higher level strategies, plans, and knowledge. Because of their complex-
ity and scale, process data are o�en analyzed and modeled using relatively opaque, bot-
tom-up methods like machine learning, as well as ones from computational statistics 
that allow for the instantiation of theoretical propositions (e.g., Bayesian networks). 
Combining bo�om-up and theory-driven approaches holds promise in that machine 
learning can be employed to help build the theory to be implemented in, for example, 
a Bayesian network. 

In contrast to response process data, the automated scoring of complex constructed 
responses is used operationally in many consequential testing programs. �is use 
is driven by the need to cut costs and increase reporting speed. Such scoring usually 
focuses on an end product, such as an essay or an architectural design, although process 
data are also included in some instances (e.g., medical patient management). Multiple 
approaches can be used to score a given task type. Important distinctions among meth-
ods relate to whether the automated scores are created to predict human scores empir-
ically or generated from theoretical propositions or rules. A second distinction speci�c 
to approaches that seek to maximize agreement with a criterion like human scores is the 
extent to which transparent versus black-box methods are employed. Whereas valida-
tion of scoring has usually focused on agreement with human scores, such agreement is 
best viewed as one piece of evidence in a more comprehensive validity argument. �at 
more comprehensive argument may, among other things, need to include an evaluation 
of the validity of using the human scores as a criterion. Additionally, how automated 
scores are produced, and the alignment of that method with the intended construct, 
should be a consideration. Because of concerns over the use of AI in society generally, 
we should expect signi�cant work on explainable, transparent scoring methods. 

�e chapter’s second major section dealt with assessments used to support instruc-
tional decision-making. Such assessment is incorporated into intelligent tutoring (or 
adaptive/personalized learning) systems, educational games, and simulations. Intel-
ligent tutors typically deliver instruction built around discrete problems, which may 
be similar to the TEIs and extended-interaction items found in consequential tests, 
whereas games and simulations o�en present a more thematically integrated prob-
lem-solving experience utilizing performance tasks. Tutors, games, and simulations 
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may employ some combination of cognitive domain model, AI, and probabilistic 
method to estimate competency dynamically and, thereby, modulate the current prob-
lem or choice of the subsequent one. Competency is tracked through a student model 
that includes a representation of the student’s knowledge state (referenced to the larger 
cognitive domain model) and a method for updating that representation. Probabilis-
tic methods employed in that updating have included BKT and Bayesian networks. 
MATHia, ALEKS, and the Duolingo language-learning apps are examples of such 
tutors in widespread use. Examples of games or simulations that appear to personalize 
learning via such methods include Math Garden and Inq-ITS. 

In tutors, games, and simulations, response evaluation can focus on the product (e.g., 
answer to a math problem), the process used to generate it, or both, depending on the 
underlying cognitive domain model. However, even when the model speci�es that evi-
dence of pro�ciency lies in the correctness of a product, analyzing the process can sug-
gest appropriate next steps in the form of feedback, selecting new problems, or making 
other instructional adjustments. 

Used in some commercial instructional applications are automated scoring tech-
nologies, most commonly for writing or speaking, that share methodology with those 
employed for consequential assessment. Examples in composition include MyLab 
Writing and Criterion. �ese systems evolved separately from intelligent tutors. As a 
result, the former systems do not generally use cognitive domain models or probabilistic 
methods to estimate and represent student competency or to personalize instruction, 
instead only rating and giving feedback on each response in isolation. We should expect 
to see systems that use automated scoring to support instruction converge with intelli-
gent tutors because the two approaches o�er complementary capabilities. 

�e last section in this chapter described third-generation approaches that 
combine instructional support with consequential purposes. Approaches di�er in 
the extent to which instructional support decisions or consequential decisions are 
foregrounded. Included were generating formative information from consequen-
tial TBA, through-year assessment, and generating consequential information from 
ongoing learning interactions. �e last approach, while seemingly a�ractive, raises 
questions of comparability, privacy, and the potential for negative educational con-
sequences. An approach based on the competitive sports model was proposed as a 
path that might o�er the desired bene�ts while mitigating the issues raised by more 
radical models. 

