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This chapter is dedicated to exploring the concepts, quantification, and estimation 
of reliability and measurement errors, primarily within the framework of three 
prominent measurement theories: classical test theory (CTT), generalizability 
theory (GT), and item response theory (IRT). CTT, a well-established presence in 
the field of educational measurement, has consistently featured in previous editions 
of Educational Measurement. GT, having a shorter history than CTT, is often per-
ceived as an extension or liberalization of CTT. The reliability chapters in prior two 
editions of Educational Measurement (Feldt & Brennan, 1989; Haertel, 2006) have 
provided relatively extensive treatments of GT. While the concept of reliability and 
measurement error can be discussed in the context of IRT, previous emphasis in IRT 
literature has typically centered around other aspects of the theory, such as model 
types, estimation of item and proficiency parameters, model fit, test construction, 
and scoring (see Hambleton, 1989; Yen & Fitzpatrick, 2006). With the growing 
applications of IRT in research and operational settings, it has become common-
place to present reliability information based on IRT models. Therefore, there is 
a pressing need to develop a cohesive framework for discussing reliability-related 
issues under the general assumptions of IRT. These three measurement theories 
offer distinct perspectives on various aspects of reliability, grounded fundamentally 
in their assumptions, which have significant consequences for the quantification and 
interpretation of reliability. This chapter primarily focuses on highlighting the simi-
larities and differences among the theories in terms of conceptualizing and estimat-
ing various reliability statistics. 

TERMS AND BACKGROUND 

Measurement procedures are developed in accordance with the intended purposes of 
testing and the use of test scores for specific objects of measurement (e.g., test tak-
ers). This involves the identification of a set of tasks (e.g., multiple-choice items, 
essay prompts), administration modes (e.g., paper–pencil, computerized adaptive), 
scoring procedures (e.g., number correct, human rating), types of reported scores 
(e.g., summed raw scores, transformed scale scores), and score interpretations (e.g., 
norm-referenced, criterion-referenced). A specified set of measurement conditions 
constitutes a test form, with alternate forms encompassing different sets of similar (or 
parallel) measurement conditions. A sample of a test taker’s responses to a test form is 
collected to generate one or more observed scores, which are then used to make gen-
eral inferences about the test taker. The observed score for a test taker is considered a 
realization of a hypothetical distribution of all possible observed scores across repeated 
measurements using parallel forms of a measurement procedure. This observed score 
functions as an indicator or proxy for the underlying, unobservable construct(s) (i.e., 
domain of knowledge or skills) that a measurement procedure intends to measure. In 
IRT, proficiency estimates serve a similar role to observed scores. 
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Reliability, broadly conceived, is concerned with quantifying the extent to which 
observed scores are consistent over replications of a measurement procedure. How-
ever, the term reliability is often used to refer to reliability coefficients, which represent 
just one of many types of measures assessing the consistency of test scores. In this 
chapter, we make a clear distinction between these two terms. We use reliability to 
encompass a wide array of concepts and statistics used for quantifying the consisten-
cies and/or inconsistencies in scores for individual test takers or groups of test takers. 
In a similar vein, the term measurement error is used broadly here to refer to both 
the sources of score inconsistencies and the summary statistics quantifying them for 
individual test takers or groups of test takers. It is evident that the characteristics of a 
measurement procedure play a crucial role in shaping the definition, interpretation, 
and estimation of statistics for reliability and measurement error. A particular focus 
will be placed on emphasizing the importance of reporting results for various statis-
tics on the metric of reported scores used to make decisions about test takers. This is 
crucial because switching from one score scale to another, especially when the trans-
formation is nonlinear, can lead to markedly different results and interpretations. 

In his last paper, Cronbach (2004) stated, 

In the history of psychometric theory, there was virtually no attention to this dis-
tinction [between sample and population] prior to 1951. . . . It was not until Lord’s 
(1955) explicit formulation of the idea of random parallel tests that we began 
to write generally about the sampling, not only of persons, but of items. This 
two-way sampling had no counterpart in the usual thinking of psychologists. No 
change in procedures was required, but writing had to become more careful to 
recognize the sample–population distinction. (pp. 401–402) 

This statement recognizes Lord’s significant contribution in bringing attention to the 
concept of replication, particularly in terms of sampling items. The distinction high-
lighted here is between an estimate of reliability specific to a particular sample of items 
and the desired population value that would be obtained over many other random 
sets of such items. The concept of replications becomes a central element in modern 
theory of reliability (Brennan, 2001a; Feldt & Brennan, 1989; Haertel, 2006), and it is 
used as a unifying framework throughout this chapter for discussing various theories, 
models, and estimators of reliability. The sample–population distinction mentioned 
in the above quote naturally draws attention to two overarching notions or phases in 
reliability analysis: conceptualization and estimation. Brennan (2001a, 2001b, 2006) 
similarly emphasized this distinction, albeit in a slightly different manner. 

The notion of conceptualization refers to an investigator’s conception of the intended 
use and interpretation of reliability, which calls for defining a set of measurement con-
ditions for replications of the measurement procedure. The set of conditions allowed to 
vary across replications are the sources of inconsistencies in scores (i.e., measurement 
error), which need to be considered when estimating reliability. It is important 
to note that there is no universally correct or optimal definition of replications. 



280 EDUCATIONAL MEASUREMENT

    

 
 

 
 
 

 
 
 
 

 

 

 
 
 
 

 
 

The determination of which sources of measurement error to include is at the 
discretion of the investigator and depends primarily on the intended uses and inter-
pretations of test scores. 

The estimation phase involves quantifying reliability estimates (i.e., estimated reli-
ability statistics) that best capture the characteristics defined in the conceptualization 
phase and requires decisions on the appropriate reliability statistics and data collec-
tion designs. The meaningfulness of interpretations from a reliability estimate hinges 
on how faithfully the specifications in the conceptualization phase are reflected in the 
estimation phase. Thus, it is essential to choose and compute a reliability estimator 
using an appropriate data collection design that effectively incorporates, within prac-
tical constraints, the influence of the specified sources of measurement error deemed 
important by the investigator. If the chosen reliability statistic involves sources of 
measurement error different from those conceptualized, an explanation is necessary. 
This is because the results could either overestimate or underestimate the parameter 
of interest, and understanding any divergence is crucial for accurate interpretation. 

Consider, for example, an investigator wanting to estimate how consistent the rank 
orders of IRT proficiency estimates for candidates applying to a degree program remain 
when tested with a different set of multiple-choice items, possibly at different times. 
The measurement procedure involves the target population, exam characteristics, score 
metric, and score interpretation. The conceptualization envisions replication involving 
the use of different items and testing occasions. 

For a direct estimation, data from two alternate test forms are collected from the 
same group at two separate occasions, applying the same IRT scoring method to both 
data sets. The estimated reliability coefficient is derived from the correlation between 
the proficiency estimates, aligning with the investigator’s conceptualization of using dif-
ferent items and occasions. 

Now, suppose the investigator chooses to report coefficient alpha based on a single 
administration with number-correct scores. This fails to address the original ques-
tion, given that the metric of interest is IRT proficiency, not number-correct scores. 
Additionally, coefficient alpha overlooks testing occasions as a source of error, likely 
resulting in an underestimate of error variance and, consequently, an overestimate 
of the reliability coefficient. This example underscores the importance of selecting a 
reliability estimator that aligns with the conceptualized replications and is consistent 
with the intended use of the measurement procedure. 

The preceding discussion on the conceptualization-estimation scheme is mostly 
aptly characterized within the framework of GT. However, the same principle is 
applicable to reliability analyses under CTT and IRT. The key distinction lies in the 
fact that, in CTT and IRT, investigators often select a reliability estimator and/or a 
data collection design without giving serious consideration to what constitutes repli-
cations. In effect, the investigator is making assumptions about replications, whether 
intentionally or unintentionally, through their choices. It should also be noted that 
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the three measurement models differ not only in their mathematical representations, 
but also in the framework for conceptualizing replications, true score, and measure-
ment error, leading to potential ambiguities when interpreting results. The following 
section discusses some of the conceptual similarities and differences among the three 
measurement models regarding the definitions of true score and measurement error. 

Throughout this chapter, the term consistency is primarily used to depict the vari-
ability of scores over replications. The term precision has also found use in the lit-
erature, including in the current Standards for Educational and Psychological Testing 
(Standards; American Educational Research Association [AERA] et al., 2014), par-
ticularly in the context of reliability. Although the term precision literally denotes 
exactness, which diverges in meaning from the concept of consistency, it is occasion-
ally used in this chapter when the context deems it more suitable. The term accuracy 
is specifically reserved for one of the classification indices, known as classification 
accuracy. This usage is retained to describe the degree of correctness of a measurement 
relative to the true value. 

NOTIONS OF TRUE SCORE AND MEASUREMENT 
ERROR 

Comprehending the concept of reliability requires grasping the notions of true score 
and measurement error. Almost all measurements in scientific disciplines involve 
observing the objects of measurement under certain conditions to produce observed 
scores. When observed under different conditions, the resulting observed scores are 
likely to differ, even if both measurements are intended to measure the same con-
struct on the same objects of measurement. True score, by contrast, cannot be directly 
observed; rather, it is defined. True scores are pivotal in reliability, and how they are 
defined significantly affects the estimation and interpretation of reliability statistics. 
CTT and GT share similar perspectives on true score, while IRT employs a few distinct 
versions of true score. 

In essence, true score in both CTT and GT is perceived as the expected value of 
observed scores over replications of a measurement procedure. This perspective pre-
cludes the platonic interpretation, which considers true score as a definitive indication 
of what the measurement intends to assess. The platonic view of true score has faced 
criticism because of its limited scientific utility, particularly in the context of psycholog-
ical and educational measurement, where the constructs of interest are often intricate 
and challenging to explicitly define (see Lord & Novick, 1968, chap. 2). 

The expected-value notion of true score requires specifying what constitutes a rep-
lication, implying that there is no singular definition of true score. The investigator 
has control over defining parallel forms for replications, such as different sets 
of items, raters, and/or occasions. Many well-known results in CTT rely on the 
assumption that replications are performed over forms that are classically parallel. 
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or GT. However, it does hold implications in the context of IRT, as discussed next. 

^ 

In contrast, later developments of single-administration reliability coefficients use 
less stringent assumptions, such as essentially tau-equivalent or congeneric forms. 
Meanwhile, true score in GT (also referred to as universe score) is defined as the 
expected value of observed scores over measurement conditions or forms that are 
randomly parallel. This distinct conception of parallelism for replications stands out 
as a key difference between the two theories, carrying considerable theoretical and 

^ 

practical implications. 
The term measurement error refers to the discrepancy between a test taker’s true 

score (i.e., the average of observed scores over replications) and the actual observed 
score. This implies that the definition of measurement error depends on how true 
score is conceptualized. Measurement error arises due to the random variation of 
observed scores over repeated testing using specified conditions of a measurement, 
which are used to define true score. Other error sources, deemed less important and 
thus not explicitly modeled by the investigator, are assumed to operate randomly. 
In CTT and GT, it is assumed that specified and unspecified (i.e., residual) sources 
of measurement error behave randomly such that their expected value over replica-
tions is always zero. If there are factors unrelated to the construct the test aims to 
measure that influence test-taker scores in some systematic way (e.g., verbal skills in 

^ 

math computation, bias in raters, model misfit), they are considered sources of con-
struct-irrelevant variance and are deemed threats to validity (Kane, 2006). Rarely 
does construct-irrelevant variance play any role in estimating reliability under CTT 

In unidimensional IRT, the notion of true score is conceptually linked to the person 
proficiency parameter, denoted q.  Although the proficiency parameter is explicitly 
defined and specific to a particular IRT model, subsequent discussions are intended to 
be general, applicable to any model. The proficiency parameter q  represents a person’s 
location in a latent trait space and plays a role similar to that of true score. Consider a 
biased estimator of q , such as the maximum likelihood estimator. Due to this bias, the 
expected value of the estimates across replications, denoted E q, does not equal the 
parameter q  —that is, E q ¹ q. Unlike CTT, which adopts the expected-value notion of 
true score, the two possible definitions of a person’s proficiency in IRT (i.e., q  and E q ) 
contribute to some inconsistencies and ambiguities in estimating and interpreting 

^
reliability coefficients for IRT proficiency estimates. In this chapter, q  is referred to as 
latent proficiency, while E q denotes expected proficiency, the latter being considered a 
more suitable definition in the context of reliability. Clear distinctions between these 
two definitions are not always made, and both have been used in various formulas for 
estimating reliability in IRT. 

^^
Different definitions of true proficiency inevitably result in distinct definitions of mea-

surement error. Error of measurement, defined by the discrepancy between q and E q , 

^ 
constitutes random error, and its variance is referred to here as the expected error 
variance. By contrast, the variance of discrepancies between q and q—referred to 



Reliabil it y in Educational Measurement 

 
 

  

 

 

  

283 

simply as error variance here—involves both systematic error (i.e., bias) and random 
error. While bias can diminish validity, it does not impact reliability. If the variance 
(and covariance) of bias is incorporated into a reliability coefficient, it should contrib-
ute to true score variance rather than error variance, thereby increasing reliability. In 
practice, there is often an argument that the bias in proficiency estimates, particularly its 
variance, is negligible, making the distinction unnecessary. However, empirical exam-
ples presented by W. Lee et al. (2025) demonstrate that differences can sometimes be 
substantial. 

In IRT, the definition of true score expressed in the number-correct (or summed raw) 
score metric is represented by a test characteristic curve (TCC). The TCC is a nonlin-
ear transformation of q, where values of q  with an unbounded range from −  to ¥ 
are transformed into a score range of 0 to the maximum possible summed raw score. A 
TCC value represents the expected value of the model-based distribution of observed 
scores for a given q, assuming known item parameters. Measurement error is character-
ized by the variability of model-based observed scores for a given q. The TCC definition 
of true score in IRT is akin to true score in CTT in two key aspects: (a) It is expressed 
on the summed raw score metric, and (b) it employs the expected-value notion of true 
score as opposed to the latent-trait definition. Consequently, most results derived in 
CTT remain applicable for estimating reliability on the metric of summed raw scores in 

^ IRT. It is crucial to note that, similar to (and ), a TCC is model-specific, signifying q q 

^ 

that it is meaningful and can be interpreted properly only under the chosen IRT model. 
The consideration that a TCC for a given model is often deemed fixed implies that 

the expectation is taken over forms containing a set of items with identical item param-
eters. This argument also extends to the expected proficiency, E q. Forms with identical 
item parameters are termed strictly parallel forms, effectively implying a fixed form. As 
a result, reliability coefficients under IRT should be larger than those based on CTT or 
GT, all other factors being equal. 

TYPES OF SCORES CONSIDERED 

Scores derived from test-taker responses can manifest in various forms, and the choice 
of a reporting metric introduces distinct considerations for reliability analyses. In this 
chapter, our focus centers on specific types of scores: 

• Summed raw scores: These scores result from the summation of points earned on 
each individual test item. Variants include percent correct scores and weighted 
sum scores, where items may be assigned different weights based on content 
importance or other considerations. Summed raw scores may be referred to 
simply as raw scores in this chapter. 

• IRT proficiency estimates: Derived from IRT models, proficiency estimates 
are based on test takers’ responses and item parameters. While profi-
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ciency estimates are not commonly used for reporting because of their 
interpretational complexity, they find frequent application in adaptive 
testing to guide item selection. Two different IRT proficiency estimators are 
considered in this chapter based on the maximum likelihood and Bayesian 
estimation methods. 

• Composite scores: Composite scores are linearly weighted sums of component 
scores, either subscores from one test or scores from different tests. Multiple 
components can be characterized by the differences in content areas, constructs 
measured, item formats, and other aspects. Unlike simple summed raw scores, 
composite scores treat items across components distinctly. 

• Scale scores: Widely employed for reporting, scale scores can be crafted in var-
ious ways, such as setting target means and standard deviations, incorporating 
precision information for equal conditional standard errors of measurement, or 
setting a cut score with a particular scale score value. Scale scores prove partic-
ularly useful in reporting when test takers take different sets of items. A conver-
sion table is typically created to convert summed raw scores, IRT proficiency 
estimates, or composite scores to scale scores. 

• Classification category scores: Instead of providing a specific numerical score, 
classification category scores convey a test taker’s performance category, such 
as Exceeds Expectations, Meets Expectations, or Below Expectations. Pass/Fail or 
Master/Nonmaster are also common in various assessments. 

STATISTICS AND INDICES FOR RELIABILITY 

Multiple methods exist for quantifying reliability for individual scores or scores for a 
group of test takers, and some of these are defined next. 

Overall Standard Error of Measurement 
The overall standard error of measurement (SEM) represents the standard deviation, 
over individuals, of observed scores minus true scores for an assessment. Traditionally, 
it is estimated as a function of a reliability coefficient and observed score variance. 
This estimation is referred to as the overall SEM, distinguishing it from the condi-
tional SEM. SEMs, both overall and conditional, are expressed in the same units as 
the reported score, making them specific to the scoring metric used. Consequently, 
SEMs cannot be directly compared across different scoring procedures. Another nota-
ble characteristic of SEM is its relative insensitivity to the characteristics of a specific 
group of test takers. 

Conditional Standard Errors of Measurement 
The SEM typically varies across score levels or test takers. The conditional SEM 
(CSEM), in theory, represents the standard deviation of observed scores over repeated 
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measurements conditional on a test taker’s true score. In practice, estimated CSEMs 
can be reported either at each true score level based on a psychometric model or for 
each individual test taker using an observed score as an estimate of the true score. 
CSEMs provide valuable information about the amount of measurement error for each 
test taker (or score level) and can also be aggregated over all score levels to compute 
the overall SEM and reliability coefficients. The section “Estimators of CSEMs” of this 
chapter is dedicated to discussions on estimators of CSEMs for various types of scores. 

Reliability Coefficients 
The extent to which test takers’ scores are consistent over replications can be quantified 
using reliability coefficients. These coefficients, originally developed under the traditional 
assumptions of CTT, take various forms. One such coefficient, for example, involves the 
correlation between observed scores on the same assessment or parallel forms of an assess-
ment. Reliability coefficients are not reported in score units, making them challenging for 
users to interpret directly. Reliability coefficients are sensitive to the characteristics of the 
test-taker group. Some estimators require at least two scores per test taker, which is a chal-
lenging requirement to meet in practice, while others can be computed based on a single 
administration of an assessment. Various approaches to estimating reliability coefficients 
under each of the three measurement model frameworks are discussed in this chapter. 

Classification Consistency and Accuracy Indices 
When test scores are used to categorize test takers based on one or more cut scores, a 
crucial consideration is the likelihood of consistent classification if the test is administered 
again. Classification consistency serves as a criterion-referenced measure of reliability, 
assessing whether test-taker performance aligns with established standards or cut scores 
across replications. In contrast, classification accuracy is concerned with whether a test 
taker is “accurately” categorized into the performance category corresponding to their 
true score. This definition implies a closer connection to validity. Because consistency and 
accuracy are often considered together, both aspects are addressed in this chapter. The 
section “Reliability of Classification Category Scores” of this chapter is dedicated to pre-
senting methods for estimating various classification consistency and accuracy indices. 

ORGANIZATION OF THIS CHAPTER 

This chapter builds on concepts discussed in earlier editions of Educational Measure-
ment, particularly in Haertel (2006) and Feldt and Brennan (1989). The sections 
“Reliability in CTT” and “Reliability in GT” delve into classical and generalizability 
theory approaches. The section “Reliability in IRT” treats IRT approaches to reliabil-
ity issues, offering a more extensive discussion because of the relatively less explored 
nature of this area. Some content discussed in the IRT section is novel and has not been 
previously published. Emphasizing the utility of CSEMs over reliability coefficients, 
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the section “Estimators of CSEMs” provides various estimation procedures for CSEMs. 
The section “Reliability of Classification Category Scores” focuses on reliability of 
classifications, while the section “Other Models, Aggregation, and Precision Issues” 
tackles various additional issues associated with reliability. The final section offers a 
concise summary of the chapter and outlines potential areas for future research on reli-
ability. For practical applications and comparisons of different methodologies, readers 
can refer to two real data examples presented by W. Lee et al. (2025), which demon-
strate the computation of various reliability and error statistics across different models 
and metrics. 

RELIABILITY IN CTT 

CTT emerged in the early 20th century, initially focusing on studies of individual dif-
ferences. Its origins are often traced back to Spearman’s (1904) work on methods for 
correcting correlation coefficients for attenuation due to measurement error (Traub, 
1997). Since then, numerous scholars have contributed to further developing and 
refining the theory. Key texts in the field, such as Gulliksen (1950) and Lord and 
Novick (1968), are considered highly influential, offering comprehensive treatments 
of CTT. 

Despite its relatively simple set of assumptions and definitions compared to other 
contemporary theories, CTT yields results that are relevant to many aspects of mod-
ern psychometric applications and remains widely used. Not surprisingly, CTT con-
tinues to be an important area of study. In recent decades, certain segments of the 
measurement literature have extended CTT substantially, particularly in areas such 
as estimating CSEMs for both raw and scale scores, classification consistency and 
accuracy, and interval estimation (although the latter is not extensively covered in 
this chapter). 