What might be productive directions for research? �ere are many possibilities and 
here we suggest but a few. One important direction for both consequential testing and 
instructional support purposes might be to build the foundation for operationalizing 
the use of process data. For example, research should be directed at identifying whether 
diagnostic pro�les can be identi�ed suggestive of di�erential instructional action. 
Placement in a pro�le could be part of the formative output from a consequential test 
(e.g., a writing assessment) or as part of personalized instruction. Questions concern 
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whether meaningful, distinct classes of behavior can be identi�ed (e.g., dys�uent writer 
vs. �uent writer), whether placement of individuals in such classes is stable across tasks 
from the same domain, whether the addition of product information adds value, and 
whether instruction based on such placement results in more learning than a pro�le-
agnostic alternative. 

An associated direction concerns how best to report process data, whether in con-
junction with a pro�le or not. If the reporting goal is to encourage re�ection as to how 
one went about problem-solving, then performance replay should be studied. Key 
questions include identifying the replay formats that best facilitate re�ection, learner 
action, and change in competency. 

A third direction relates to the impact of simultaneously incorporating cognitive 
domain models, AI, and probabilistic methods into games and simulations. �ese 
capabilities are not yet commonly found together in commercial products. Experi-
ments could be conducted to estimate the incremental e�ect of using such additions to 
increase personalization. A similar direction could be taken with respect to the inser-
tion of cognitive domain models and probabilistic methods in learning systems that use 
automated scoring. 

A fourth direction is associated with the implications of LLMs for validity, mod-
eling, and analysis. �e potential uses of LLMs are wide ranging, including item 
generation, constructed-response scoring, feedback, and reporting, among other 
possibilities (Bulut et al., 2024; Hao et al., 2024). �is direction is notable because 
of the great interest evident in the �eld and the potential for improvements in e�-
ciency and quality it seems to portend. Although this direction may pose new issues, 
because LLMs are a subcategory of AI, many of the challenges LLMs bring are the 
same ones as already noted in, for example, the section on Automatically Scoring 
Complex Constructed Response Tasks (e.g., bias, explainability, the need for valida-
tion criteria to be broadly based), as well as in other publications (e.g., Bejar, 2012; 
Benne� & Zhang, 2016). 

Finally, calls to merge the purposes of consequential tests and instructional support 
are likely to grow as learning activity increasingly occurs online. Research should focus 
on studying the technical quality and instructional utility of approaches that a�empt 
to account in principled ways for the challenges inherent in combining these divergent 
purposes. �e competitive sports model is one example. Research should a�empt to 
determine whether it can produce meaningful consequential results at the same time as 
it describes and guides instruction. 
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NOTES 

1. So�-max is an extension of the logistic function to multiple-category variables, for 
expx

example, p x( )= i .i 
∑

k
j x j 

2. �at USMLE uses both analysis of product and response process in computing 
scores raises the question of how automated scoring di�ers from response pro-
cess analysis in the consequential testing context. As suggested in the section 
introduction, automated scoring is generally used to produce one or more quan-
tities for input into computing a test score. Response process analysis, in contrast, 
has been more o�en directed at such purposes as providing validity evidence, 
identifying possible guessing or cheating behavior, describing how groups di�er 
in their approaches to problem-solving, and suggesting how instruction might be 
redirected. Automated scoring is widely used in operational consequential assess-
ment. Response process analysis is far less prominent. 

3. �e methods used here are like the machine learning methods described for the 
evaluation of response processes in the prior section. 

4. Relatively few studies have looked at this issue, but those that have been con-
ducted suggest the presence of substantively important di�erences in how algo-
rithms operate across at least some demographic groups (Bridgeman et al., 2012; 
Ramineni & Williamson, 2018). 
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5. �ere are many examples of current assessments taking a more traditional mastery 
test form that are used to support instruction but are not of the type described 
here. Measures like the Smarter Balanced interim assessment blocks are linear tests 
constructed to measure mastery of a narrow competency (or set of related nar-
row competencies) (Smarter Balanced, 2019). Results are linked to instructional 
resources in the Smarter Balanced Tools for Teachers. 

6. Note that the focus here is on learning interactions only. In contrast, some schools 
record virtually every student online interaction for purposes of identifying safety 
threats (Haskins, 2019). 