Assumptions, Definitions, and Basic Results 
CTT asserts that an observed score for person p  on form f, denoted Xpf , can be 
decomposed into two components: a true-score component, Tp, and an error-score 
component, Epf: 

Xpf = +T Epf , (1)p 

where the true score Tp is a constant specific to the person and does not depend on 
forms. For notational convenience, Tp  and tp are used interchangeably in this chapter 
to represent the true score for person p  in the total raw-score metric. The intrinsic 
difficulty of using the model in Equation 1 arises from the fact that only one variable 
can be observed, while the other two are unobservable. This challenge is circumvented 
by making certain assumptions about the unobservable true or error scores—assuming 
either one of them to be known makes the other apparent. One such assumption is that, 
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E
for a specific person p, the expected value ( E ) of error scores over replications is zero: 
f (Epf ) = 0 , where the expected value is taken over a hypothetically infinite number 

of parallel forms, as indicated by the subscript f below the expectation operator. Under 
this assumption, it follows that 

Ef (Xpf  ) = Ef (Tp +E pf ) = Tp . (2) 

Conversely, if the true score is defined as the expected value of observed scores, the 
expected value of errors is necessarily zero. Therefore, the true score in CTT, which is 
equal to the expected value of observed scores, can be viewed either as a derived result 
or as a definition. 

Assuming the measurement procedure does not alter a person’s true score, any vari-
ation in the observed scores over replications is attributed solely to the use of parallel, 
yet different forms of a test. The question of what constitutes the replications over 
which the expectations in Equation 2 are taken lies at the core of CTT because the 
nature of true score and measurement error depends on the answer to that question. 
One traditional answer, among many possibilities, is that expectations are taken over 
forms of a test that are classically parallel. However, as discussed later, different defi-
nitions of replications can lead to different results. It should be noted that there is no 
universally right or best definition of replications, and the choice depends entirely 
on the investigator’s decision, guided by the intended interpretations of test scores. 

Another assumption about error scores is Ep (Epf ) = 0, meaning that, for a given 
test form, the expected value of the errors taken over a population of persons equals 
zero. This assumption holds for any subpopulation of persons, unless persons are 
selected based on the magnitude of Xpf . Under this and other assumptions dis-
cussed previously, the following central results can be derived: (a) true scores and 
errors for any test form are uncorrelated; and (b) error scores on any pair of parallel 
forms, f and g, are uncorrelated. It is also true that their covariances are zero, nota-
tionally, s( ,T Ef ) = 0  and s(E f , Eg) = 0. It follows that the variance (over persons) 
of observed scores on a form is simply the sum of true score variance and error score 
variance: 

2 2 2 s ( )X = s ( )T + s ( )E . (3)f f 

It can be further shown that, under CTT assumptions, true score variance is equal to 
the covariance between observed scores on a pair of forms and also to the covariance 
between observed scores and true scores: s( ,f ) = s(X T  = s 

2( )X Xg f , )  T . 

Reliability Coefficients and SEM 
The historical definition of the reliability coefficient is rooted in the conceptually 
straightforward notion of replication, specifically the correlation between two parallel 

( ,f g ( , )′ measurements. The notation r X X  ) ≡ r X X  denotes the reliability coefficient, 
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defined as the correlation between observed scores arising from the same form or 
two parallel forms. Under the CTT assumptions and results set forth previously, other 
expressions of the reliability coefficient can be derived (note that, without loss of gen-
erality, the subscript f for test form will be dropped hereafter): 

2 σ 
2( )  σ 

2 ET ( )X X  ) ( ,  2 1 2ρ( ,  ′ = ρ X T) = = −  . (4)
σ ( )  σ XX ( )  

It is important to note that these equalities are derived under specific assumptions 
in CTT, particularly those pertaining to classically parallel forms, and should not be 
universally applied without consideration. For instance, as detailed later, alternative 
expressions of the reliability coefficient may produce different results in certain IRT 
contexts. Additionally, in this chapter, the terms definitions and expressions are used 
interchangeably to offer clearer distinction in various situations. 

Using R X( )  as a generic notation for the reliability coefficient in the raw-score metric 
X, the following symbols distinguish various expressions presented in Equation (4): 

R X  PF ≡ r( ,X X ′)( )  

R X  º r 
2 X T)( )SC ( ,  

R X  º s 
2( )/ (T s 

2 X)( )VR 

R X  ≡ − s 
2( )/ (E s 

2 X) ( ) EV 1 

This distinction gains increased importance and utility in IRT contexts. The par-
allel-forms definition, R X( ) PF ≡ r(X , X′), stands apart from the others by being 
expressed solely in terms of observable quantities without referencing the true or error 
component. One limitation of this definition is the absence of an explicit parameter 
for the reliability coefficient because the correlation may vary across different pairs of 
forms unless forms are definitely classically parallel. 

( )SC 
2In the extant literature, the squared-correlation definition, R X  º r ( ,X T), 

is regarded as the canonical definition of the reliability coefficient (Brennan, 
2010). The generalizability coefficient in GT, which is analogous to the reli-
ability coefficient in CTT, takes the form of the squared correlation. The vari-
ance-ratio definition, R( )X VR º s 

2( )/ (T s 
2 X), employs the ratio of true score 

variance to observed score variance, indicating that if the quantity is close to 
1.0, variability in test takers’ observed scores is largely attributable to variabil-
ity in their true scores rather than errors. This definition forms the basis for the 
development of many internal consistency reliability coefficients (e.g., coefficient 
alpha), where a key objective is to express unobservable true score variance in 
terms of some observable quantities. The last definition involving error variance, 
R X ≡ −1 s ( )/ (E s X)  , always yields the same result as the variance-ratio ( )  EV  

2 2 
 
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definition, as long as Equation 3 holds. This definition may be considered the 
most general form of the reliability coefficient because of its broad applicability 
to various score types. 

The reliability coefficient essentially represents a correlation ranging from zero to 1, 
which is a convenient unitless scale for comparing different instruments or measure-
ment procedures. By contrast, SEM is expressed in units of a reported score scale and 
describes the extent to which test takers’ scores vary from one testing to another. Tra-
ditionally, SEM, in the raw-score metric, is derived through the reliability coefficient as 

s( )E = s( ) 1−R XX ( ). (5) 

Strictly speaking, this derivation holds only if the assumptions of classically paral-
lel forms are met. However, in practice, these assumptions are often disregarded and 
loosely applied in conjunction with various reliability coefficient estimates. The conse-
quence of violating these assumptions is relatively unknown. 

From the perspective of CTT, the SEM derived in Equation 5 is termed the overall 
SEM for a population of persons. Alternatively, the overall SEM can be defined as the 
square root of the expected value of individual-level error variances, which typically 
differ across persons with different true score levels. Symbolically, 

2 2 (6)σ( )E = Epσ ( |E τ p ) = Epσ (X |τ p ), 

where σ 
2( |τ p ) = σ 

2(X τ pE | )  is called the conditional error variance for persons with 
fixed true score tp , and the square root of it is the CSEM. Numerous theoretical and 
empirical studies have highlighted that CSEMs exhibit variation along the score scale, 
raising concerns about the applicability of the overall SEM to all individuals. (Refer to 
the section “Estimators of CSEMs” for estimators of CSEMs for various score types 
under all three measurement models.) It is important to note that the exact mathemati-
cal relationship between the overall and conditional SEMs in Equation 6 holds only for 
certain models and estimators. 

In the measurement literature, reliability coefficients have been the central focus, with 
insufficient attention given to the role of CSEMs. CSEMs not only provide information 
about the amount of measurement error specific to each individual or score point but 
also can be used to estimate overall statistics such as the overall SEM and reliability 
coefficients. They can further be integrated into interval estimation procedures (K. Y. 
Kim & Lee, 2018; W. Lee et al., 2006). In addition, obtaining CSEMs for scale scores is 
relatively straightforward. 

Approaches to Estimating Reliability 
Approaches to estimating the reliability coefficient and SEM in CTT can be broadly 
categorized into two types. In the first type, reliability is directly estimated using 
data from two independent replications of the “full-length” measurement procedure 
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administered to a group of test takers. The resulting two sets of observed scores at the 
group or individual levels are used for computing reliability coefficients, SEM, CSEMs, 
and other relevant statistics. In contrast, the second type estimates reliability using data 
collected from a single test administration to avoid the challenges of conducting two 
actual replications. Most estimators of the second type involve splitting a full-length 
test form into two or more constituent part-tests. The data from these part-tests from a 
single group of test takers are treated as replications—a somewhat contrived notion of 
replications. Statistical quantities derived from part-tests are then used to obtain results 
for the full-length test form. However, this approach relies on a strong set of assump-
tions regarding the parallelism of the part-tests. 

In principle, data for a reliability analysis are collected in a way that properly reflects 
the influences of all important sources of error in the reliability statistics of interest. 
To generalize interpretations of test results beyond a particular incident of a mea-
surement procedure, investigators would need to conceptualize which measurement 
conditions shall vary over replications and design data collection accordingly. Ideally, 
in the data collection process, only the measurement conditions contributing to the 
conceptualized measurement error should be allowed to vary over replications, while 
all other potential sources of random error remain unchanged or are treated as neg-
ligible. 

Direct Estimation With Full-Length Replications 
Suppose an investigator is interested in generalizing test takers’ test scores beyond 
a particular collection of items on a test form. A straightforward approach is to con-
struct two full-length parallel forms of the test according to the same test specifica-
tions. These two forms are then administered (possibly in a counterbalanced manner) 
to the same group of test takers within a very short time interval, such as on the same 
day. The correlation between two sets of scores is subsequently calculated. This cor-
relation value serves as a direct estimate of the reliability coefficient for either test 
form (not the sum or average of the two). Known as a coefficient of equivalence, this 
correlation indicates the extent to which test takers perform similarly on different 
forms of the test. 

When two test forms are administered at different times (e.g., a few days apart), 
the resulting correlation is affected downward due to the measurement error arising 
from differences in both testing occasions and test forms. This correlation is referred 
to as a coefficient of stability and equivalence, which is often preferred over other esti-
mates because investigators typically seek to generalize results over different testing 
occasions as well as different test forms. In this case, the coefficient of equivalence 
might be an overestimate of the idealized (or conceptualized) reliability. Alternatively, 
in situations where only one test form is available and administered twice, typically 
at different times, the estimate is called a coefficient of stability or test–retest reliability 
coefficient. This coefficient reflects variability in observed scores over testing occasions, 
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which may be biased by memory, but it does not account for variability due to different 
test forms. It is important to emphasize that these coefficients are not interchangeable 
principally because they involve the impact of different sources of measurement error. 
The choice of which coefficient to use depends on its consistency with the intended 
generalization. 

The direct estimation approaches using actual full-length replications offer sev-
eral advantages. First, in theory, they can be applied to any measurement procedure, 
including performance assessments involving raters, as long as resources permit. Sec-
ond, these approaches require minimal statistical and psychometric assumptions, 
although they do rely on other assumptions such as no change in true score or latent 
traits between administrations, no memory effects on the second responses, and no 
fatigue or practice effects. Third, the computation is easy and straightforward. Fourth, 
other reliability statistics, including CSEMs, can be readily computed from the repli-
cated data. Fifth, it provides the investigator an opportunity to carefully consider what 
constitutes replications of the measurement procedure, with a central focus on the 
sources of measurement error (e.g., items, occasions, raters). Despite all these benefits, 
however, direct estimates are less frequently used in practice because of their require-
ment for double testing time and, for some coefficients, the construction of an addi-
tional parallel form. 

Estimation Based on a Single Test Administration 
Spearman (1910) and Brown (1910) were the first to recognize the necessity of esti-
mating a reliability coefficient using data from a single test administration. Since then, 
numerous estimators have been developed, collectively known as internal consistency 
coefficients. The well-known Spearman–Brown formula was developed for the purpose 
of estimating a reliability coefficient based on two split-halves with equal observed score 
means and variances (i.e., classically parallel). Recognizing the challenge of construct-
ing part-tests with precisely identical means and variances, subsequent developments 
attempted to relax the strict assumptions of classically parallel forms. In particular, Feldt 
and Brennan (1989) integrated various internal consistency coefficients and catego-
rized them based on varying degrees of part-test parallelism. 

The notions of tau-equivalent and essentially tau-equivalent forms were initially 
introduced by Lord and Novick (1968). For two forms (or part-tests) that are tau 
equivalent, it is assumed that true scores are the same, thereby necessitating equal 
observed score means. However, these two forms are allowed to have different error 
variances, leading to the possibility of differing observed score variances. Under 
essentially tau-equivalent forms assumptions, the requirement of equal observed 
score means can be relaxed further. Here, true scores may differ by a constant, allow-
ing for variations in observed score means. Despite these differences, true score vari-
ances are equal for essentially tau-equivalent forms due to the constant difference 
in true scores. A less stringent concept of parallelism is congeneric forms, where true 
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scores are assumed to have a linear relationship. Consequently, true score variances 
may vary, but they are perfectly correlated. Under the congeneric assumptions, 
observed score variances may also differ due to variations in both error and true 
score variances. 

Extensive discussions and derivations of internal consistency coefficients, considering 
various definitions of form parallelism, can be found in Feldt and Brennan (1989) and 
Haertel (2006). In this section, a subset of these coefficients will be briefly introduced, 
starting with those based on two parts and then extending to coefficients involving 
more than two parts. 

For two-part coefficients, the full-length test X is divided into two scorable part-tests, 
X1 and X 2, such that X = X1 + X 2. The Spearman–Brown formula, the first internal 
consistency coefficient in the history of measurement, was derived under the assump-
tion that X1 and X 2 are classically parallel. The correlation between the two part-tests, 
denoted by r( ,1 2 , serves as a reliability coefficient for a half-test. This coefficientX X  ) 
is then stepped up to obtain a reliability coefficient for the full-length test X  using the 
simple formula 

( ,X X 2)2r 1 
SB R X  = .( )  (7)1 + r X X1 2)( ,  

Other two-part coefficients developed subsequently relax the classically parallel form 
assumptions to express the unobservable true score variance in terms of observable 
quantities based on two parts. Rulon (1939) provided a formula (attributed to Fla-
nagan) under the assumption of essential tau equivalence, where the true score vari-
ance for the total test is expressed to be equal to four times the covariance between X1 

s 
2( )  = 4s Xand X 2: TX ( ,1 X 2). Algebraically identical versions were proposed by 

Rulon (1939) and Guttman (1945). Putting all three versions together, the Flanagan– 
Guttman–Rulon coefficient is 

2 2 2( ,X X  ) s X + s ( )  s (X4s  ( )  X  − X )1 2 1 2 1 2( )  = = 2 1
− = 1− . (8)FGR R X  2 2 2( )X  s X  s ( )s ( )  X 

The assumption of equal true score variance in essential tau equivalence is 
rarely satisfied when, for example, two parts have substantially different test 
lengths or are associated with different content areas. Allowing for different 
part-test true score variances increases the number of unknown quantities and 
calls for additional constraints to find a solution. Raju (1970) introduced a con-
straint that the relative lengths of the two parts, l1 and l 2 = − l 1 , are known1 
(e.g., the actual number of items in each part-test). In contrast, Angoff (1953) 
and Feldt (1975) independently proposed the same solution for situations in 
which the lengths of part-tests are treated as unknown parameters to be esti-
mated. They used a constraint that the part-test error variances be linearly related 

 
 

to each other as a function of the l  terms. It follows that the unknown part-test 
lengths are equal to effective test lengths: l ) /  

) /  

 = 
2 2X + s X X( )  ( ,1 1 X( )  ands s1 2 

 
2 2X + s X X( )  ( ,2 1 ( )X . The Angoff–Feldt coefficient is given by= s s2 l 2 
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s X X  ) 4s X X  )( ,  ( ,1 2 1 2 
AF R X( )  = = 2 . (9)

( )  2 2 l l1 2s 
2 X 2 

 s X1 − s X 2( )  ( )
X −  ( )  

s ( )  
 s X  

Note that Raju’s coefficient is a special case of Equation 9 where l1 and l2 are predefined 
constants. 

Among many possible methods for splitting a test into two scorable parts, the odd– 
even split is most frequently employed in practice. The goal in dividing a test is to create 
two half-tests, each of which reflects the specifications of the full-length test and is as sim-
ilar as possible to each other in content and item characteristics (e.g., difficulty, format) 
to closely adhere to parallelism assumptions. Failure to achieve this similarity may intro-
duce bias into estimates of reliability. An inherent limitation of the two-part approaches is 
that, regardless of the split-half strategy used, there are many possible split halves that are 
equally acceptable. However, not all such splits will produce the same estimate. 

Subsequently, the two-part approaches were extended to multiparts. Multipart esti-
mates, often derived from individual items treated as parts, are generally preferred over 
two-part estimates because they avoid arbitrary divisions of a test, and the sampling 
errors in reliability coefficients tend to be smaller (Kristof, 1963). However, two-part 
approaches may be more defensible than multipart approaches concerning parallel-part 
assumptions. For example, the claim that all items are essentially tau equivalent is rarely 
justifiable because it implies that any differences in the item-level observed score vari-
ances are solely due to measurement error. Constructing two parts that largely satisfy 
essential tau equivalence might be much easier than developing all individual items 
with such a high degree of parallelism. Therefore, multipart procedures should not nec-
essarily be perceived as “better” than two-part procedures. 

Suppose a full-length test X  can be divided into n parallel part-tests: 
X = X1 + X 2 +  + X n, where each part-test can be an individual item or a cluster 
of items. Under the assumption of classically parallel part-tests, the generalized Spear-
man–Brown (GSB) formula can be derived as 

nR X1( )( )  = , (10)GSB R X  
1 + (n − 1)R( )X1 

where R X  is a reliability coefficient for a unit-length test (i.e., a part-test). If the( )1 
above equation is solved for R X1 , one can obtain a prophecy formula for predicting( )  
the reliability of a shortened test. Therefore, a more general formula can be written as 

× R Xu orig ( )  
pred R X( )  = , (11)

1 + (u − 1) ×orig R X( )  

where ( ) is the reliability coefficient of the original test, and u is the ratio of theorigR X  
length of the predicted test to the length of the original test. Obviously, u can be any real 
number greater than zero. 
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Cronbach’s (1951) alpha is undeniably one of the most widely recognized multipart 
reliability coefficients, assuming essentially tau-equivalent part-tests.1 The formula is 
given by 

σ 
2 X −∑σ 

2( )  
α R X  = ( n ) ( )  

2 

X i ,( )  (12)
n − 1 ( )σ X 

where s 
2( )i  is the variance of each part-test, X i = …, , )n . Note that the multiplier X i ( 1 

n/(n - 1)  has nothing to do with correcting for bias. Notably, coefficient alpha is 
algebraically equal to Kuder and Richardson’s (1937) KR20 coefficient if each item is 
treated as a part-test, and all items are scored dichotomously (i.e., 0 or 1). Kuder and 
Richardson’s KR21 is a special case of KR20 when items are all equally difficult. How-
ever, because of the unrealistic assumption of equal item difficulty, the practical utility 
of KR21 is limited.2 Another well-known property of R X( )  is that it equals the aver-a 

age of all possible split-half reliability coefficients computed using FGRR X( )  in Equa-
tion 8. As a special case, when n = 2 in Equation 12, a ( )  = FGR R XR X  ( ) . 

Reporting coefficient alpha is prevalent and nearly a standard practice in the mea-
surement and assessment literature. However, it is also true that alpha is frequently 
misused and/or misunderstood. One example of improper use of coefficient alpha 
is to assess the dimensionality of items in a test. Nothing in the derivation of alpha 
requires unidimensionality—alpha is not based on a latent trait model. In his reflec-
tion on coefficient alpha 50 years later, Cronbach (2004) stated, “I particularly 
cleared the air by getting rid of the assumption that the items of a test were unidi-
mensional” (p. 397). 

Another widely cited but potentially misleading characteristic of alpha is the 
phrase that alpha is a lower limit to reliability (Lord & Novick, 1968). While the 
mathematical proof is valid under a particular set of assumptions, it is hardly gen-
eralizable to other measurement circumstances for which the sources of error are 
different from those involved in alpha. For example, if the investigator intends to 
generalize over different testing occasions in addition to different forms, coefficient 
alpha computed based on data from a single occasion will likely be an overestimate 
(Brennan, 2001b, 2010). As mentioned earlier, the crux of the matter is whether 
the data used for estimation reflect the effects of error sources to be consistent with 
the investigator’s conceptualization of replications. Cronbach (2004) also stated, 
“I no longer regard the alpha formula as the most appropriate way to examine most 
data” (p. 403). In theory, depending on the investigator’s conceptualization, there 
can be many reliability coefficients for any set of test scores, and Cronbach incorpo-
rated this notion into the development of GT. 

Another coefficient for essentially tau-equivalent parts, developed by Guttman 
(1945), is coefficient l2, which is one of Guttman’s series of lower bounds for reli-
ability referred to as l1 through l6. Guttman’s l2 is always greater than or equal to l3, 
which is the same quantity as alpha, but is lower than “the” reliability. In this sense, l2 
is often considered a “better” lower bound than alpha. However, again, the conceptual 
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definition of reliability with respect to sources of error for replications should take pre-
cedence over any statistical justification for lower bounds. 

If the stringent assumptions of essentially tau-equivalent parts are relaxed to be con-
generic, part-tests are allowed to have heterogeneous error variances and true score 
variances, while maintaining a perfect correlation between true scores. The conge-
neric model is deemed suitable for cases in which observed part-test variances differ 
considerably, and one cannot solely attribute such variations to measurement error. For 
example, consider a test comprising several units (e.g., reading passages), each associ-
ated with a different number of items. If these units serve as part-tests in a reliability 
analysis, the observed part-test variances may well differ, and the differences are likely 
attributable not only to measurement error but also to variations in true score variances. 

Under the congeneric assumptions, Raju (1977) extended his two-part coefficient 
(Raju, 1970) to multipart contexts, assuming the proportions of total test length for 
part-tests, l i, are known: 

   2 X −∑s 
2( )X i 

1 s ( )  
R R X  =    

2 
( )  2 (13)   1 −∑l s X  ( ) i    

which becomes identical to coefficient alpha if li = 1/n. For unknown part-test lengths, 
Feldt and Brennan (1989) provided a solution called Feldt’s coefficient: 

2 2 2X s ( )  −∑s Xi 
s ( )  X ( )  

F R X  = 
2 2 . (14)( )  

 ( )  ( i X )]s X  −∑[s X , 2 
  

The derivation of Feldt’s coefficient requires congeneric part-tests and an assumption 
that error variances follow dictates of CTT, meaning the error variance for each part-test 
equals l i times the error variance for the total test—this model is often referred to as 
classical congeneric. The formula for Feldt’s coefficient can also be obtained by using the 
effective test lengths, li X i )/s 

2 X , in Equation 13. = s( ,  X ( )  
Other congeneric-model coefficients that are not discussed here in detail include 

Kristof ’s (1974) coefficient for tests that can be divided into three congeneric part-tests 
with unknown lengths. Additionally, Gilmer and Feldt (1983) presented a more gen-
eral formula applicable to tests with more than three congeneric parts with unknown 
lengths—it is referred to as the Feldt–Gilmer coefficient in Feldt and Brennan (1989). 
A maximum likelihood approach is also available, as described by Jöreskog (1971), 
through the use of a computer program LISREL ( Jöreskog & Sörbom, 2018). 

The internal consistency coefficients discussed thus far are suitable for tests 
consisting of items or part-tests that largely conform to the requirements of the 
essential tau-equivalence or congeneric models. Consider, however, a test com-
posed of multiple content categories (or clusters), each with a distinct set of 
items. While items within each content category may satisfy the assumptions of 
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the essential tau-equivalence or congeneric model, applying these assumptions to 
items across content categories may lead to violations. This is because some unique 
true score variance may be associated with each content category. The approach 
discussed in the next section employs a general framework for linear composites 
to address situations where parallel-form assumptions hold reasonably well within 
clusters but not across them. 

Reliability of Linear Composites 
A linear composite is defined as a weighted sum of scores from multiple constituent 
components: Z å 

M w X  m is the weight associated with component= m m, where w 
m=1 

m and M is the number of components. In this definition, weights are unconstrained— 
they can be positive, negative, or even zero. The general framework of linear compos-
ites considered in this section does not require that the constituent components in a 
composite are parallel in the classical sense of parallelism. In effect, a composite can 
be derived from any types of components. Consider the following examples: a gain 
score, which is the difference between pretest and posttest scores; battery composites, 
which are usually formed by averaging multiple subtest scores (e.g., English, math, read-
ing, and science); predicted scores based on a multiple linear regression; and total test 
scores obtained by summing scores from several distinct item types. 

Conceptually, for a linear composite, each instance of a replication would involve the 
same set of components with items within components that vary. Each individual com-
ponent, X , may consist of a set of items that conform, more or less, to one of the CTT m 
definitions of parallelism and is allowed to have its own true, error, and observed score 
variances and, consequently, reliability. If independent errors across components are 
assumed, the error variance for composite scores is simply a weighted sum of all compo-

2 2 2( )  å w E )nent error variances: s E Z = ms ( X m 
. This error variance for the composite 

is incorporated in the error-variance definition of reliability to yield a general-purpose 
reliability coefficient for a linear composite: 

s 2 ( )  å w 2 s 2(E ) 2E Z m X m å wms 2 (X m )[1 − R X( m ) ]
R Z( )  = −  1 = −  ,1 = −  1 (15)EV 2 2 2 s Z s Z Z( )  ( )  s ( )  

where R X m . Equation 15 is not only( ) is the reliability coefficient for component m 
convenient to use as long as a reliability estimate is available for each component, but 
also serves as a basis for deriving a reliability coefficient for many different types of lin-
ear composites. One such example is discussed next. 

Stratified coefficient alpha (Rajaratnam et al., 1965) is generally considered more 
appropriate than the unstratified version, aR X( ), when a test is organized according 
to a table of content (or other type) specifications. The assumption of essential tau 
equivalence may be sensible within content categories (called “strata” more generally), 
but may be questionable across them because there is presumably some unique true 



Reliabil it y in Educational Measurement 

 

 

 
 

  
 

 
 
 

  
 
 

  
 
 
 
 
 

 
 

 
  

  

297 

score variance associated with each category. For estimation purposes, stratum-level 
scores are computed even though they may never be reported. Then, as a special case of 
Equation 15, stratified coefficient alpha is given by 

å σ 
2( )m [ −α R(XmX 1 ) ]

1 .strat α R Z( )  = −  2 (16)
σ ( )Z 

The numerator in Equation 16 is the error variance in strat R Z( ), which is the sum of a 

error variances in the regular coefficient alpha associated with the strata. Occasionally, 
unstratified aR X( )  is applied to stratified data without explicitly taking into account 
stratification. Doing so will likely yield an underestimate of reliability, although the 
extent of the problem depends on the nature of strata. Stratification by content or item 
types often makes meaningful differences. 

The formula presented in Equation 15 is “general” in the sense that it does not 
specify which reliability coefficient should be used for the constituent components. 
If aR X( )  is used for all components, the result is stratified alpha. In a similar vein, 
a stratified version of Feldt’s coefficient may be obtained if one is willing to assume 
a congeneric model for the components. However, as W. Lee et al. (2025) demon-
strated, stratification makes little difference between the stratified and unstratified 
Feldt’s coefficients. As a final note, nothing in theory excludes the possibility of 
using different reliability coefficients for various components, although it is rarely 
done in practice. 

RELIABILITY IN GT 

It is undoubtedly true that the very simple model of CTT provides an accessible 
framework for addressing various measurement problems. However, a principal 
limitation of the simple model is the presence of only one error term (E), where 
all sources of measurement error are clumped together and cannot be disentan-
gled. As an extension and liberalization of CTT (Brennan, 2001c; Cronbach 
et al., 1972; Feldt & Brennan, 1989), GT permits the explicit modeling of multiple 
sources of random error. This feature makes GT a powerful and flexible tool for 
studying reliability and related issues. The multifacet aspect of GT is achieved 
through the application of analysis of variance (ANOVA) procedures. Other 
important characteristics that distinguish GT from CTT include the following: 
(a) GT incorporates a conceptual framework that differentiates between the con-
cepts of universes of admissible observations (and associated G studies) and universes 
of generalization (and associated D studies); (b) in GT, a single notion of randomly 
parallel forms replaces the multiple definitions of parallelism in CTT; (c) GT intro-
duces a clear distinction between two different types of error—absolute error and 
relative error; and (d) multivariate GT provides an even broader framework for 
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mixed models, including both random and fixed facets, with multiple universes of 
generalization. 

The first comprehensive exploration of GT was presented in the book titled The 
Dependability of Behavioral Measurements: Theory of Generalizability for Scores and Pro-
files by Cronbach et al. (1972). However, the application of ANOVA to measurement 
problems predates the formalization of GT by Cronbach’s team. Earlier works by 
researchers such as Burt (1936, 1955), Ebel (1951), Hoyt (1941), and Lindquist 
(1953, chap. 16) had already introduced the idea. A more accessible exposition of 
the theory is provided by Shavelson and Webb (1991). Brennan’s (2001c) book, 
titled Generalizability Theory, has been widely cited, serving as both a textbook and 
a resource for students and practitioners. For a comprehensive review of the history 
of GT up to the present, readers are directed to Brennan (2022) and the references 
therein. 

We shall now delve into some fundamental concepts, definitions, and assump-
tions, primarily focusing on univariate GT. Following this, there will be a brief 
overview of multivariate GT, and the section will conclude with an introduction to 
extended multivariate GT. While a full treatment of GT is beyond the scope of this 
section, we will use a few hypothetical scenarios to elucidate some crucial concepts 
and methods. 

Univariate GT 
Univariate GT provides a framework to model and estimate distinct sources of random 
error separately. To draw a comparison with CTT, a tautological model for univariate 
GT can be expressed as 

X pf = p p + (E pf  1 +E pf 2 +E pfH ), (17) 

where p p  is the universe score for person p in the mean-score metric, which is anal-
ogous to the true score in CTT, and H is the number of sources of random error 
associated with “facets” (e.g., items, raters). The H error terms are closely tied to 
the investigator’s intended universe of generalization (defined later), where rep-

= … , )lications ( f 1, ∞  are considered as comprising randomly parallel forms 
that differ with respect to the conditions of each facet. In this model, what con-
stitutes error is a matter of definition and is emphatically under the control of the 
investigator. 

Univariate GT is largely a two-step enterprise. The first step revolves around the 
notion of universes of admissible observations and generalizability studies (G studies), 
while the subsequent step considers the notion of universes of generalization and deci-
sion studies (D studies). These conceptual issues tend to be more challenging to grasp 
than the statistical issues concerning estimation of variance components and reliability 
statistics. 
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Universes of Admissible Observations and G Studies 
Designing a measurement procedure begins with specifying a set of measurement 
conditions, known in GT as facets. To illustrate, consider a practical example of an 
English writing assessment. Among many possible considerations, one can identify 
facets of interest, such as writing prompts (denoted i) and raters (denoted r). Note 
that the investigator has full control over what and how many facets to consider 
given the specific purpose of the assessment. Both the numbers of potential writing 
prompts and the raters may be assumed to be indefinitely large, approaching infinity, 
at least theoretically. In this scenario, both facets are infinite in the universe of admis-
sible observations (UAO), and the corresponding statistical model is called a random 
effects model, which is the primary focus of discussion in this section.3 Furthermore, 
if any prompt in the universe could be evaluated by any rater in the universe, the two 
facets in the UAO are crossed, denoted i ´ r. Now suppose there is a target population 
of persons (p) for whom the writing assessment is intended. In this context, persons 
are the objects of measurement about whom decisions are drawn. If any prompt and 
any rater in their universes can be associated with any person in the population, it is 
symbolized as p i  , which characterizes any observable data for the population ´ ´ r 
and universes. 

A linear model associated with the p i´ ´ r  structure that represents any observed 
score for a single person on a single prompt evaluated by a single rater is expressed as 

+ + + +  +  + +  (18)X pir = m v p vi v r v pi v pr vir v pir , 

where m is the grand mean in the population and universes and the n terms are mutu-
ally uncorrelated effects. The term v pir in Equation 18 represents a three-way interaction 
combined with all other residual effects. It follows that the variance of observed scores 
for a single condition of each facet can be decomposed into seven uncorrelated variance 
components: 

2 2 2 2 2 2 2 2 
pir p i r pi pr ir ( )s (X ) = s ( )  + s ( )  + s ( )  + s ( )  + s ( )  + s ( )  + s pir . (19) 

These variance components play a central role in all subsequent analyses. A study is 
conducted to collect data for the purpose of estimating these variance components 
for the UAO. Such a study is called a generalizability study, or more succinctly, a G 
study. One possible data collection design would involve a sample of n p persons, each 
of whom responds to the same set of ni prompts that are evaluated by the same set of 
n  raters. This is called a p i´ ´ r  G-study design, which is consistent with the struc-r 
ture of the UAO. 

However, the UAO does not dictate a particular G-study design for collecting 
observed data. For example, if each of n raters provides ratings on the responses to r 
two or more nonoverlapping prompts, this is a design symbolized as p ́ ( :i r), 
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where prompts are “nested” within raters. While there is no definitive answer to which 
G-study design should be used, it is generally preferred to use a crossed design (i.e., 
p i r) when the UAO is crossed. Using a crossed design provides the benefit that ´ ´  
all seven variance components in Equation 19 can be independently estimated, offer-
ing great flexibility in obtaining results for other nested designs as well as the crossed 
design. By contrast, using a nested G-study design, some variance components in Equa-
tion 19 are not separately estimable (i.e., confounded), and results can only be obtained 
for certain nested designs but not for the crossed design. 

Based on the G-study data, estimates of variance components can be obtained using 
various methods, including the ANOVA procedure. This procedure essentially involves 
the explicit use of the expected mean-square equations for a given G-study design, 
setting them equal to the weighted sum of contributing variance components. The 
expected mean squares are substituted with observed mean squares in the equations, 
and they are then solved for each of the variance components in terms of the mean 
squares. Once estimates of the variance components are obtained, they can be used to 
estimate error variances and reliability-like coefficients in subsequent decision studies, 
as discussed next. 

Universes of Generalization and D Studies 
As indicated in Equation 19, the G-study variance components for the UAO pertain 
to scores on single conditions of each facet. These estimated G-study variance com-
ponents can be used in designing efficient measurement procedures for operational 
purposes through various decision (D) studies. Conceivably, an operational mea-
surement procedure might encompass a set of measurement conditions (e.g., four 
prompts and two raters) from the UAO, and decisions about objects of measurement 
(persons) will be based on their mean (i.e., average) scores over those measurement 
conditions. Moreover, there exists a large (presumably infinite) number of similar 
forms that can be selected from the infinite UAO, each form containing different sam-
ples of measurement conditions (i.e., different sets of four prompts and two raters). 
Such forms are referred to as randomly parallel forms, which embody the notion of 
replications in GT. Unlike the definitions of parallelism in CTT, no constraints such 
as equal means and variances are imposed on randomly parallel forms, which are 
essentially indistinguishable from one another according to the principle of random 
sampling. 

The concept of replications tied to randomly parallel forms is intricately linked to 
the notion of universe of generalization (UG). Indeed, a UG constitutes the universe 
of randomly parallel forms to which the investigator intends to generalize the results 
based on a particular form. In essence, a UAO is a universe for single observations, 
whereas a UG is a test-level universe focusing on mean scores over sets of measure-
ment conditions. In a similar vein, the G-study variance components are derived 
from single-observation data and are subsequently employed to obtain the D-study 
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variance components for mean scores over sets of conditions. The design structure 
of the D study may or may not mirror that of the G study. Furthermore, it is entirely 
legitimate for a UG to contain either all or a subset of conditions present in the UAO. 
These conceptual considerations are illustrated using the same example mentioned 
earlier. 

Consider a scenario where the UAO is infinite with the p i r´ ´  structure, and G-study 
variance components have been estimated using the p i r´ ´ design with ni prompts and 
n  raters. Now, consider the following three different scenarios for D studies: r 

1. Same design and same universe as G study 
• Design: p I´ ´R 
• UG: both I  and R  are random (i.e., contains all the conditions in the UAO) 

2. Same design but different universe 
• Design: p I´ ´R 
• UG: I  is random, but R  is a fixed facet (i.e., interest focuses on generalizing 

results over prompts only, but not raters) 
3. Different design with same universe 

• Design: p ́ ( :I R) 
• UG: both I  and R  are random 

Note that uppercase letters represent facets in D studies (i.e., I  and R ) to emphasize 
the use of mean scores over conditions, as opposed to the single prompt-rater scores 
in the G study. In addition, the D-study sample sizes for the prompts and raters can 
be user defined and may be the same as or different from the G-study sample sizes, 
denoted n¢i  and n¢r . 

It is particularly important to note that the specification of a UG and characterization 
of a D-study design bear resemblance to the conceptualization-estimation framework for 
reliability discussed in the section “Terms and Background.” To define a UG, an inves-
tigator needs to articulate or conceptualize what constitutes a replication of a measure-
ment procedure, predominantly in terms of which facets are considered random and 
which are fixed. The features of a D-study design pertain to estimation of reliability 
statistics. 

The linear model for the first D-study scenario (i.e., p I  R´ ´  with both I and R ran-
dom) representing a person’s observed mean score over n¢i  prompts and n¢r  raters can 
be expressed as 

X pIR = X p = m + v p + v I + v R + v pI + v pR + v IR + v pIR , (20) 

which is analogous to Equation 18 except for the use of uppercase subscripts, I  and R . 
The D-study variance components for the score effects in Equation 20 can be obtained 
by dividing the corresponding G-study variance components by the user-defined 

2 2 2 2D-study sample sizes. In this example, s ( )  = s i ′ , s ( )  = s ( )/r nI ( )/ni R ′ r , 
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2 2 2 2 2 2 s ( )  = s pi n′ i , s ( )  = s pr n′ r , s ( )IR = s ( )/n ni r  , and pI ( )/ pR ( )/ ir ′ ′  
2 2 pir i r  

.s (pIR) = s ( )/n n′ ′  

As noted earlier, GT employs the expected-value perspective on true score, which 
it refers to as universe score. That is, universe score is defined as the expected value of 
observed mean scores over all randomly parallel forms in the UG: 

π p º µ º E E X pIR . (21)p T R  

The variance of universe scores over all persons in the population is defined as 
σ π( )  = Ep (µ p − µ 

2 
´ ´R design with random I  and R , the universe 2 ) . For the p I  

score variance is simply σ 
2( )π = σ 

2( )p . 
The second scenario differs from the first in that its UG is more narrowly defined than 

the UAO by fixing the rater facet. In this case, every randomly parallel form consists of 
the exact same set of raters, eliminating generalization over raters. The net effect is that 
the variance component for the person-by-rater interaction effect contributes to uni-

2 2 2verse score variance; specifically, σ ( )π = σ ( )p + σ ( ).pR 
For the third scenario with a p´( :I R) D-study design, the linear model is 

X pIR = X p = m + v p + v R + v I :R + v pR + v pI :R. (22) 

This linear model has fewer score effects (and variance components) compared to 
the p I´ ´R design shown in Equation 20. If the G-study variance components 
for the fully crossed p i r´ ´  design are available, another G study is not required 
to obtain the D-study variance components for the nested design. Instead, a nested 
effect can be expressed in terms of confounded effects from the crossed design; that 

2 2 2 2 2 2
i r  s ir ( :  r) s ) + pir)is, s ( :  ) = s ( )i + ( ) and s pi = (pi  s ( . It follows that 

s ( :I R) = s ( )  + s ir n′ ′n  and s ( :  R) =  ) s pir) / ′ ′ — 2  2 i 2( )  / 2 pI s 
2(pi  + 

2(  n n     i r    i r  

the other three variance components are the same for both designs. Although the design 
for the third scenario differs from the first one, universe score variance remains unchanged 
(i.e., s 

2( )p ) because the UG is the same. 

Error Variances and Coefficients 
Reliability coefficients in CTT are fundamentally correlation-based, directly or indi-
rectly focusing on the rank ordering of test takers. Consequently, error variance asso-
ciated with CTT reliability coefficients is interpreted in relation to the performance of 
other persons in the group, making it inherently relative. By contrast, GT distinguishes 
between two types of error: absolute error and relative error, each with different inter-
pretations and uses. Absolute error for a person is the difference between their observed 
mean score and the universe score: 

D º X - m .p p p (23) 
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The variance of D p over persons is referred to as absolute error variance, denoted 
s 

2( )D , which is more suitable for criterion-referenced interpretations of scores. On the 
contrary, relative error, akin to CTT, is the difference between observed deviation scores 
and universe deviation scores: 

δ p ≡ ( X p − Ep X p )− (µ p − µ ). (24) 

Relative error variance, σ 
2( )δ , is the variance of Equation 24 over persons. 

Each type of error variance has an associated reliability-like coefficient. A generaliz-
ability coefficient involves relative error variance as its error term, defined as 

2 
2 σ π( )  (25)Eρ = 2 2 . 
σ π( )  + σ δ( )  

A different coefficient that involves absolute error variance is called a dependability 
coefficient, given by 

2σ π( )Φ = 2 2 . (26)
σ π( )  + σ ( )∆ 

Results for error variances and coefficients depend on a specified UG, a D-study design, 
and corresponding D-study variance components. Relative error variance, σ 

2( )δ , and 
a generalizability coefficient, Er 

2, are analogous to error variance and a reliability 
coefficient, respectively, in CTT. For a simple p I´  design, Er 

2 is equal to coefficient 
alpha (or KR20 for binary items) if n′ = n ; however, this equality does not extend to i i 
other UGs and/or D-study designs. 

It can be shown that absolute error variance is the sum of all variance components 
except s 

2( )p  for a random model with a crossed design. In the first D-study scenario 
with the p I  R´ ´  design (both I  and R  random), 

2 2 2 2 2 2 2 s ( )  s ( )  + s ( )  + s ( )  + s ( )  + s IR∆ =  I R pI pR ( )  + s (pIR). 

Relative error variance, by contrast, contains all variance components for interaction 
effects that involve p: 

2 2 2 2σ ( )δ = σ ( )  + σ pR + σ (pIR). pI ( )  

2 2 2
( ) is smaller than s D , which, in turn, leads to ErClearly, σ δ ( )  that is larger than F. 

In the second scenario with R fixed, s 
2( )pR contributes to universe score variance, 

resulting in 
2 2 2 2 2 s ( )∆ = s ( )  + s ( )  + s IRI  pI  ( )  + s (pIR) 

2 2 2σ δ = σ ( )  + σ (pIR). ( )  pI 
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Compared to the first scenario, this leads to larger universe score variance, smaller error 
variances, and larger coefficients. This outcome is a consequence of the reduced error in 
a restricted UG that limits the generalization of results. 

For the third scenario, involving an infinite UG with a p ́ ( :I R) design, 
2 2 2 2 2 s ( )∆ = s ( )  + s ( :  R) + s (pR) + s (pI R  R I : )  

2 2 2 .σ δ = σ ( )  + σ (pI :( )  pR R) 

Results for this design are likely to differ from those of the first scenario with a fully 
crossed design, even if both share the same UG. This underscores the dependence of 
D-study results on both UG characteristics and D-study design structure. 

The hypothetical scenarios with two-facet designs served as a vehicle to introduce 
key concepts, terminology, and statistical formulas in univariate GT. They also pro-
vided insight into the considerations necessary for establishing a well-defined measure-
ment procedure. Perhaps the most critical consideration, after identifying all pertinent 
sources of error (i.e., facets), is determining which facets are random and which are fixed 
in the intended UG. Other factors demanding attention include the D-study design 
structure and D-study sample sizes. All these considerations affect D-study results, one 
way or another. 

Multivariate GT 
An early exploration of multivariate GT was presented by Rajaratnam et al. (1965), 
particularly in the context of introducing stratified alpha as a tool for estimating reli-
ability for a composite. Considered as a precursor to multivariate GT, stratified alpha 
set the stage for later developments. Later, Cronbach et al. (1972) offered the first 
integrated treatment of multivariate GT, a framework further expanded by Brennan 
(2001c). 

Expanding on the univariate model depicted in Equation 17, multivariate GT may be 
represented as 

X =( p + p +  + p ) + ( E + E +  + E ), (27)pf p1 p2 pM pf 1 pf 2 pfH 

in which each person possesses M  universe scores, each associated with one of M 
fixed conditions of measurement; and, as previously defined, the number of sources 
of error (i.e., facets), denoted by H, is typically the same across all M  levels of a fixed 
facet—more intricate multivariate designs are considered in the section “Extended 
Multivariate GT.” While many fundamental principles of univariate GT still apply to 
multivariate GT, a key distinction lies in the presence of “multiple” univariate random 
effects models, each corresponding to each level of the fixed facet. 

To apply multivariate GT, there must be at least one fixed facet and at least one 
random facet in the UAO and G-study data collection design. For illustration, let 
us consider a simple example based on the so-called table of specifications model 



Reliabil it y in Educational Measurement 

   
  
 
 
 
 

 

 
 
 

 

 
 
 

 

 

     

 

 

 
  

305 

( Jarjoura & Brennan, 1982, 1983). In this model, each item in the UAO is associated with 
one of several specific content categories, making items (i) random and content categories 
(c) fixed. Suppose a G study is conducted to gather response data from a group of test takers 
(p) who respond to all items nested within each content category. This multivariate design

• is designated p × i , where the filled circle superscript indicates that the facet is crossed 
with the levels of the fixed facet, c, and the empty circle superscript signifies the facet nested 
within c. 

For simplicity, suppose there are two content categories (i.e., n =2). Under thec 
• 

multivariate p × i  design, covariances exist for the object of measurement (persons) 
since the same persons respond to all items in both content categories. However, there 
are no covariances for items that are nested within c. The variance and covariance com-
ponents for p, i , and pi are displayed in the following n ´n  matrices: c c 

 
 



  22 2 ( )pi( )p ( )p ( )i


 


 




 




 

ss s s 11 12 1S S , and S pi == = ,i, 2p 
( )p s 

2 
2 ( )p 2 ( )pi( )i ss s 212 2 




 




 

where the subscripts 1 and 2 denote the two content categories. Note that both Si 
and S pi  are diagonal matrices with zero covariances. Since there is a univariate ran-
dom p i design for each content level, the variances reported in the first and second ´ 

´columns in the matrices represent the variance components for a p i design based 
solely on data from the first and second content categories, respectively. Hence, the 
conventional ANOVA procedure can be used to estimate univariate variance compo-
nents for each content category. The estimate of the covariance component in S p , 
s12( )p , is simply the covariance between persons’ observed scores on the two catego-
ries. For more complex designs, interested readers can refer to Brennan (2001c, chaps. 
9 and 11) for procedures on estimating covariance components. 

Now, consider a subsequent D study that involves n¢i1  items for Category 1 and 
n¢i2  items for Category 2 with the same design structure as the G study. In this case, the 

two diagonal elements in the variance–covariance component matrix for I, S I , are 
2 2 2 2 s1 ( )  = s1 i n′ i1 2 ( )  = s2 ( )/i n′ i2. Likewise, S pI  contains the following diag-I ( )/ and s I 

2 2 2 2pI ( )/ ′ pi ′ .onal elements: s ( )  = s pi ni  and s ( )pI = s ( )/ni It follows that the 1 1 1 2 2 2 

matrices for universe score, relative error, and absolute error, respectively, are Sp = S p; 
2 2 2S = S  and  with diagonal elements of s ( )  s ( )  + s pId pI; SD 1 ∆ =  1 I 1 ( )  

2 2 2and s ( )  s I + s ( )  and Sd  are diagonal ∆ =  ( )  pI . Note that for this design, SD2 2 2 
matrices. 

In practical applications, decisions about test takers are often based on their compos-
ite scores over all levels of content categories. A composite based on two content cat-
egories can be expressed as a weighted sum of two mean scores: Z = w X w X 2,1 1  + 2 
where the bar above Z denotes the mean-score metric, and weights are typically 
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proportional to the number of items in each category (i.e., w1 = n′i1 /( n′i1 + n′i2 ) 
and w = n′ /( n′ + n′ )). Similarly, the composite universe score for a person 2 i2 i1 i2 

is defined as p pZ = w1p p1 + w 2p p2. Since Sp = S p , composite universe score 

variance σ 
2 ( )π  is the sum of all of the elements in S p  with associated weights: Z 

2 2 2 2 2σ ( )π = w σ ( )p + w σ ( )p + 2w w  σ ( )p . Relative error variance and absolute Z 1 1 2 2 1 2 12 

error variance for the composite scores, respectively, are weighted sums of diagonal 
2 2 2 2 2elements of their corresponding matrices, as follows: σ δ( )  = w σ δ( )  + w σ δ( )Z 1 1 2 2 

2 2 2 2 2and sZ ( )  = w1 s ( )∆ + w 2 s2 ∆ . These error variances, when combined ∆ 1 ( )  
with composite universe score variance, provide reliability-like coefficients for 
the composite scores. A multivariate generalizability coefficient and a multivariate 
dependability coefficient for the composite are defined similarly to Equations 25 and 
26, respectively. 

The typical computational procedures for multivariate GT designs have been demon-
• strated using a simple p × i  design so far. Applying these procedures to multifacet 

situations and/or different design structures is straightforward as long as the multivar-
iate design is properly identified. For example, consider a scenario with two types (c) 
of short free-response items (i) that are evaluated by raters (r), where each rater scores 
test takers’ (p) responses to a different subset of items for both types. This constitutes a 

•  •multivariate p × ( :i r ) design with c serving as a multivariate fixed facet. Items are 
nested within both r and c, and for each level of c, there is a univariate random p ́ ( :i r) 
design. Some effects (p, r, and pr) will have full matrices with nonzero covariance 
terms, while other effects (i : r and pi : r) will have diagonal matrices with zero covari-
ances. D-study variance and covariance components, along with various D-study statis-
tics, can then be computed using the procedures delineated in the preceding discussion 
of the simplest design. 

The procedures discussed thus far are generally sufficient for most applications with 
a “single” multivariate design where the same univariate design structure applies to all 
levels of the fixed facet. Nonetheless, more complex designs can arise in practical situa-
tions, necessitating special treatment, as discussed in the following section. 

Extended Multivariate GT 
The extant literature on GT offers limited guidance on handling a mixture of dif-
ferent design structures in a multivariate design. One such example is a mixed-
format exam that contains both multiple-choice (MC) items and free-response 
(FR) items involving raters for scoring. Here, the item type represents a mul-
tivariate fixed facet with two levels, MC and FR. Moses and Kim (2015) were 
the first to consider combining two distinct designs in multivariate GT, and 
Brennan et al. (2022) later provided a more extensive treatment, referring to it as 
extended multivariate GT. 
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The model representation for conventional multivariate GT shown in Equation 27 
may be further expanded to characterize extended multivariate GT. Specifically, 

X pf =  p p1 + (E pf  1 +  + E pfH1
)  +  +  p pM +(E pf 1 +  + E pfH M 

)  . (28) 

This model suggests that there are M  distinct levels of a fixed facet, each associated with 
its own sources of error (i.e., facets) signified by different subscripts to H, H1 through 
H M . Since this model has not been fully exploited in the literature, one of the examples 
reported by Brennan et al. (2022) is briefly introduced here. 

To continue with the example of a mixed-format exam, the MC section involves items 
(i) as the primary measurement condition, while the FR section involves both items 
(i) and raters (r). For notational simplicity, the symbol i is used to represent both MC 
and FR items—however, it does not imply interchangeability between the two item 
types. Representing the combination of two universes, the UAO structure can be 

•  •  

symbolized as {p × i }{p × i × r }, where persons are crossed with both uni-
verses, as indicated by the closed circle superscript. Brennan et al. (2022) concisely rep-

•   resented this design as p ×  i ∪ ( i × r ), where the symbol È denotes the union 

of the MC and FR sections, and the first and second i  before and after È are associated 
with the MC and FR sections, respectively. 

•    Suppose G-study data were collected for the p ×  i ∪ ( i × r ) design. The con-
ventional univariate methods can be applied to estimate G-study variance components 
separately for the MC and FR sections based on a univariate p i´ design for the MC 
section and a univariate p i´ ´ r  design for the FR section. For the full multivariate 
design, the covariance component for p needs to be estimated. Given that p is the only 
linked facet in this design, an unbiased estimate of the covariance is simply the observed 
covariance between MC and FR scores. 

The left side of Table 5.1 presents the G-study variance and covariance components 
for this multivariate design. Each matrix reports variance components for MC and 
FR (indicated by the subscripts 1 and 2) in the first and second columns, respectively. 
Notably, the MC section, analyzed with a p i design, involves three relevant variance ´ 
components (p, i , and pi). In contrast, the FR section, analyzed with a p i r´ ´  design, 
includes seven variance components (p, i , r, pi, pr, ir, and pir). Each of the seven 
matrices contains variance components corresponding to one of the seven effects for 
FR. However, only three matrices ( S p , Si , and S pi ) report variance components 
for MC. This is because the other four matrices are not relevant to MC, as indicated by 
“NA.” Covariance components are present in S p  only. 

On the right side of Table 5.1, the D-study variance and covariance components are 
presented. These components are obtained by dividing their corresponding G-study 
components by the user-defined D-study sample sizes, n¢i1, n¢i2 , and n¢r . Com-
posite universe score variance is calculated as the weighted sum of all the elements 

2 2 2 2 2in S p : ( ) = w σ1 (  )  + w σ2 ( ) + 2w w  σ12σ π  1 p 2 p 1 2  (p). Since MC and FR involve Z 
different sources of error, both relative error variance and absolute error variance for the 
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Table 5.1 Variance and Covariance Components for the 
Extended Multivariate Design Example 

G study 
•    p × i ∪ ( i × r )  

D study 
•    p × I ∪ ( I × R )  

MC              FR MC                 FR 

 2 
s p( )  s p( )1 12 S =  p 2 s p( )  s p( )12 2   

 2 
s p( )  s p( )1 12 S = p  2 
 s p( )  s p( )  12 2  

 2 
s i( )1 

Si =  
 2 
 s i( ) 2  

 2 
s i( )1 
 n′ i1 
 S I =  2 
 s i( )2 
 
 n′ i2  

 NA S = r  
2 s2 r( )  

 NA 
 

2SR =  s2 r( ) 
 n′ r  

 2 
s pi( )1 

=  S pi  2 
 s pi( ) 2  

 2 
s pi( )1 
 n′ i1 

=  S pI  2 
 s pi( )2 
 
 n′2  i  

NA 
 S = pr  2 s2 pr( )  

 NA 
 =S pR 2 s2 pr( ) 
 n′ r  

 NA =Sir  
2 s2 ir( )  

 
NA 
 = 2S IR  s2 ir( ) 
 n n′ ′ i2 r  
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NA
Σ pir 

 





 

= 
2σ 2 pir 

 





)(


NA 
=Σ pIR 

 





2 σ 2 pir( ) 
n n′ ′i2 r  

Note. D study = decision study; FR = free response; G study = generalizability study; MC = multiple choice. 

composite involve different variance and covariance components for the two sections, 
as follows: 

2 2 2 2 2 2 2σZ δ = w1  σ1 pI  + w 2 σ2 pI + σ2 pR + σ2 (pIR)  , (29)( )  ( )  ( ) ( )  

and 
2 2 2 2 2 2 2 2 sZ ( )  w1 s1 I + s1 pI  +w 2 s2 I + s2 (R) + s2 (30)∆ =  ( ) ( )  [ ( ) (IR)  

2 2 2+ s2 pI + s2 ( )  + s2 (pIR)].( )  pR 

Finally, the reliability-like coefficients are obtained using these quantities for the com-
posite in Equations 25 and 26. 

The preceding discussion highlights that extended multivariate GT offers a useful 
framework for dealing with multivariate designs that are more complex than those 
commonly discussed in the current literature. However, the model needs to be studied 
further through more diversified applications of the model with various types of com-
plex designs in real-world testing. 

RELIABILITY IN IRT 

In IRT, a test taker’s response to an item is modeled as a function of an underlying pro-
ficiency variable denoted q  and item parameters. The proficiency for a test taker can be 
estimated using either the maximum likelihood (ML) or Bayesian estimation methods. 
An estimator, denoted q ^, serves as the observed score in IRT. In this context, we pri-
marily consider the ML and Bayesian expected a posteriori (EAP) estimators. Another 
Bayesian estimator, maximum a posteriori (MAP), is briefly discussed because it shares 
the same underlying framework with the EAP estimator. 

The main focus of this section is to present various approaches to quantifying 
reliability within the framework of IRT. The mathematical formulations presented 
here are designed to be applicable and generalizable to many different IRT models, 
without making specific distinctions among those models. Throughout this section, 
unidimensional dichotomous IRT models are assumed, except in the last subsec-
tion where some procedures are discussed for a few specific multidimensional IRT 
(MIRT) models. 
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Results are presented for several score metrics, including ML estimates, EAP 
estimates, summed raw scores, transformed scale scores from summed raw scores, 
composite scores, and composite scale scores. The two classes of estimation methods 
(ML and EAP) are discussed separately because of their fundamental inconsistencies 
in terms of the model framework and assumptions. 

Under the ML framework, the data at hand are viewed as a random sample 
from a distribution with known q  and item parameters. For a test taker with q , the 
observed data over replications are conceptually obtained by administering test 
forms with the exact same item parameters repeatedly. These forms, with the same 
item parameters, are often called strictly parallel forms, or it can be said that the 
form is effectively fixed (W. Lee et al., 2000). Therefore, the source of error caus-
ing the variability in estimates over replications is best described as resulting from 
each item being sampled from a large pool of items with identical parameters. 

Reliability statistics under the ML framework are conceptualized and computed 
by focusing on the distribution of proficiency estimates conditional on the parameter 

q ^ qf ( | )  ^ . The standard deviation of  given  is termed the conditional standard error of qq 
estimation (SEE). In IRT, the SEE plays a role similar to that of the SEM in CTT. How-
ever, these terms are often used interchangeably in the context of estimating reliability 
in IRT (e.g., B. F. Green et al., 1984; Lord, 1983). For the purposes of this chapter, no 
distinction is made between the two terms. 

In contrast, the Bayesian framework is primarily concerned with obtaining the 
posterior distribution of parameters given observed data, f ( |q u), where parameters 
are considered random while data are fixed. Here, u is a vector of a test taker’s item 
responses. The EAP estimate is the mean of the posterior distribution of q  for test 
takers with the same item responses. The standard deviation of the posterior dis-
tribution serves as the SEE for the EAP estimator. However, as demonstrated later, 
under this Bayesian framework, the concept of replications is obscure, at best, and 
thus the Bayes SEE is conceptually different from the SEE in the ML estimator and 
SEM in CTT. 

Consider the following parameterization, similar to CTT: 
^θ

 is decomposed into the latent proficiency q  and an 

= +θ ε, (31) 
^where a proficiency estimate q 

error component, e. For simplicity, subscripts indicating test takers and forms are 
omitted here. In contrast to CTT, where the true score for a test taker is equal to 
the expected value of observed scores, the proficiency estimators, both ML and 
EAP, provide biased estimates for q  ( J. K. Kim & Nicewander, 1993; Lord, 1983; 
Warm, 1989). The ML estimator is unbiased only asymptotically as the test length 
approaches infinity. The bias in the ML estimates has significant consequences. 
Unlike the results in CTT, various expressions or definitions of the reliability coef-
ficient for the ML estimator may not yield the same answer, a fact that is frequently 
overlooked. 
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Maximum Likelihood Proficiency Estimates 
Let 

 
q , the expected value 

 
q 

 
q 

¹ 
denote the ML estimator of q . As noted earlier, due to bias in 

is not equal to q; namely, E ( 
 

qof . The expected value of 
as expected proficiency, compared to latent proficiency q. For 

 
q 

is referred to hereq q| ) q 
, the following reliability 

coefficients are typically considered: 

  

′
 

2σ θ( )  

σ θ( )  


ρ θ( ) 2R( )θ ≡ θ ; ( )θ ≡ ; ( )θ ≡R R( , )ρ θ θ  ;PF , SC VR 2 

  
[ (E E 

2 2 2σ θ θ| σ θ|)] σ θ θ( ) ( )
(θ ) ≡ 1 − ( )θ ≡R R

  

.; and= EVR MVR 
+ E2 2 2 2σ θ( )  σ θ( )  σ θ( )  | )σ θ θ( 

In CTT, similar expressions of these reliability coefficients are all identical when derived 

 
q 

under the assumptions of classically parallel forms. However, the equality does not 
hold for ( ) PF ( )SC 

 
q 

 
q . The first definition R is the parallel-forms coefficient, R is the 

squared-correlation coefficient, and the last three represent the variance-ratio coeffi-
cients (indicated by subscripts including VR). These coefficients will likely produce 
different results primarily because they use different definitions of true proficiency 
and its variance. Hereinafter, σ 

2( )θ  in R 
 
q( )  MVR 

ficiency variance, while the numerator of the first formula in R 

 
( )q VR and R is referred to as latent pro-

, σ 2[ ( | )]E  
q( ) EVR 

is referred to as expected proficiency variance. The subscript EVR appended to R 
θ θ  , 
 
q 

 
q 

( ) EVR

 and( ) EVR 
2  signifies the use of expected proficiency variance. Likewise, Eσ θ( | θ) in R 

 
q( ) MVR 

error variance σ 

R is referred to here as expected error variance, which differs from either the 
 

 
2 2 2 ( )θ( )ε  (see Equation 31) or another quantity, σ ( )θ σ . Recall-

that Eσ θ θ( |  ) quantifies the variability of 
2 2 q- E ; by contrast, σ 

- q. The last three variance-ratio coefficients differ in terms of which types 

 
( )ε  is concernedq 

about 
 
q 

 
q( )VR 

as its error variance; 
of variances are used in the numerators and denominators. In effect, R involves 

2 2 ( )θlatent proficiency variance in conjunction with σ ( )θ σ-
 

( )q EVR contains expected variances in both the numerator and denominator; andR 
 
q( )  MVR 

For ease of explanation, let’s first delve into the three variance-ratio coefficients, 
R exploits an interesting mix of both types (note the letter M  in the subscript). 

 
q 

 
q 

 
q( ) PF ( )SC ( ) EVR 

reliability (B. F. Green et al., 1984). S. Kim (2012) labeled R 
followed by R and R . In the literature, R 

 
q

 is often called marginal 
( ) EVR as the (squared) 

correlation ratio for predicting q from 
 
q, which might also be called an intraclass cor-

relation coefficient based on the ANOVA identity, given by 
2  σ θ( )  = σ 2[ (  | )]E  

θ θ + Eσ 2  (θ θ| ). (32) 
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 
The intraclass correlation coefficient, R q , becomes identical to the squared 

 ( )  EVR 
 

Pearson correlation coefficient (i.e., R( )q SC) if the relationship between q  and q  is lin-
  

ear; however, if the relationship is not linear, R( )q ³ R( )q .EVR  SC 


 
Since q  is a biased estimator, E (q q| ) = + BIAS . Bias is not constant and can be q 

either positive or negative depending on the location of a proficiency parameter along the
  

q  scale. An immediate consequence of the bias in q  is that σ E θ θ ¹ σ ( )θ . Rather, 2[ ( | )] 2 

2 2 2 2σ E θ θ  = σ θ + BIAS) = σ θ + σ (BIAS) + 2σ θ , BIAS), (33)[ ( | )]  ( ( )  ( 

where the variance terms are always positive and the covariance between q  and BIAS 
is usually positive although there is no theoretical justification or proof for that (Lord, 

 
1983). Clearly, the expected proficiency variance, σ 

2[ (E θ |θ)], is not equal to σ 
2( )θ 

and the former usually is larger than the latter. From Equations 32 and 33, it follows that 
2  2 2 2  ( )  ( , ) + Eσ θ θ σ θ = σ ( )θ + σ (BIAS) + 2σ θ BIAS ( | ). (34) 

2  2As σ( ,θ BIAS) typically is positive, σ ( )θ > σ ( )θ . 
 

Coefficient R( )q EVR uses the expected proficiency variance in the 
numerator and the expected error variance in the denominator because 

   2 2 2σ θ  − σ [ (θ θ| )] = Eσ θ θ . Conceptually, BIAS = E (q q|( )  E ( | )  ) − q  is a 
constant for a given test taker with q  (i.e., systematic error), and thus its variance (and 
covariance) should contribute to the true proficiency variance, but not to the error 
variance. Equations 33 and 34 clearly show that the expected proficiency variance, 
σ 

2[ (θ | )], in R( )q EVR incorporates two additional terms related to bias, in addition E  θ  

to σ 
2( )θ , whereas the expected error variance does not encompass them. 

   
To estimate R θ VR = − E ( | )/θ θ  σ θ   
 

( )  E 1  σ
2 2( )  , the conditional error variance, 

σ 2(θ θ| ), is often obtained by taking the reciprocal of the test information function as 
2    
σ θ( | )θ = 1 / I( ,θ θ). Thus, R( )q EVR can also be expressed as 

 2σ θ( |θ) E 1 I θ θ E [ / ( ,  )]
1 

 1 (35)
σ θ( )  σ θ( )  

R( )θ EVR = −  2 = −  2  . 

Taking the three-parameter logistic IRT model as an example, the test infor-
mation on an n-item test is simply the sum of the item information functions: 

n n 2
    ′ q q  q q    q ( )  , where i ( ,  )(i = … )I( ,  ) =∑ I i ( , )  =∑  Pi ( )q 

 /Pi ( )Q i q  I q q  1, ,  n
   i = 1 i = 1   

is the item information functions, P ( )q = c + (1 − c )/{1 + exp[−1 7. a (q − b )]},i i i i i 
and Q i ( )  = − Pi q . The expectation in Equation 35 typically is taken over a set of dis-q 1 ( )  
crete q  quadrature points and associated weights assuming a standard normal distribution. 

  
Coefficient R( )q VR differs from R( )q EVR in its use of latent proficiency variance and 

 
a distinct form of error variance expressed as σ 

2( )θ - σ 
2( )θ : 

 2 2 2 2σ θ( )  − σ θ( )  = Eσ θ( | )θ + σ (BIAS) + 2σ θ( , BIAS). (36) 
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This “error variance” comprises the expected error variance plus two terms associated 
with systematic error, namely, bias. The bias-related terms, which contribute to the 

 
expected proficiency variance in R 
  ( )  EVR 

 
. This inclusion of bias terms in the error vari-

q , are integrated into the error variance in 
³( )VR 

ance of R 
qR , resulting in R 

 ( )  ( )
 raises concerns about the defensibility of this coefficient because sys-

qq REVR  VR 
( )VR 

tematic errors, in principle, should contribute to the true proficiency variance.
 

q 

( )  MVR 
in practice (e.g., Andersson & Xin, 2018; Cheng et al., 2012). Assuming the distribu-

 

qThe final variance-ratio reliability coefficient, R , is widely discussed and used 

tion of q  follows a standard normal distribution with a variance equal to 1, R 
 

q( )  MVR 
relies oncan be expressed as 1 1  + E [1 I q q)/{ / ( ,  ]} . The prevalent use of R 



q( )  MVR 
s, assumes the variance convenience—it does not require the use of sample estimates q 

of q  to be 1, and easily obtains the information function using standard normal quadra-
 

ture points and weights. Coefficient R( )  MVR 
a mix of latent proficiency variance and expected error variance. Moreover, the sum of 

2 2  2  
σ ( )θ  and Eσ θ( |θ) in the denominator is not equal to σ ( )θ , completely eliminating 
bias-related terms from the formula. Although it may be regarded as a more sensible 

 

q  is an interesting statistic because it uses 

( )VR 
of proficiency, and the variance of actual proficiency estimates does not play any role. 

E ( | ), 
 2 2because E ( | )ε θ  = E (θ − θ θ| )  = BIAS and σ ( |θ θ) = σ ε( | )θ for a single fixed 

q 

2σ εIt is interesting to note that ( ) is never used as error variance for any of the vari-
ance-ratio reliability coefficients. According to the ANOVA identity, the overall error 

2σ εvariance ( ) can be formulated as (Lord, 1983): 

E E2 2 2 2 2σ ε σ ε θ  σ ε θ σ σ θ θ (37)( ) [ ( | )]  ( | ) (BIAS)+ += = 

2σ εtest taker. Obviously,  includes both random error variance and variance attribut-( )  
2able to bias, distinguishing it from the expected error variance Eσ θ( |θ)  and the error 

variance defined in Equation 36. 
    

Now, let us consider the parallel-forms coefficient, R( )θ PF = ρ( ,θ θ′ ). This coeffi-
cient is, by definition, the Pearson correlation for a population between proficiency 
estimates obtained from two parallel forms. In cases where double testing is imprac-

 

coefficient than R , it has drawbacks because it engages the latent trait definition 

tical, Lord (1983) derived a formula for R q( )  PF 
cal quantities obtainable from a single administration of a test under the assumption 
of strictly parallel forms. Note that Samejima (1994) derived the same result as Lord 
(1983); however, she used the traditional assumptions of CTT, which may not hold 

  

 that is expressed in terms of statisti-

exactly for q( )  PF 
    

    ( , ′) σ θ θ( , ′)′ σ θ θ R( )θ PF ≡ ( , ) = 
  = 2  (38)ρ θ θ  , 

( ) ( )′ ( )σ θ σ θ  σ θ  
  

where σ θ( )  = σ θ( )′  for strictly parallel forms. It can be shown that the asymptotically 
   

unbiased estimator of σ θ θ( ,  ¢ )  is 
   2 2′σ θ( , θ ) = σ (θ) − Eσ (θ θ| ). (39) 

 The parallel-forms reliability coefficient, R , is defined as q. 
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−

  
Therefore, the parallel-forms reliability coefficient of q becomes equal to R :( )  EVR 

    2 2′
   σ θ( , θ ) σ θ( )  − Eσ θ( |θ) 

q 

R( )θ PF ≡ ρ(θ θ, ′ ) = 2  = 2  σ θ( )  σ θ( )  
2 (40)Eσ θ( |  
 
θ)  

=1 − 2  ≡ R( )θ EVR. 
σ θ( )  

 
The last coefficient to discuss is R( )SC, the squared-correlation reliability coefficient. 

  
S. Kim (2012) demonstrated that R( )SC 

( )  PF ( )SC 

q 

q 

qq 
based on the linear regression of on q  dif-q 

  
fers from R . Coefficient R is defined as 



 [ ( , )]2
 σ θ θ2 (41)( )θ SC ≡ ρ ( , )θ θR = 

 ,2( )  2( )σ θ σ θ  
   2( ,  ) E ( | ), ] σ θ θ θ ( , BIAS).  Let ε θwhere σ θ θ = σ[ θ θ  θ + E ( , | ) = σ ( )θ + σ θ L( | ) 

denote the linear regression of with the regression coefficient ofe qon 
σ θ)/ (2 )2β ε θ( | ) σ ε θ σ θ( , )/ ( ) σ θ( , BIAS . It follows that= = 

2
 σ θ( )  2

 + ( | )]β ε θ 2( )θ (θ) β ε θ( | )]R [1 R [1 . (42)× += = SC VR2σ θ( )  

 
Because E ( | ) = E θ − | )  = BIAS ≠ ε θ  , β ε θ), mayε θ  ( θ θ 0, the slope of L( | ) ( |  

  
not be zero. Then, it is clear from Equation 42 that R 

2  
q 

qq( )SC ( )VR 

( )SC 

and R differ by a factor 

( β ) . If σ(BIAS,θ) is positive, which usually is the case, Rof 1 will be larger+ ε θ| 
  

than R qq( )VR ( )SC 

for bias, which then can be used to estimate β ε θ( |  ). For example, Lord (1983) pro-
 

. One way to estimate R would be to use a mathematical expression 

vided the bias function for q of q  under the three-parameter logistic model. 
 

q 

q( )SC 

estimates are associated with latent proficiencies. We can consider a similar (squared) cor-
 E 2 relation coefficient that involves expected proficiencies, denoted ρ θ( ,  θ) . It is argu-

 E 2 ably more correct to refer to ρ θ  ( )SC 

As evident from the formula itself, R measures the extent to which proficiency 

 
( ,  θ)  as a reliability coefficient, while R can be 

seen as a squared validity coefficient. The key distinction lies in the fact that the two coef-
ficients use definitions of true proficiency that differ by a constant BIAS for each test taker. 
If the bias is negligible, the distinction between the two will be trivial.

 
In many practical applications, q is often treated as an unbiased estimator, and the vari-

ance of the bias and its covariance with q  are neglected in estimating reliability. When 
the bias is negligibly small, such as for a long test, it may be argued that the expected 
variance terms are close to the variances associated with latent proficiencies: that is,

   2 2 2 2 2 2 2σ θ ≅ σ θ( )  + σ ε θ ≅ ( ) + Eσ θ θ ≅ σ [ (θ| )] + Eσ θ θ( )  ( | ) σ θ ( | )  E θ ( | ).. 
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Table 5.2 Variance-Ratio Reliability Coefficients for the Maximum Likelihood Estimator 
Coefficient Variance of Proficiency True Proficiency Error Variance 

Estimates Variance 

2  2Eσ θ θ  + σ ( )( | )  BIAS 
R( )q VR σ 

2( )θ 
 

σ 
2( )θ 

+2σ θ( ,  BIAS) 
 

σ E θ θ = σ ( )θ2[ ( | )]  2 +
  

 2  R( )q = R( )q Eσ θ( | )θσ 
2( )θ EVR  PF σ 

2(BIAS) + 2σ( ,θ BIAS) 


 2  σ 2( )θ + Eσ 2( |θ θ) Eσ θ( |θ)R q σ 

2( )θ( )  MVR 

Consequently, the three variance-ratio reliability coefficients will yield similar results: 


   
R( )q @ R( )q @ R( )q . The parallel-forms reliability coefficient, R( )q PF ,VR EVR  MVR 

 
 

has been proven to be equal to R( )q EVR. Coefficient R( )q SC is limited to the linear regression
 

assumption, and from the well-known statistical properties, R( )q EVR is generally larger than 
   

R( )q SC. The two coefficients, R( )q SC and R( )q EVR, will be identical only if bias is zero. 
As highlighted by previous researchers (e.g., S. Kim, 2012; Lord, 1983), these coefficients 

are not estimating the same parameter and thus are not interchangeable. In general, the follow-
     

ing inequalities are likely to hold: R( )q = R( )q ≥ R( )q ≠ R( )q ≥ R( )q .PF EVR  SC  MVR VR 
 

The fundamental cause of these differences is the bias in q, and the extent to which these 
coefficients yield different results largely depends on the amount of bias. If it is suspected

 
that bias is not negligible, the use of R( )q EVR would be advisable. Table 5.2 summarizes 
the variance terms involved in each of the variance-ratio reliability coefficients. 

The impact of bias in reliability coefficients can be alleviated by using modified ML
 

estimators that adjust for the bias of q . For example, Lord (1983) derived a bias-correc-
 

tion function for q  under the three-parameter logistic model. Samejima (1993a, 1993b) 
expanded Lord’s (1983) work to develop a bias function for any discrete item responses.

 
Warm’s (1989) weighted likelihood estimator is also known to reduce the bias of q . 
However, in general, there is a dearth of literature focused on the effect of bias in reli-
ability for various IRT models, including polytomous and multidimensional models. So, 
caution needs to be exercised when deciding which formula to use in practice. 

Bayesian Proficiency Estimates 
The Bayesian proficiency estimator of primary interest in this section is the EAP estimator 
denoted q. A crucial difference between the ML and EAP estimators in conceptualizing 
reliability lies in the use of different conditional distributions. The ML estimator focuses 

 
on the distribution of f ( | ) q qq q  , while the EAP estimator is concerned with f ( |  ). The 

variance of f ( |  )  serves as the conditional error variance for EAP estimates, denoted q q  
σ 2 θ θ . The commonly discussed and utilized reliability coefficients for ( | ) q include: 
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R( )θ SC ≡ ρ θ θ�
2( ,  ); 

2 22 2σ θ( )� σ [ ( | )]θ E θ θ� σ θ( )� θ 
E θ 

1 
σ ( |  )

R( )  ≡ = = − = ; andVR 2 2 2 2 2� �σ θ( )  σ θ( )  σ θ( )  σ θ( )  + Eσ θ( |  )
� 

R ≡ −
E [ /( (1 I θ , )  +θ θ  1)]�( ) 1 .INF 2σ θ( )  

The parallel-forms definition of reliability is not applicable to  in the Bayesian frameworkq 

 
 

because the obtained data are considered fixed. The squared-correlation definition of 
R( )q SC  for the ML estimator, differing in that R( )q SC 



 resembles that of R( )q SC is based 
 

( )q SCon the linear regression of q and q, L( |  ) , while Rq q  depends on L(q q| )
 

. Unlike the 
( )q VRML estimator, all variations of the variance-ratio coefficients associated with R are 

 

identical. Notably, the reversal of variances in true proficiencies and proficiency estimates 
in R( )q VR compared to the ML estimator stems from the Bayesian framework’s focus on 

coefficient, R 
predicting q given q, as opposed to estimating q given q under the ML framework. The last 

( )q INF, is proposed as an alternative reliability coefficient for q, approximating 



the relationship between the test information function (noted by the INF subscript) and 
the variance of the posterior distribution. As an approximation to R( )q VR ( )q INF, R offers 
the benefit of avoiding intricate computations of posterior variance while integrating the 
well-established concept of the test information function. 

 

The EAP estimate for a test taker with item response data u = { ,...,u }, by defini-u1 n 
tion, is the mean of the posterior distribution, which is given by 

n 

∫ q∏Pr(U = u |q ) f ( )q qdi i 

q q i=1 = q u n E ( | ) = , (43)
∫∏Pr(U = u |q ) f ( )q dqi i 
q i=1 

where Pr(U i = u i |q )  is the item response function for a given IRT model and f ( )q 
is the prior distribution of q , which often is assumed to be the same for all test takers. 
The variance of the posterior distribution (i.e., error variance) for a test taker with u is 
(Bock & Mislevy, 1982): 

n2 

∏ Pr( = |θ )θ) 
2 i=1σ θ( |u) = θ n . (44) 

∫∏Pr(U = u |θ ) f (( )θ θdi i 
i=1θ 

(θ −∫ ( )θ θdU fui i 

The integrals in Equations 43 and 44 are replaced by summations using a discrete profi-
ciency distribution for computational purposes. 

Of note, one distinct property of q is its one-to-one correspondence with u, mean-
ing that test takers with the same response pattern will have the same q. This property 
suggests that the conditional posterior distribution of q is identical using either u or q 
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2 2 
as the conditioning variable. As such, = E ( |q u)  ( | )  and σ θ( |u) = σ θ θ . 

In the context of predicting q  given q, the ANOVA identity suggests that 
q = E q q  ( | )  

2 2 2
  (45)σ θ = σ [ ( | )]  + Eσ θ θ ( )  E θ θ  ( | ). 

Based on this equality, the intraclass correlation coefficient is 
2 2 2 2

σ E θ  ( )  1 [ σ θ θ σ θ  θ σ θ = − E ( | )/ ( )] [ ( | )]/ . 
One appealing feature of the Bayesian framework is that the distinction of expected 

variance terms is no longer necessary. The first term in the right-hand side of Equa-
tion 45,  σ 2[ (E θ θ , is equal to σ 

2 θ  because E ( |  = q| )] ( )  q q) . The equality of 
2 2 

σ [ (θ θ| )] = σ θ( ) is sufficient to render the first three variance-ratio definitions E 
2 2 2in R( )q 

VR identical. It can be further shown that σ ε( )  = σ [ ( | )E ε θ ] + Eσ ε θ(  | )  , 
2 

 2 2 
 2similar to Equation 37, and because σ [ ( | )]ε θ = 0 ( )  = Eσ ε θ = Eσ θ θE , σ ε  ( | )  ( | )  . 

As a result, 
2 2 

 2 2 2 
σ ( )θ = σ θ( )  + ( )  = σ θ + E ( |σ ε  ( )  σ ε θ). (46) 

It follows that various variance-ratio definitions ascribed to R( )q 
VR are all equal to one 

another. 
Similar to Equation 42 for the ML estimator, the EAP version of the squared-

correlation coefficient is given by 
σ 2 L θ θ 2( )[ ( | )] σ θ 

R( )θ 
SC ≡ 2 = 2 . (47)

σ θ( )  σ θ( )  
  Equation 47 clearly suggests that R( )q = R( )q . So, for the EAP estimator, R( )q SCSC VR 

and various alternative definitions associated with R( )q 
VR are all equal. This equality 

occurs as a result of the following one-to-one correspondence: E ( | )u = E q q q ( | )  = q . 
If the one-to-one correspondence is absent for an estimator, the equality may not hold. For 
example, S. Kim (2012) cautioned that another Bayes estimator, MAP, does not necessarily 
exhibit the one-to-one correspondence with the one- or two-parameter logistic IRT models. 

The coefficient R( )q 
INF  incorporates the concept of information, typically associated 

with the ML estimator, to estimate the conditional and overall error variances. The link 
between the information for q and σ 2(θ θ| ) is established by the argument that the 
information provided by the prior distribution of q  is equivalent to adding an item to 
which all test takers in the population respond identically (Ferrando & Lorenzo-Seva, 
2007; Thissen & Orlando, 2001). If the prior distribution of q  follows the standard 
normal distribution, as is commonly assumed, its contribution to the test information 

2function is a constant value equal to 1 because 1 σ θ = 1. Consequently, / ( ) 

σ INF θ θ�) ≅ � (48)2 ( |  1 ,
I( ,θ θ) + 1 

 2where I( ,q q) is the traditional test information for a given q . Furthermore, Eσ θ( | θ) 
in R q can be replaced with σ 

2 ( |θ θ) computed by Equation 48 to derive an alter-( )VR INF 

native expression for the reliability coefficient for q: 
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� [ /( ( , )I θ θ  + )]E 1 1 (49)R( )θ INF = −  2 ,1 
σ θ( )  

which can be further reduced to R( )q� INF = −  [ /( (  , )  because σ 
2( )θ1 E 1 I q q + 1)] 

is equal to 1. 
q( ) INF 

capitalizes on the useful concept of information concerning its error variance. 
( )q INF  would function merely as an approximation to the more defensible 

 

 

It is fair to say that coefficient R is computationally more convenient and 

However, R 
( )q VR 

not necessarily imply that the interpretation of error variance and its relation to other 
variance terms, especially in terms of conditional statistics, remains unchanged. 

Summed Raw Scores and Transformed Scale Scores 
IRT can serve as an underlying psychometric framework for estimating reliability for 
both summed raw scores, denoted X , and transformed scale scores, denoted S = t X( ). 
The general procedures suggested in the literature on this topic are largely consistent, 
except for variations in presentation details (e.g., S. Kim & Feldt, 2010; Kolen et al., 1996; 
Lord, 1980). As a function of a proficiency distribution and item parameters, the proba-
bility distributions for all three components of a measurement model (i.e., observed, true, 
and error scores) can be modeled and used subsequently to form reliability statistics. 

A general model for representing marginal observed scores is given by 

 

f x( )  = Pr(X = x) = Pr(X = x q f q d (50)| ) (  ) ,q∫ 
q 

where Pr(X = x | q) is the conditional raw-score distribution and f ( )q  is the distri-
bution of q . The conditional distribution, f x q = Pr(X = x| ), captures the score( | ) q 
variability for a test taker with q  over repeated testing using the strictly parallel forms 
or a fixed form. It can be efficiently computed using a recursive formula (e.g., Hanson, 
1994; Lord & Wingersky, 1984; Thissen et al., 1995). Assuming a specific q  distribu-
tion (e.g., standard normal), the marginal observed score distribution, f ( )x , is obtained 
by integrating the conditional distributions. The resulting f ( )x  is often called the fitted 
or model-based observed score distribution, which lends itself to many applications in 
measurement such as test score equating, model fit examination, score smoothing, and 
quantifying reliability statistics. 

For a test taker with q , the expected value of f x( |q)  is the IRT analogue of true score 
in CTT, denoted 

τ = E ( | )θ = x Pr( = | ), (51)θ X ∑ X x  θ 

where the summation is taken over all possible values of X . The IRT true score τθ , a 
monotone nonlinear transformation of q , is also referred to as the TCC. The variance 
of Pr(X x| )  is the conditional error variance, computed by= q 

2 2 2( | ) ∑ = θ (52)σ X θ = x Pr(X x| )  − τθ . 

coefficient R . This is because the algebraic similarity in aggregate statistics does 

�

�
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The expected value of σ 
2 X θ( |  )  over all test takers in the population is the overall 

error variance, that is, Eσ ( | )θ X| )θ ( )d2 X =∫ σ 2( f θ θ  . 
θ 

The ANOVA decomposition of the observed score variance is given by 
2 2 2 2 2σ ( )  = σ [ (X| )]  + Eσ (X| )  = σ τ EσX E θ θ ( ) + ( | ).X θ (53)θ 

Based on this ANOVA identity, the most widely used reliability coefficient is the 
following intraclass correlation: 

2 ( )  Eσ ( | )X θσ τθ 
2 

1 (54)R X  = = −  .( ) IRT 2 2 2σ τ(  ) + Eσ X θ σ X( | ) ( )θ 

S. Kim and Feldt (2010) referred to the first formula as the true score variance approach 
and the second formula as the observed score variance approach. Andersson and Xin 
(2018) called R X  the test reliability. The true score variance, σ 

2( ), in Equation ( ) IRT τθ 
54 can be obtained using 

2 2 2σ τ = τθ f ( )θ θ − ( τ , (55)( )  ∫ d E )θ θ 
θ 

where Eτ = τ f ( )θ θd . The second formula of R X  requires observed score vari-θ ∫ θ ( ) IRT 
θ 

ance, which is the variance of f ( )x  in Equation 50. If the sample observed score variance, 
denoted ŝ 2( )  , is used, the variance equality in Equation 53 is lost, and the two formulas X 

^of R X  are no longer exchangeable. The coefficient, 1 - [Eσ X θ σ X , might ( ) IRT 
2( | )/ (2 )] 

be best viewed as a sample estimate of R X , although there is no clear theoretical justi-( ) IRT 
fication for doing so. The sample estimate may work well if the model fit is reasonably good 
and may sometimes be the only option when the model-based observed score variance can-
not be computed easily (e.g., noninteger observed scores). 

Note that there is a one-to-one correspondence between q and τθ—that is, 
E ( |  θ) = E X | τθ ] = τθ. As a result, the squared-correlation coefficient X [ 
ρ 2( ,X τ)  will be identical to R X .( ) IRT 

Now let us consider scale scores, S = t( ), that are transformed from raw scores. X 
According to the well-known statistical property of correlation, a linear transformation 
of variables does not alter the value of correlation, assuming the direction of transfor-
mation for both variables is the same. This indicates that any linearly transformed scale 
scores will have the same reliability as that for raw scores. Thus, linear transformation 
is not discussed further in this section. By contrast, nonlinear transformation requires 
special treatment, as discussed next. 

Suppose a conversion table contains all possible raw-score points, each corresponding 
to a scale-score point with a nonlinear relationship. The raw-to-scale score conversion 
table can be one-to-one or many-to-one and may contain integer or noninteger scale 
scores. Conceptually, over repeated measurements, the probability of a test taker receiv-
ing a certain scale score is the same as the probability of obtaining the corresponding 
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raw score—that is, Pr[ (  )| ]q = Pr(X . The expected value of scale scores over t x  = x| )q 
replications for a test taker with q  is called true scale score for the test taker and is given by 

ξθ = E ( |S θ) = ∑t(x) Pr(X = x | )θ , (56) 

where the summation is over the entire range of raw scores. Likewise, the variance of 
scale scores for given q  is defined as 

2 2 2( | )  t x θσ S θ = ∑[  ( )] Pr(X = x| )  − ξθ . (57) 

The square root of Equation 57 is the conditional scale-score SEM. A reliability coeffi-
cient for scale scores can be expressed as

2 ( )  Eσ S θσ ξ  
2( | ) 

R S  = θ = −  ,( ) IRT 2 2 1 2 (58)
σ ξ( ) + Eσ S θ σ S( | ) ( )θ 

2 2 2S ( )where Eσ ( |  θ) =∫ σ (S | θ) ( )g θ θd  and σ ξθ  can be obtained similarly to 
Equation 55. θ 

Composite Scores and Composite Scale Scores 
A composite score, as defined earlier, is a weighted sum of scores from multiple constit-
uent components. The potential score points and range of the composite score depend 
on the combinations of component scores and weights. In practical applications, com-
posite scores are often rounded to the nearest integer, especially when noninteger 
weights are employed. However, rounding is not obligatory as long as all possible com-
posite scores can be accurately identified and modeled. 

The framework presented in this section closely aligns with the work of W. Lee et al. 
(2020), and similar developments can be found in Kolen et al. (2012) and Kolen and Lee 
(2011). W. Lee et al. (2020) considered three underlying IRT frameworks: unidimen-
sional IRT (UIRT), simple-structure MIRT (SS-MIRT), and bifactor MIRT (BF-MIRT) 
models, each addressing potential multidimensionality in different ways. While the 
assumption of unidimensionality may be somewhat violated for composite scores, UIRT 
models are still commonly used. In the SS-MIRT model, each item is assumed to measure 
a single construct (i.e., component) and constructs across multiple components can be 
correlated (Kolen et al., 2012; W. Lee et al., 2020). The BF-MIRT model (Gibbons & 
Hedeker, 1992; Gibbons et al., 2007) assumes that all items in the test measure the same 
general construct, and each item measures an additional construct specific to the associ-
ated component. The general and specific constructs are typically uncorrelated. Further 
information about BF-MIRT can be found in Cai et al. (2011) and DeMars (2006, 2013). 

The modeling of marginal composite scores follows a structure similar to Equation 
50, with the use of a vector q  as the conditioning variable: 

f z  = Pr(Z = z) = Pr(Z = z q f q dq( )  | ) ( ) .  (59)∫ q 

The number of proficiency parameters in the vector q depends on the model—for UIRT 
… }models, q = q; for the SS-MIRT model, q = {q1 , ,qM ; and for the BF-MIRT model, 
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q = {q q, ,…,q }, where qG indicates the general factor. Numerical integration can G 1 M 
be carried out using a univariate standard normal distribution for UIRT or a multivariate 
normal density function for the MIRT models, with nonzero correlations between com-
ponents for the SS-MIRT or zero correlations (typically) for the BF-MIRT. 

Assuming conditional local independence, one way to compute the conditional 
composite score distribution, f z( |q) = Pr(Z = z| )q , is 

M 

Pr(Z = z|q) = ∑ ∏ Pr( X m = xm |q ), (60) 
= m=1Z w X  ++w X1 1  m m  

where the summation is taken over all possible combinations of weighted component 
scores that lead to the same composite score. The conditional distribution for each com-
ponent can be computed using a recursion formula such as Lord and Wingersky’s (1984) 
method. Note that not all elements of q  are used in computing the conditional distribu-
tion for each component. For example, for component m, only a single q  is involved for m 
the SS-MIRT model, while both qG and qm are needed for the BF-MIRT model. The mean 
(i.e., true composite score) and variance of the conditional distribution, respectively, are 

zq = E ( |Z q) = ∑ zPr(Z = z| )q , (61) 

and 
2 2 2σ ( |Z q) = ∑z Pr(Z = z| )q − ζθ . (62) 

A reliability coefficient then is given by 
22σ ζ( )  Eσ ( |Z q)

R Z( )  = q 1= −  . (63)IRT 2 2 2σ ζ(  ) + Eσ ( |Z q) σ ( )Zq 

Alternatively, R Z( ) IRT  can be expressed in the form of the general reliability-coefficient 
formula for linear composite scores (i.e., Equation 15), which involves error variances 
for individual components. That is, 

2∑ 
M 

Es (X |q )m 
m=1R Z( )  ∗ = −  2 

(64)1 ,
IRT s Z( )  

2where Es ( X |q ) is the overall error variance for each component and errors across m 

components are assumed to be uncorrelated. Comparing R Z( ) IRT  and R Z( ) IRT*, it is 
2evident that computing each Es ( X m |q )  and adding them up is easier than com-

2puting Es ( Z|q ) , which relies on the computationally cumbersome conditional 
composite score distribution, f z( |q) . However, s 

2( )Z  in the denominator of both 
coefficients is based on f z( ) in Equation 59, which, in turn, requires the use of f z( |q). 
Therefore, bypassing f z( |q)  in the computational process is not a viable option. If the 
sample composite score variance, ŝ 2( )Z , is used in place of the model-based one 
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for R Z( ) IRT * , some of the computational complexity will be alleviated. Doing so, 
however, will result in a reliability estimate that is best viewed as a sample estimate 
of R Z * (or R Z ) and many desired features of the coherent psychometric( )  IRT ( ) IRT 
framework will no longer be available. Yet, the computational simplicity might be 
very useful in practice. 

Composite scores usually are further transformed nonlinearly to scale scores 
for reporting purposes. The results for composite scale scores, S = t( )Z , can be 
obtained in an analogous manner by noting that Pr[ (  )| )] = Pr(Z = z qt z  q | )  and 
Pr[ (  )] = Pr(Z . Replacing Z with t( )z  in Equations 61, 62, and 63 yields thet z  = z) 
true score, conditional error variance, and reliability coefficient all on the composite 
scale score metric. 

Scale Scores Transformed From Proficiency Estimates 
In situations where IRT proficiency scoring is used, the proficiency estimates derived 
from ML or EAP estimation methods are commonly converted to scale scores for 
reporting purposes. Here, we are mainly concerned with nonlinear transformations. 
Let t( )q  be a monotone increasing transformation function that converts q  to scale 
scores. It is assumed that the transformation is applied to both true and estimated profi-
ciencies such that S = t q ^ S θ = ξθ = t( )( )  and E ( | ) θ . The transformation function 
is further assumed to be continuous and differentiable at every level of q . In cases where 
a mathematical expression for a theta-to-scale score transformation is not available, a 
practical solution might involve employing a smoothing technique to obtain a smooth 
continuous conversion relationship, such as a high-degree polynomial. 

Let us begin with the ML estimator. According to Lord (1980, p. 67), the test infor-
mation of observed scale score, S , for making inferences about q , is defined as 

 ∂  2  ′  2 

( | )  ( ) E S θ  t θ  ∂θ   I( ,θ S) = 2 = 2 , (65)
σ S θ σ S θ( | ) ( | ) 

where t¢( )q  is the first derivative function of t( )q  and 

2   2 2  S ′  ( | )σ ( | )θ ≅  t ( )θ σ θ θ . (66)
  

 
Equation 66 assumes that q  is an asymptotically unbiased estimator of q  and is known 
as the delta method approximation (Kendall & Stuart, 1977), which will be detailed 

 
in the next section. Equations 65 and 66 suggest that I( , )q S = I( , ). Furthermore,q q 
the monotone increasing relationship between q and ξ º E ( |  ) implies thatS θ θ 
σ 

2( |S θ) = σ 
2 ( S |ξθ ) . The overall scale-score error variance can be obtained by inte-

grating s 
2 (S | q ) over the proficiency distribution as 

 2   2  ′   ′ t ( )θ t ( )θ 
2    Eσ ( |  θ) ≅ E 

 

  
 

  (67)S = E  . 
( , )SI θ I( ,θ θ)

    
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The variance of true scale scores is 
2 2 2σ ξ( ) =∫ ξ f ( )θ θd − Eξ , (68)( )θ θ θθ 

which can be evaluated using numerical integration. The scale-score analogues of 
   

R( )VR ( )  EVR ( )  MVR 

σ ξ( )  Eσ S2 2( | )θ 
R S  = θ 

 = −  ; and( )VR 
; R S( ) EVR 1θ 2 θ 2σ ( )S σ ( )S 

2 

 
σ ξ( )

R S( ) MVR = θ .θ 2 2( )  + Eσ S θσ ξ  ( | )θ 

Similar to ML estimates, these three coefficients for scale scores do not necessarily yield 
the same result. 

2 2For the EAP estimator, the conditional error variance, σ θ( |u) = σ θ( | )θ , is pro-
vided in Equation 44. The conditional error variance for scale scores can be found using 
the delta method approximation as 

σ ξ( θ | θ t [ ( | )]} σ ( | ) = t θ σ θ θ2 
) ≅ { ′ E θ θ 

2 2 θ θ  ′ ()  
2 2( | ) . (69)   

Note that, under the Bayesian framework, σ 
2 (ξ | θ) is the variance of true scale scoresθ 

conditional on q. It immediately follows that the overall scale-score error variance is 

qqq , R , and R , respectively, are 

2 2Eσ ξ θ|) ≅ E  t′ ( )θ  
2 
σ θ( | )θ( θ {   }

all persons in the data. A reliability coefficient for scale scores takes a form similar to R 
, where the expectation (i.e., average) is taken over 

q 

q 

( )VR 

2 2 
 2σ ξ θσ ( )S E ( | ) σ ( )SR S( )

 VR = ≅ 1 − θ ≅ , (70)θ 2 2 2 2σ ξ( )  σ ξ( )  σ ( )S + Eσ ( |ξ θ)θ θ 

where the true scale-score variance, σ 
2 ( ), can be computed using Equation 68.ξθ 

Unlike the results for q, the three variations of R S  may not yield the same results( )
 VR 

: 

q 

because of the use of the delta method approximation and possible rounding of reported 
scale scores. 

As discussed earlier, the Bayesian conditional error variance can also be approximated 
using the test information function as σ 2 θ θ�) ≅ 1 I θ θ  + ]. In this approxi-INF ( |  / [ ( , )  1 
mation, the conditioning variable becomes true q  and a discrete set of quadrature points 
can be used instead of individual q’s. Then, the conditional scale-score variance can 

22   2 
be estimated using the delta method, which gives σ ξ θ| t′ (θ) σ ( | )θ θ ,( θ ) ≅   INF 

2   
and the overall error variance is obtained by integrating σ ξ θ( | )  over the qθ 

( ) INFquadrature distribution. Finally, the scale-score version of R is given by 
R S  θ = − Eσ ξ θ σ  ξ( | )/ ( )  .( )

 INF 1 2 
θ 

2 
θ 
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ρ( ,  )X X− ′1 , 

ESTIMATORS OF CSEMs 

Conceptually, SEM represents the standard deviation of test scores over repeated 
measurements for a person, assuming the measurement process does not alter their 

true score. In CTT, the SEM is commonly expressed as σ( )E = σ( )X 

referred to as the overall SEM. While this computation offers simplicity, an excessive 
focus on reliability coefficients may divert attention from actively considering whether 
the sources of error involved in the SEM closely align with the intended use and gener-
alization of the test results. Additionally, applying the same SEM to all test takers when 
constructing confidence intervals overlooks variations in SEM magnitude as a function 
of true and observed scores. An arguably more defensible approach might involve start-
ing with CSEMs, which can then be used to derive both the overall SEM [see Equation 6] 
and reliability coefficients, if needed. 

Although direct estimation of CSEMs over many repeated measurements is practi-
cally unfeasible, collecting data from two replications may not be so unrealistic. This 
approach is similar to the data collection design used for estimating the test–retest and 
parallel-forms reliability coefficients. Using two sets of observed scores, X1 and X 2, an 
estimate of the CSEM for a single test taker can be computed directly as 

X1 −X 2CSEM R = . (71)
2 

Some benefits of Equation 71 were argued by Brennan (2001a), including that, by replicat-
ing the full-length measurement procedure twice, the investigator is forced to focus on the 
actual characteristics of replications to ensure that they are faithful reflections of the intended 
universe. In addition, Equation 71 provides a direct estimate of the CSEM without making 
any assumptions, applicable to various score types such as raw scores, scale scores, and com-
posite scores. This is especially advantageous given that computing CSEMs for scale scores 
based on a single administration of a test can often be complicated (e.g., Kolen et al., 1992, 
1996; W. Lee et al., 2000). Despite these potential benefits, Equation 71 is not widely used 
in practice, partly because of the questionable accuracy of estimation based on only two rep-
lications and the challenge of obtaining two full-length replications on adequate samples. 

Similar to reliability coefficients, considerable effort has been invested in developing 
estimators for CSEMs based on a single test administration using various psychometric 
models and making assumptions that are often too strong or untestable. In theory, CSEM 
is the standard deviation of observed scores over repeated parallel (classically, randomly, 

X E )etc.) measurements conditional on each person’s true score: that is, σ( |τ p ) = σ( |τ p . 
(Note that the subscript p denotes a particular person but may be omitted for simplic-
ity when context allows.) Estimators for CSEMs fall broadly into two categories: those 
that condition on observed scores and those that condition on true scores. The former 
category avoids assumptions about the true score distribution, employing each test taker’s 

^observed score as an estimator of their true score, tp = xp, since true scores are unknown. 
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Lord (1984) and Woodruff (1990) noted, however, that considering CSEM as conditional 
on observed score is appropriate only when a test taker at a particular observed score is 
randomly selected. Nonetheless, the bias in estimated CSEMs using observed scores as a 
conditioning variable diminishes with increasing test reliability. Also, studies have found this 
bias to be practically minimal (Feldt et al., 1985; W. Lee et al., 2000; Woodruff et al., 2013). 

The second type of procedures make certain assumptions to estimate the true 
score distribution and express CSEMs conditional on true score. Consequently, 
these procedures eliminate the bias issue and ambiguity of interpretation. However, if 
reporting the CSEM to each individual test taker is the goal, mapping observed scores 
to true scores used for CSEM computation becomes inevitable, which makes the 
practice essentially the same as using observed scores as a conditioning variable. Both 
types of procedures generally yield similar results, and no particular argument is made 
here for preferring one approach over the other. Rather, it is advised that the choice 
of method should depend on the characteristics of available data, reasonableness of 
assumptions underlying the psychometric model, and available computer resources. 

Summed Raw Scores 
Thorndike Method 
Thorndike (1951) was one of the first investigators to examine CSEMs that vary as 
a function of observed scores based on split-half tests. Suppose the total test score X 
is split into two essentially tau-equivalent half test scores, X = ( /  )1 2  T +C + E1 1 1 
and X = ( /1 2)T +C + E , and X = X1 + X 2 . It can be shown that, under CTT 2 2 2 
assumptions, the variance of difference scores between half-test scores is equal to the 
error variance for the total test: 

2 2 2 2 2 s (X − X ) = s (C −C + E − E ) = s ( )E + s ( )  = sE ( )E . (72)1 2 1 2 1 2 1 2 

This implies that, for any group of test takers with total observed score x , the standard 
deviation of difference scores between X1 and X 2 provides an estimate of the CSEM 
for that group: 

CSEM X = s(X − X x| ). (73)( )TH 1 2 

However, a limitation arises as CSEMs across the range of total scores can be erratic, 
particularly at extreme scores due to low test-taker frequencies. In practice, test takers 
can be grouped into short intervals based on their total scores, and the CSEM is 
computed for each interval (i.e., subgroup). 

Mollenkopf Method 
Mollenkopf (1949) developed an estimator for CSEMs based on split halves, often 
considered a refinement of Thorndike’s method (Feldt & Qualls, 1996). Assuming tau 
equivalence of the two split-half tests, consider the following quantity for person p: 

Dp = [(Xp1 − Xp2 )−(X1 − X2 )]2, (74) 
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where X1 and X 2 are group means on the two half-tests. For any subgroup of N  test 
takers, the average of Dp values, by definition, is the variance of half-test difference 
scores, which is equal to the error variance for the full-length test: 

2 2 21 ∑ 
N 

( ). (75)D = [(Xp1 − Xp2 ) −(X1 − X2 )] = s (X1 − X2 ) = s E 
N p=1 

The square root of D for a subgroup of test takers with an observed score x  is the 
CSEM, which is identical to Thorndike’s CSEM. Mollenkopf (1949) goes further to 
suggest using a polynomial regression with Dp  in Equation 74 as a dependent variable 
and the total score X  as an independent variable: 

D̂ = b0 + b1 X + b2 X 2 ++ bq X q , (76) 

where the polynomial degree q is chosen by the investigator. If the regression model fits 
well, the resulting predicted values, D̂, provide a better approximation of conditional 
means than D. Once the polynomial regression coefficients are estimated with a chosen 
q, Mollenkopf ’s CSEM at observed score x  is 

^CSEM( )X = D = b +b x +b x 2 +⋅ ⋅ ⋅+b x q . (77)MO 0 1 2 q 

Although fitting a polynomial regression is cumbersome, CSEM( )X MO has the desir-
able characteristic of providing smoother patterns of CSEMs along the observed score scale. 

Binomial Error Model 
A notable drawback of CSEM( )X TH  and CSEM( )X MO  is that they require splitting 
the full test into two parallel halves, and there are various possibilities for obtaining 
such splits. Lord’s (1955, 1957) seminal work on the binomial error model provided a 
substantially different perspective. In this framework, a test form with n dichotomously 
scored items is viewed as a random sample from a universe of such items (i.e., each item 
has an equal probability of being selected). Each test taker has a true proportion-correct 
score, πp = τ p /n, such that the probability of answering each undifferentiable item 
correctly is pp for test taker p. Measurement errors are conceptualized by the variation 
in observed scores across an infinite number of test forms, each containing a different 
set of randomly selected n items. 

For a test taker with pp, the distribution of observed scores from repeated measure-
ments follows a binomial distribution with the parameter pp, and the error variance 
for the test taker is σ 

2(E |π p ) = σ 
2(X |π p ) = nπ p (1−π p ). Lord’s CSEM, replacing 

the unknown parameter pp  with the observed proportion-correct score x p = x p / n, 
is given by 

x n( -x )
( ) BN = ŝ( |E xp ) p p (78)CSEM X = . 

n-1 
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This formula can compute CSEMs for raw-score points ranging from 0 to n without 
needing test-taker data. It has a quadratic form, ensuring the resulting CSEMs exhibit a 
smooth inverted-U shape with zero values at observed scores of zero and n. 

Criticism of Lord’s CSEM involves its failure to differentiate items, treating them as 
having equal difficulties under the binomial error model. In response, Keats (1957) 
proposed a correction, introducing a 1-KR )/( -KR21fuzzy factor of ( 20 1  ) to 
multiply the squared values of Lord’s CSEMs. This adjustment is intended to bring 
the overall error variance, when averaged, into alignment with the error variance in 
KR20. From the perspective of CTT, the criticism and Keats’s adjustment find support. 
However, from the viewpoints of GT, Lord’s model possesses valuable features that 
were not clearly identifiable at the time. The notion of random sampling of items 
over replications diverges from CTT definitions of parallelism but aligns with the key 
characteristic of GT—that is, the randomly parallel forms assumption. Moreover, 
Lord’s error variance can be shown to be identical to the conditional absolute error 
variance for a single-facet design in GT. Lord’s estimator indeed involves absolute error, 
a type of error not present in CTT. Therefore, Lord’s binomial error model is sometimes 
considered a bridge between CTT and GT (Brennan, 2010). 

Multinomial Error Model 
Application of Lord’s binomial error model is limited to items with binary score cate-
gories (i.e., right or wrong). W. Lee (2007) expanded Lord’s model to cases where each 
item in an n-item test is scored polytomously with k possible score points, a a, ,¼,a .1 2 k 
A set of n items in a test is viewed as a random sample from an undifferentiated universe 
of such items. For notational simplicity, the derivation is presented for a single test taker 

h h …without the subscript p. Let h = { ,1 2 , ,h k }  indicate the true category-proportion 
scores for a test taker; namely, h1 is the proportion of items in the universe for which the 
test taker would get a score of a1, h2 for a2, and so on. The sum of the h values is equal 
to 1. Let Y Y, ,¼,Y  be random variables representing the observed numbers of items 1 2 k 
scored a a, ,¼,a , respectively, such that Y +Y +…+Y = n . It follows that the 1 2 k 1 2 k 
total raw score X  is given as X = a Y + a Y +…+ a Y .1 1  2 2  k k  

Due to the random sampling assumption, the category counts Y Y, ,¼,Y  will follow 1 2 k 
a multinomial distribution: 

n! y y y1 2 k( ,  2 … k h 1f y  y1 , ,  y | )  = h h2 h k . (79)
y y 2 y !1! !  k 

The conditional distribution of X  can then be obtained as 

( |  ) = h f y  y  hf x h = Pr(X x | )  = ∑ ( ,1 2 , ,… y k | ), (80) 
x a y + +a y = 1 1  k k  

where the summation is taken over all weighted combinations of a y  a y1 1  +…+ k k  
that sum to x . 
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n n/( )-1 , an Substituting ĥ = y n/  for h i  and applying a bias-correction factor, i i 
estimator of the CSEM for a test taker with observed category counts of y1 , ,  yk  is ¼ 
given by 

 k 1 2CSEM X = a y  ( − )−2 a a y y( )MN 
∑ i i n yi ∑∑ i j i j 

 . (81)
n−1 i=1 i j   < 

Of note, using the above formula results in different estimated CSEMs for test 
takers with the same total raw score but varying configurations of category scores. 
W. Lee (2007) observed that multinomial CSEMs often display a vertically scattered 
umbrella pattern when plotted against the total raw score. When item scoring is binary, 
the multinomial estimates become identical to Lord’s estimates. 

Univariate GT 
A general approach to estimating CSEMs under the GT framework has been 
developed (Brennan, 1998, 2001c). In GT, a distinction between absolute error and 
relative error is made even for the CSEMs. Estimating absolute CSEMs is relatively 
straightforward, while computing relative CSEMs is usually complicated although a 
simplified formula is available under certain assumptions. In GT, analyses commonly 
use the mean score metric rather than the total score metric, and results expressed 
in one metric can be easily transformed into the other. As discussed earlier, absolute 
error for a single person p is defined as D = X - m , the difference between the p p p 

person’s observed mean score and universe score. The variance of Dp over randomly 
parallel instances of a measurement procedure is the absolute error variance for the 
person. In general, for any random effects design, the absolute CSEM for person p in 
the mean score metric is 

CSEM X GTabs = s ( p (82)( )  2 ∆ ). 

For example, if the D-study design under consideration is p´( :I H), the design for 
an individual person is I H: . The variance components s 

2 I H) 2( )p( :  p and s H  are 
computed using data for each individual person, highlighted by the subscript p below 
each variance component. Then, the absolute CSEM for person p  in the mean score 

metric is s(∆ ) = s 
2 h n s 

2 i h  n n  . Multiplying this result by n n ( ) /  ′ + ( : ) / ′ ′ ¢ ¢p p h p i h  i h  
gives s(D p ) in the total score metric. 

Estimating relative CSEMs in GT is much more complicated, largely because of some 
nonzero covariance terms that are difficult to estimate (see Jarjoura, 1986). For practi-
cal purposes, Brennan (2001c) offered an approximate estimator for any random effects 
designs in the mean score metric as 

2 2 2( )  σ δ  ≅ σ ( )− σ ( )  − σ δ  (83)= ( )  ∆  ∆ ( ) CSEM X GTre l  p p   . 
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Estimating the relative CSEM using Equation 83 is a two-step process: (a) computing 
the absolute CSEM using Equation 82 and (b) making an adjustment to it by the 
difference between the absolute and relative overall error variances. Clearly, the adjust-
ment to s2 (∆ p )  is a constant for all persons. 

UIRT Proficiency Estimates 
In the context of ML estimation, the item and test information functions are frequently used as a 
measure of conditional accuracy of estimation. If item parameters are known, the information 
functions do not depend on the group of test takers being tested. The conditional variance of

  
ML estimates is inversely related to the test information function as σ θ θ = 1 I θ θ)2( | )  / ( ,  

  
(Lord, 1980). Thus, CSEM( )q = 1/ (I q, )q . The concept of a test information function 
and its inverse to define error variance holds numerous convenient properties. A limitation, 
however, is that there is no general conceptual framework or statistical procedure for incorpo-
rating multiple sources of error in the estimation of error variance. An exception is the work 
by Bock et al. (2002), who proposed an approach to incorporating multiple ratings in IRT 
aiming for correcting for the bias in the standard error of proficiency estimates. Nevertheless, 
this approach is considered somewhat ad hoc, lacking a robust substantiation of the notion 
of replications (e.g., distinction between random and fixed facets) (Brennan, 2001a). Their 
approach certainly deserves further research. 

Error variance in the Bayesian framework is defined as the variance of the posterior 
distribution of q for a test taker with item response data u , and its standard deviation 
is the CSEM for the test taker. Since there is a one-to-one correspondence between 
the EAP estimator q and u , test takers with identical item responses will share the 
same CSEM. The variance form of CSEM for q was presented in Equation 44. Under 
this framework, the notion of replications plays no explicit role in conceptualizing 
the variability of q ’s in the posterior distribution. To explicitly incorporate errors due 
to replications in estimating CSEMs and other reliability statistics, one approach is 
to apply the estimation procedure to at least two independent administrations of the 
test on the same group of test takers, preferably using different sets of items from 
the same domain. While this empirical approach is more feasible with computerized 
adaptive testing, a comprehensive theoretical framework has not been developed to 
seamlessly integrate the Bayesian definition of error based on the posterior distribu-
tion with one fixed set of data and the errors from actual replications involving more 
than one data set. 

One well-known property of IRT proficiency estimates is that CSEMs tend to be 
smallest in the middle range of the proficiency scale and increase at both extremes. 
This phenomenon is not inherent to IRT but is a direct consequence of using the q 
scale. As argued by Lord (1980), there is no unique virtue of the q  scale for mea-
suring proficiency, and in general, there is no obvious reason to prefer q  over any 
other monotonic transformation of it. If q  is transformed to the (true) raw-score 
metric, the resulting CSEMs will exhibit a reversed pattern compared to that for the 
q CSEMs. Nonlinear transformations from one metric to another not only change 
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the magnitude of CSEMs but also alter their general pattern along the score scale, as 
discussed next. 

Scale Scores 
The current Standards (AERA et al., 2014) and its predecessors recommend (a) 
reporting standard errors at different score levels (i.e., conditional) and (b) expressing 
them in units of a reported score scale. Most reliability statistics, including CSEMs, rely 
on the specific score scale used for reporting. Two main approaches exist for estimating 
CSEMs for nonlinearly transformed scale scores. The first utilizes the delta method, a 
general statistical technique for estimating the variance of a statistic that is a function of 
another statistic with a known variance (Kendall & Stuart, 1977). The second approach 
involves computing the conditional distribution for scale scores under assumed 
psychometric models. 

The Delta Method Approximation 
To demonstrate how scale transformation affects CSEMs, we begin with the 
discussion of linear transformation. Let S = t X( )  be a linear transformation function 
of scores X  to scale scores S  such that S = +B ( ), where A and B are the slope A X  

2 2 2and intercept of the linear function, respectively. It follows that s ( )S = A s ( ).X 
This relationship also holds for conditional observed score (i.e., error) variances. 
That is, denoting E X and ES  as error scores on the metrics of X  and S , respectively, 

2 2 2σ ( |τ) = A σ (E τES X | ). This suggests that the scale-score CSEM can be expressed 
by multiplying the CSEM for scores X by the slope of the transformation function. 
Thus, for linear transformations, computations are straightforward if CSEM estimates 
for the original score scale, X , are available. 

When dealing with nonlinear transformations, where the slope of the transformation 
is not constant across score levels, complexities arise. The delta method provides a use-
ful approximation to address this issue. Consider a continuous, differentiable function, 
S = t X( ), where X  can represent raw scores, IRT proficiency estimates, or composite 
scores. The variance of S  can be approximated using the delta method as 

2 dt 2 2 X (84)s ( )S = ( (EX)) s ( ),
dX 

′ where dt dX = t X  ( ) with respect to X, which / ( )  is the first derivative function of t X 
is evaluated at the mean of X . In essence, the delta method approximates the variance 
of scale scores as a function of both the variance of X  and the first derivative (i.e., 
slope) of the transformation function. 

In real-world applications, S ( )  is rarely a continuous function with a concrete = t X 
mathematical expression. More frequently, a conversion table contains a discrete set 
of values for X  and corresponding scale-score points, usually rounded to integers. To 
attain a differentiable mathematical function, Feldt and Qualls (1998) proposed fitting 
a high-degree polynomial function to the discrete conversion table as 
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t X  ≅ b + b x+ b x +  + b x( ) 0 1 2
2 

q
q , (85) 

where the polynomial degree q can be determined based on visual inspection of the 
fit, incremental R -square statistics, or other relevant criteria. The first derivative of the 
polynomial function at X = x  is 

q−1′ (86)t x( )  ≅ b1 + 2b2 x+  +qbqx . 

Once the first derivative function is computed using Equation 86, the scale-score 
CSEM can be approximated using any CSEM estimators for X . In general, the scale-
score CSEM is estimated using this polynomial procedure as 

′CSEM S( )  = σ( |E τ) = σ(S | )τ ≅ t (EX |τ σ) (X | )τ . (87)P N  S 

For example, consider a nonlinear transformation of IRT q  to a certain type of 
scale scores with scoring performed using the EAP estimator. The first step is to fit 
a polynomial regression on the conversion relationship and find the first derivative 
function as in Equation 86. Then, an approximate value of the scale-score CSEM 
for a test taker with   ′ 

  q  is σ( |S θ) ≅ t θ σ θ θ  q q  = (  ) (  | )  because E( | ) q . The polyno-
mial procedure, as an approximation to the delta method, is versatile because it 
can be combined with any CSEM estimates for the original untransformed scores. 
However, a limitation is the somewhat subjective decision on the degree of the 
polynomial, and the estimated conditional slope based on the fitted function is 
still an approximation. The subsequent estimation procedures discussed do not 
necessitate such a slope-estimation process and utilize the entire distribution for 
scale scores. 

Strong True Score Models 
Kolen et al. (1992) extended Lord’s (1965) strong true score theory to estimating scale-
score CSEMs for tests scored number correct. Letting p denote the proportion-correct 
true score, the general expression for strong true score theory is given by 

= ∫ X x  p dp (88)f x( )  = Pr(X x) = Pr(  = |p) (f ) ,
p 

where the conditional distribution, f x( |p) = Pr(X x= | )p , can be modeled using 
either a binomial or a two-term approximation to the compound binomial distribution; 
the marginal true score distribution, f ( )p , is assumed to follow either a two-parameter 
or a four-parameter beta distribution; and f ( )x  is the resulting marginal observed score 
distribution. Kolen et al. (1992) considered the most complex four-parameter beta 
compound binomial model. 

The CSEM on the raw-score metric is expressed as 

2   2 

CSEM X ST = σ X π = x Pr(X= x | )−∑x Pr(X x |π)  .. (89)( )  ( | ) ∑ 
n 

π  
n 

=  
x=0  x=0  
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For a given discrete raw-to-scale score conversion table, the probability for earning a 
particular raw score is identical to the probability for earning the corresponding scale 

p = t Xscore—that is, f t[ (  )|x p] = f (x | ). This allows replacing X  with S ( )  in 
Equation 89 to obtain the scale-score CSEM: 

n n 
2   2 

CSEM S( )  = σ( |S π) = ∑[ ( )] Pr(t x  X = x | )π − ∑ t x( )Pr(X x= |π)  . (90)
ST   x= 0  x= 0  

Equation 90 provides unambiguous estimates of scale-score CSEMs no matter 
whether a conversion table is one-to-one or many-to-one (i.e., multiple raw-score 
points convert to a single scale-score point). If desired, the conditional scale-score 
distribution based on a many-to-one conversion table can be attained by summing 
the probabilities associated with all raw scores converting to a particular scale-score 
point. Doing this for all unique scale-score values will give a distribution for scale 
scores. 

Binomial Procedure 
For a test with dichotomous items, Brennan and Lee (1999) derived results for 
scale-score CSEMs, seen as a scale-score analogue of Lord’s CSEM. The assumptions 
underlying this approach align with Lord’s binomial error model. Since the binomial 
error model does not assume a specific true score distribution, the CSEM is estimated 
for each individual or uses observed score as a conditioning variable. 

The conditional observed score distribution for an individual with a proportion-
correct observed score x = p̂  follows a binomial distribution as 

æ ön x n xç ÷÷Pr( = | )p̂ = p̂ (1 p̂) 
-

X x  ç - .ç ÷÷ (91)ç ÷è øx 

Lord’s CSEM is the square root of the unbiased estimate of variance of the binomial 
distribution, as shown in Equation 78: n n - 1) [ (x n-x n)]/ , where n n-1)/( /( 
is a bias-correction factor. Lord’s CSEM formula can be re-expressed as 

s( | )p̂ (92)X = 
2 

2 

0 0 

,
1 

n n 

x x

n é ù
Pr( | ) Pr( | )^ ^x  X x x X x

n
p p

= =

ê ú= - = 
ê ú- ë û 

å å

where the squared term inside the square root is the mean of the conditional distribu-
tion. By replacing raw score x with t x( ), the scale-score version of Lord’s CSEM is 

n n n 2 é ù 2 

SEM( ) BN = [ ( )] Pr(X = x | )^ -ê ( )Pr(X = x | )^ ú .C S å t x  p 
êåt x  p 

ú 
(93)

n-1 x=0 ë x=0 û 
Brennan and Lee (1999) discovered that the overall pattern and magnitude of scale-
score CSEMs estimated based on the binomial procedure closely aligned with results 
from the polynomial-delta method. 
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Other Procedures 
The expression for scale-score CSEMs in UIRT can be obtained by the square root of 
Equation 57. The derivation of scale-score CSEMs for the multinomial error model is 
outlined by W. Lee (2007), which is virtually the same as the process used for the bino-
mial procedure. It involves using the fact that f t[ (  )|x h] = f (x | )h  (see Equation 80) 
and computing the standard deviation of the scale-score distribution. 

Composite Scores 
Compound Binomial and Compound Multinomial Error Models 
The binomial error model has been extended to cases in which a test consists of mul-
tiple strata or components, known as the compound binomial model (Feldt, 1984). 
Let the number of items in each of M components be n n2 n M and X X 2 ,..., X M, ,..., ,1 1 
represent the component scores. In this model, it is assumed that each item belongs to 
one of M  distinct universes of items, errors follow a binomial distribution within each 
component, and errors are uncorrelated across components. Due to the uncorrelat-
ed-error assumption, the composite error variance is a simple weighted sum of Lord’s 
(1957) error variances for the components. For a test taker with observed component 
scores x x1 , ,...,x , the estimated CSEM (often called Feldt’s SEM) is 2 M 

M  x n( − x ) 2 m m mCSEM ( )Z CB = ∑wm  . (94)
 − m=1  nm 1  

Similarly, the extension of the multinomial error model to composite scores is 
provided by W. Lee (2007). The composite CSEM is the square root of a weighted 
sum of multinomial error variances for the various components, each of which is esti-
mated using Equation 81. A constraint for the compound multinomial model is that the 
number of score categories must be the same for all items within a component. 

Multivariate GT 
As an extension of univariate GT, multivariate GT provides a framework for estimat-
ing CSEMs for composite scores. From the multivariate GT perspective, the foregoing 

• treatment of composite scores is nothing more than a multivariate p × i  design. Let 
M 

us define the composite score in the mean score metric as Z = w X . Under ∑ m mm=1 
•  the multivariate p i×  design, the within-person design for each person is simply i ; 

that is, items are nested within a set of fixed content categories. In such a case, the abso-
lute CSEM for a person is the square root of a weighted sum of squared absolute CSEMs 

2 2 2 2over the content categories: s( ) = w s (∆ ) = w s ( )/ ′ .∆ pZ ∑ m m  p ∑ m m i n imm m 
This result, when transformed to the total score metric, will be identical to the result 
based on the compound binomial model presented in Equation 94. Similarly, the 

relative composite score CSEM for a person is σ(δ ) = w 2 σ 
2 ( )pZ ∑ m m  δ p , where the 

m 

relative CSEM for each category is computed using Equation 83. 
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The application of multivariate GT in the estimation of composite score CSEMs is not 
limited to the p i  design and can be further extended to many multivariate designs × 
that other competing approaches may not be able to handle properly. For example, 
consider an assessment that consists of two components, speaking and listening, each 
consisting of different performance tasks (i), and test takers’ responses to both types 
of tasks are evaluated by the same set of human raters (r). Here, the two content com-

•  •ponents act as the fixed multivariate variable and the multivariate design is p i× ×r . 
 •The within-person design is i × 

( ( 

•  

∆∆ 
 

and the absolute error variance–covariance matrix r 
2 ) )s s1 12p pis , where the subscripts 1 and 2 indicate the two components, 

2( ( 
and the variances and covariances are derived from the variance–covariance compo-
nent matrices of Si , Sr , and Sir . Note that errors are allowed to be correlated here, 
which is unique to multivariate GT compared to other approaches that often assume 
uncorrelated errors. 

A general formula for computing absolute error composite score CSEMs is given by 

CSEM Z = s ( ) = w 2 s 
2 ∆ ) + w w  s (∆ ).( )MGTabs Z ∆ p ∑ m m  ( p ∑∑ m m′ m m ′ p (95)

m ≠m m′ 

∆ 

Similar to Equation 83 for the univariate case, the relative error composite score CSEMs 
can be approximated as 

2 2 2( )  = σ δ( )  ≅ σ (∆ )−[ (σ ∆)−σ δ( )], (96)

∆ 

CSEM Z MGTre l  Z Z ZZ p p 

where the correction to sZ 
2 (D p )  is the difference between the overall absolute and 

relative error variances for the composite scores. 

MIRT 
As previously discussed, the conditional composite score distribution, Pr(Z z|q)= , 
can be obtained using Equation 60 under either the UIRT or the MIRT framework. 
The standard deviation of the conditional distribution is the CSEM for the compos-
ite, which is equal to the square root of Equation 62. For graphical representation 
of composite-score CSEMs, especially under MIRT, it is common to use the true 
composite score, zq , as the conditioning variable. However, the relationship between 
q  and zq  in MIRT is not strictly one-to-one, leading to challenges in visualization. 
This is because of the infinite possible combinations of component q ’s that yield the 
same composite true score. Thus, multiple CSEM estimates can be associated with 
each true composite score. To address this issue, various strategies can be employed, 
such as computing the arithmetic mean for each true composite score or applying a 
polynomial regression to obtain single-valued smoothed estimates. 

) )s s12 2p p 





 




 
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A MIRT model typically provides better fit than a UIRT model when a test is 
composed of multiple subdimensions such as content areas. Oftentimes, however, a 
UIRT model is judged to be robust to a moderate violation of the unidimensionality 
assumption and more feasible to use in practice because of its computational simplic-
ity and unambiguous interpretation of results. When applied to mixed-format tests, 
W. Lee et al. (2020) observed that the UIRT and MIRT models generally agreed 
closely in terms of the patterns of CSEMs; however, when aggregated to obtain the 
overall SEM and reliability, results tended to be quite different as the data became 
more multidimensional. 

Summary and Other Issues 
The procedures discussed in this section are summarized in Table 5.3, categorized based 
on their respective model, score types, assumptions about replications, and item for-
mat. Not covered in the preceding section are methods for estimating CSEMs for scale 
scores converted from composite scores. Composite scale-score CSEMs can be derived 
using the compound binomial model (Brennan & Lee, 1999), compound multinomial 
model (W. Lee, 2007), or MIRT (W. Lee et al., 2020). 

When raw scores or IRT proficiency estimates are the primary focus, estimating 
CSEMs is relatively straightforward, and the general shapes of these CSEMs are highly 
predictable. However, in many cases, raw scores or IRT proficiency estimates are trans-
formed into scale scores for reporting. In such cases, expressing CSEMs on the metric 
of a reported score scale provides more informative results. Previous research suggests 
that the overall pattern of scale-score CSEMs along the score scale tends to follow the 
changes in the slope (or first derivative) of a transformation function (Brennan & Lee, 
1999; Feldt & Qualls, 1998; Kolen & Lee, 2011; W. Lee et al., 2000, 2020). A steeper 
slope at a raw-score point corresponds to a wider range of adjacent raw scores convert-
ing to a broader range of scale scores, leading to greater variability of scale scores over 
repeated measurements. Conversely, a flatter slope is associated with a wide range of raw 
scores converting to a smaller range of scale scores, resulting in less variability of scale 
scores over replications. It is advisable in practice that the relative magnitude of 
scale-score CSEMs be examined, especially near the score points that are critical for 
decision-making, such as cut scores for licensure and certification exams. 

The delta method approximation can serve as a general procedure for estimat-
ing scale-score CSEMs because it can be used jointly with almost any estimates of 
raw-score CSEMs. In most applications in educational testing contexts, the delta 
method requires an approximation of the first derivative function through a fitted 
conversion table to obtain a continuous, differentiable function. A high-degree poly-
nomial model is often chosen due to its flexibility and ease of differentiation. How-
ever, the performance of the delta method with polynomial approximation may be 
contingent on the characteristics of a conversion table. For example, if a conversion 
table is characterized as many-to-one, the polynomial approximation of slope may 
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Table 5.3 Estimators of Conditional Standard Errors of Measurement 
Based on a Single Test Administration 

Procedure/Model Score Type Item 
Type 

Assumption 

Thorndike Raw score Both Essential tau-equivalent split 
halves 

Mollenkopf Raw score Both Essential tau-equivalent split 
halves 

Binomial error model Raw score 
Scale score 

DI Randomly parallel 

Compound binomial error 
model 

Composite score 
Composite scale score 

DI Stratified randomly parallel 

Multinomial error model Raw score 
Scale score 

PO Randomly parallel 

Compound multinomial error 
model 

Composite score 
Composite scale score 

PO Stratified randomly parallel 

Univariate GT Raw score: Absolute error 
Relative error 

Both Randomly parallel 

Multivariate GT Composite score: Absolute error 
Relative error 

Both Stratified randomly parallel 

Strong true score model Raw score 
Scale score 

DI Randomly parallel 

Unidimensional IRT Raw score 
Scale score 
ML estimator 

Both Strictly parallel 

Unidimensional IRT EAP estimator Both Undefined 
Multidimensional IRT Composite score 

Composite scale score 
Both Stratified strictly parallel 

Delta-polynomial method Scale score 
Composite scale score 

Both 

Note. DI = dichotomous item type; PO = polytomous item type. 

be questionable. In that case, estimation procedures that leverage the conditional 
scale-score distribution may be deemed preferable, although further research is 
needed to substantiate this preference. 

Virtually all estimation procedures for scale-score CSEMs discussed in this sec-
tion assume a constant raw-to-scale score conversion table across hypothetically 
replicated parallel forms and for every test taker in the population. In real-world 
testing situations where multiple alternate forms of a test are developed and used, 
the concern is centered around the interchangeability of scores across these forms, 
which may vary in difficulty. Equating plays an important role in this context, and an 
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outcome of such equating is a raw-to-scale score conversion table specific to each test 
form. The resulting scale scores are considered interchangeable across different forms 
if equating is trustworthy. 

The need for equating to generate different conversion tables for each hypothetical 
replication in estimating scale-score CSEMs has not yet been systematically inves-
tigated in the literature. Obviously, the assumption of strictly parallel forms for the 
IRT procedures does not require equating because forms are effectively fixed, and 
any score differences are solely attributable to random error. In contrast, the assump-
tion of randomly parallel forms in binomial and multinomial procedures, at least in 
the context of estimating CSEMs, does not require every test taker to take the same 
set of items on each replication. This implies that a test form, as a collection of spe-
cific items, is not clearly defined under this conception. If an additional restriction is 
imposed to allow for the same random sample of items to be used for all test takers 
in each replication, the resulting forms will have equivalent difficulty levels because 
all items selected for each replication are of equal difficulty for any given test taker. 
Therefore, under the randomly parallel forms assumption, equating is deemed either 
impossible or unnecessary. Further exploration of this issue may be warranted. 

While the overall and conditional SEMs by themselves provide useful information 
about the amount of error in test scores, they are frequently used in conjunction with 
intervals. The Standards (AERA et al., 2014), especially Standard 6.10, recommend that 
score precision be depicted by error bands using the SEM. There is a voluminous liter-
ature on various types of interval estimation procedures in relation to different types of 
scores. Space does not permit any systematic review of the topic, but the following two 
principles merit consideration. First, the CSEM is usually favored over the overall SEM 
when constructing intervals for each individual test taker. Second, the endpoints of an 
interval should preferably be on the score metric used for reporting (e.g., scale scores). 
For example, W. Lee et al. (2006) recommended using CSEMs rather than the overall 
SEM based on a simulation study. They also proposed an endpoints conversion method 
for constructing intervals for nonlinearly transformed scale scores from raw scores, 
demonstrating superior performance compared to a normal approximation method. 

As a final note, if a test has a multidimensional structure by design, such as a table 
of content specifications or mixed item formats, it is strongly recommended that the 
CSEMs for the total scores be estimated using one of the composite score models. 
Ignoring the fact that domains are stratified and fitting noncomposite models to the 
total scores could introduce bias in the estimated CSEMs, with larger bias as data 
become more multidimensional (W. Lee et al., 2000). 

RELIABILITY OF CLASSIFICATION CATEGORY SCORES 

When using a test score or composite score for categorical classification decisions 
(e.g., pass/fail), the Standards (AERA et al., 2014) recommend estimating the consis-
tency of classifications across two replications of the same measurement procedure. 
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Classification errors occur when decisions are based on test takers’ observed scores, 
which contain measurement error. In this context, the interpretation of test scores 
primarily considers each test taker’s observed score relative to a standard or cut score, 
rather than the performance of other test takers. Since Glaser (1963) introduced the 
notion of criterion-referenced interpretation of test scores, extensive research has been 
devoted to developments of indices for measuring the precision of classifications. Berk 
(1980) provided a comprehensive summary of the measures developed until 1980, and 
since then, new methods have emerged as a result of increased use of IRT and complex 
assessment types. 

This section reviews procedures based on threshold-error loss for assessing 
consistency of classifications. These methods primarily focus on the extent of consistent 
classifications with respect to the cut score, treating all false classifications as equally 
serious. By contrast, squared-error loss methods, such as those proposed by Livingston 
(1972), Brennan and Kane (1977a, 1977b), and Kane and Brennan (1980), consider 
misclassifying test takers with scores far from the cut score as more serious than 
misclassifying those with scores near the cut score. While both approaches offer 
meaningful insights into classification consistency, they address different aspects of 
the classification problem. Another group of procedures, not reviewed in this section, 
includes methods involving dividing the test into two parallel halves and stepping up 
the result to what might be expected for the full-length test (e.g., Breyer & Lewis, 1994; 
Woodruff & Sawyer, 1989). 

The precision, or lack thereof, of classifications is often described in terms of classi-
fication consistency and accuracy in the literature. Classification consistency measures 
the degree to which test takers are classified in the same performance category based 
on two independent replications of the same (or similar) measurement procedure. A 
double administration procedure (Hambleton & Novick, 1973) using two parallel 
forms involves tallying the proportion of test takers assigned to each classification cat-
egory on both administrations. By contrast, single-administration procedures rely on 
two expected (i.e., model-predicted) observed score distributions from two hypotheti-
cal replications of the test. The concept of replications, whether actual or hypothetical, 
leads to the perception of classification consistency as the reliability of classifications 
(W. Lee et al., 2002). 

Classification accuracy assesses the agreement between classifications based on test 
takers’ observed scores and classifications based on test takers’ true scores (W. Lee 
et al., 2002; Livingston & Lewis, 1995). Unlike classification consistency, which 
compares two observed classifications, classification accuracy relates observed classifi-
cations to true classifications. In this sense, classification accuracy is sometimes referred 
to as decision validity (Berk, 1980; Hambleton, 1980). 

Classification Consistency and Accuracy Indices 
Suppose that test takers are classified into H mutually exclusive performance categories 
based on a set of H -1 cut scores on the raw-score metric, c c1 2, ,...,c H -1. For notational 
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convenience, let c 0 and c H denote the lowest and highest possible scores, respectively. 
The first performance category contains scores ranging from c 0 to c 1 -1; the second 
category contains scores from c1 to c 2 -1; and so forth. Let P P1, 2..., PH  denote the 
observed performance categories in which each test taker is classified by comparison of 
their observed scores to cut scores. Further, let X1 and X 2 be the random variables for 
observed scores on two administrations of the test that are independent and identically 
distributed. 

The two most frequently discussed classification consistency indices are the agree-
ment index f and Cohen’s (1960) kappa (k) coefficient. The marginal agreement index 
f is the percentage of test takers consistently classified in the same category on two 
independent replications: 

H 

f =∑Pr(X1 ∈ Ph , X 2 ∈ Ph ). (97) 
h=1 

More specifically, the f coefficient is the sum of diagonal elements of an H H´ 
contingency table composed of joint probabilities or percentages of observed category 
classifications on two replications, denoted Pr(X1 Î Pi , X 2 Î Pj ). The k coefficient 
adjusts for agreement occurring by chance and is given by 

φ φ−
κ = c , (98)

1−φ c 

where f  is the chance agreement: f =∑H 
Pr(X ∈ P )Pr(X ∈ P ) = c c 1 h 2 hh=1 

∑H [ Pr(X ∈ P ) ]2  because X1 and X 2 are identically distributed. 1 hh=1 

Classification accuracy relies on a bivariate distribution of observed and true classi-
fications. True classification involves determining a test taker’s true categorical status 
based on their true score relative to cut scores expressed on the true score metric, 
l l l  being the lowest and highest possible true scores, respec-, ,..., , with l0 and lH1 2 H-1 
tively. These true cut scores typically are set to be the same as the observed cut scores, 
but theory does not require doing so. Because test takers’ true scores are unknown, 
individual true scores can be estimated, or an entire true score distribution for a pop-
ulation can be estimated or assumed. Let Γh(h = 1 2, ,...,H) denote the true category 
of a test taker with true score t such that λh−1 ≤ <τ λh ´  contingency table . An H H  
can be generated, containing the joint probabilities of observed and true classifications, 
Pr(t ∈Γ i , X Pj . This contingency table is asymmetric. The marginal classification ∈ ) 
accuracy index, denoted g , is defined as the sum of the diagonal elements in the contin-
gency table: 

H 

γ =∑Pr(τ ∈Γ , ∈ h ).h X P  (99) 
h=1 
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If the rows represent true categories and columns represent observed categories, the 
sum of the upper diagonal elements indicates the percentage of test takers classified in 
observed categories higher than their true category, known as the marginal false-positive 
error rate, symbolically expressed as 

H−1 H 

γ + = ∑ ∑  τ ∈Γ , X PjPr(  i ∈ ). (100) 
i=1 j i= +1 

Conversely, the marginal false-negative error rate represents the percentage of test tak-
ers whose observed categories are lower than their true categories and is defined as the 
sum of the lower diagonal elements of the contingency table: 

H i−1 

γ − =∑∑ τ ∈Γ , X PjPr(  i ∈ ). (101) 
i=2 j=1 

In essence, all estimation procedures discussed next involve, one way or another, con-
structing H H  contingency tables for consistency and accuracy. Nevertheless, they ´ 
differ with respect to underlying assumptions ascribed to various models and applica-
ble item types (dichotomous vs. polytomous) and score types (raw, composite, or theta 
estimates). 

For most estimation methods, it is more convenient and informative to begin with 
estimating classification indices for each individual test taker or conditional on each 
level of true score. These conditional indices are then aggregated or averaged to derive 
the marginal indices. The subsequent sections primarily concentrate on the f and g 
coefficients to simplify matters. 

Strong True Score Models 
The first procedure is grounded in strong true score models. Huynh (1976) introduced 
an estimation procedure based on the beta-binomial model, the simplest form of a fam-
ily of strong true score models. Later, Hanson and Brennan (1990) extended Huynh’s 
approach to more general strong true score models. The conditional raw-score distri-
bution, f x( |p), can be modeled using either a binomial or a two-term approximation 
to the compound binomial model. The distribution of p for a population is either a 
two-parameter beta or a four-parameter beta distribution. 

Let f x( |1 p)  and f x( |2 p)  represent the identically distributed conditional raw-
score distributions on two replications of a measurement procedure. The conditional 
probability of being classified in the hth observed category Ph is 

c −1h 

Pr(X1 ∈ Ph |p) = Pr(X 2 ∈ Ph | )p = ∑ f x( |1 p). (102) 
x =c1 h−1 

Due to the local independence assumption, the conditional joint distribution of X1 and 
X 2 is 

f x x | )  = f x  p f x | )p .( ,1 2 p ( |1 ) (  2 (103) 
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Given a set of H -1 cut scores, a conditio ´nal H H contingency table can be generated 
based on the conditional joint probabilities. The probability of falling in the same hth 
category on two replications (i.e., diagonal elements) can be computed as 

c h−1 c h−1  c h−1  2 

Pr(X1 ∈ h , 2 ∈ Ph | )p = ∑ ( |1 p) ∑ f x 2 | )   ∑ 1 P X f x  ( p =  f x( |p) . (104) 
x1 =c h−1 x2 =c h−1  x1 =c h−1  

It follows that the conditional probability of consistent classifications is 
H 

φ π  =∑Pr(X ∈ , ∈ P π( )  P X | ), (105)1 h 2 h 
h=1 

which is referred to as the conditional agreement index. The marginal agreement index 
is obtained by integrating φ( )π  over the entire distribution of p: 

φ = ∫φ ( )π f ( )π dπ, (106) 
π 

where integration is performed numerically using a set of quadrature points from an 
estimated true score distribution (e.g., beta). 

Now, let us suppose that a true score (or a quadrature point) belongs to the hth 
performance level, p ∈Γh . An accurate classification occurs when, based on observed 
scores, a test taker is classified in a performance category that is the same as the test 
taker’s true performance category. Therefore, the conditional accuracy index is simply 

γ π  = Pr( ∈ h |π h (107)( )  X P  ∈Γ ), 

which can be computed using Equation 102. The marginal accuracy index is then 
given by 

γ = ∫ γ( )π f ( )π dπ. (108) 
π 

The conditional and marginal false-positive and -negative error rates can be derived in 
a similar manner. 

Normal Approximation Procedure 
The normal approximation procedure (Peng & Subkoviak, 1980) was initially proposed 
as a simplification of Huynh’s (1976) beta-binomial procedure. Research suggests, 
however, that this relatively simple procedure performs adequately across various situa-
tions and can accommodate different types of scores (e.g., S. Y. Kim & Lee, 2019, 2020; 
Wan et al., 2007). The crucial assumption of this procedure is that the observed scores 
from two replications follow a bivariate normal distribution with a correlation equal to 
test reliability. 

Let z c h -score corresponding to each cut score c h ( h = 1 2, ,...,H ). This( ) denote a z 
standardization enables us to use the convenient properties of z scores. The marginal 
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percentages of test takers who are classified in the same hth performance category 
on two replications, Pr(X Î P , X Î P ), can be determined using a cumulative1 h 2 h 
standard bivariate normal distribution. The marginal agreement index f is a sum of 
Pr(X Î P , X ÎP )  over all performance categories, as follows:1 h 2 h 

H 

φ = ∑Pr(X ∈ P X ∈, P )1 h 2 h 
h=1 

H z ch z c  2( )  ( )h 
1 

 x1 − 2 ( ) 1 2  x2

2 
R X x x + = ∑ exp dx dx2 ,∫ ∫  − 1

2   (109)h ( ( 2 1− ( )  2 1− 
2 

=1 z c  ) z c  ) π R X   [ R X( ) ]
h−1 h−1 

where R X( ) is an estimate of reliability. Based on the fact that the marginal distribution 
of X1 (or X 2) is univariate normal, the marginal category probabilities of Pr(X1 Î Ph ) 
and Pr(X 2 Î Ph )  can be computed using a cumulative univariate standard normal 
distribution. The chance agreement and kappa coefficient can be computed accordingly. 

Classification accuracy was not considered explicitly by Peng and Subkoviak (1980). 
Later researchers adopted the normality-based framework for estimating classification 
accuracy indices (e.g., S. Y. Kim & Lee, 2019). The assumption is that the marginal 
joint distribution of the observed and true scores follows a bivariate normal distri-
bution. Since both observed and true classifications are involved, the true cut scores 
as well as the observed cut scores need to be standardized. For summed raw scores, 
m( )X ( ) and s( )  = s X ( )= m T T ( )  R X  in CTT. Thus, true cut scores are standard-

λ [ h ( ) / (X R X) . The correlation of this bivariate distribu-ized as z( )h = λ −µ X ] σ ( ) 
( ) because r( ,  ( ). The marginal accuracy index is given bytion is R X  X T) = R X  

H 

γ = ∑Pr(X ∈ Ph | τ ∈ Γ h ) 
h=1 

H z c( )h z(λh )  2 2 1 τ − 2 ( )  xR X τ + x τ= exp −  d dx.∑ ∫ ∫
2π 1 − R(X  2 1[ R X )]  (110)=1 ( )  − (h z c( ) z(λ )  h−1 h−1 

A cumulative univariate standard normal distribution for each of the true and observed 
scores can be used to obtain the marginal category probabilities of Pr( Î h )τ Γ  and 
Pr(X Ph ), which then are used to fill the off-diagonal cells of the marginal H HÎ ´ 
contingency table, Pr(τ Γi , Î jÎ X P ), for computing false-positive and -negative error 
rates. 

The assumption of bivariate normality for the normal approximation method may 
not fully hold in reality. However, research suggests that this approach is quite robust to 
violations of the normality assumption (e.g., S. Y. Kim & Lee, 2020; Wan et al., 2007). 
Regarding the choice of reliability coefficient in Equations 109 and 110, it is generally 
preferred to use reliability coefficients that involve absolute error variance because the 
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focus in classification contexts is on the discrepancy between test takers’ scores and 
cut scores rather than their ranking. Peng and Subkoviak (1980) used KR21 with the 
normal approximation method, and Huynh (1976) also employed KR21 in the beta-
binomial model framework, following Lord and Novick (1968), who demonstrated 
that reliability for the beta-binomial model is indeed KR21. Although the choice of 
reliability coefficient may have minimal practical impact, it is prudent to select one that 
is defensible for a particular application, especially paying close attention to the score 
type of interest. 

Livingston and Lewis Procedure 
The strong true score models (Hanson & Brennan, 1990; Lord, 1965) assume that 
n items are dichotomously scored and equally weighted. The Livingston and Lewis 
(1995) procedure is intended to extend the strong true score models to other com-
plex types of test scores such as scores from polytomous items, composite scores, 
and even scale scores. For this somewhat ad hoc extension, they introduced the con-
cept of effective test length, denoted here as n, which represents the pseudo number of 
equally difficult dichotomous items required to achieve the same reliability as the actual 
reported scores. (Note that the term effective test length carries a different interpreta-
tion compared to its usage in Equation 9). Letting X  denote the actual test scores, the 
effective test length is computed as 

 � X − min X  max X − �( )  − R( )X Xµ( )  ( )   ( )  µ X σ2( )   n� = , (111)
σ2 ( )[X 1 − R(X))] 

where R X ( ) and( ) is a reliability coefficient for the original score type, and min X 
max X n can( )  indicate the minimum and maximum possible scores, respectively. Since  
be a noninteger value, it is often rounded to the nearest integer. One of the strong true 
score models can be applied to this pseudo dichotomous data to compute classification 
indices as outlined in the section “Strong True Score Models.” 

The flexibility of the Livingston and Lewis procedure makes it one of the most fre-
quently cited and used procedures in practice. Many comparison studies have found 
that results for the Livingston and Lewis procedure are comparable to those for other 
methodologies (e.g., S. Y. Kim & Lee, 2020; W. Lee et al., 2009; Wan et al., 2007). 

Binomial and Multinomial Models 
Subkoviak (1976) proposed a procedure for estimating classification consistency for 
a group of test takers under the assumption of dichotomously scored items. Unlike 
Huynh (1976), who utilizes the full feature of the beta-binomial model, Subkoviak’s 
procedure does not entail estimating the true score distribution, although it assumes a 
binomial distribution for the conditional observed score distribution, f x( |p) . Instead 
of estimating the entire true score distribution, Subkoviak’s procedure uses an estimated 
true score for each individual test taker. Subkoviak (1976) suggests using either a test 
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taker’s observed proportion-correct score or Kelley’s (1947) regressed score estimate. 
The procedure computes the conditional agreement index for each person and then 
obtains the marginal agreement index by averaging the conditional results over all per-
sons in the data set. 

W. Lee (2005) and W. Lee et al. (2009) extended Subkoviak’s procedure by: (a) 
proposing a procedure based on the multinomial error model (W. Lee, 2007) for 
polytomous items; (b) applying the compound multinomial model (W. Lee, 2007) to 
composite scores; and (c) considering classification accuracy, which was not addressed 
in Subkoviak (1976). The multinomial procedure, briefly introduced below, reduces to 
Subkoviak’s model if items are dichotomously scored. 

As previously defined in the section “Multinomial Error Model”, for a person with 
h = { ,  ,...,h } , ,...,Y , represent the numbers of items h h  k , the random variables, Y Y  1 2 1 2 k 
scored a a, ,...,a , respectively, which follow a multinomial distribution. The total raw 1 2 k 

score is X =∑ k 
ai iY . The conditional total score distribution given h is provided in 

i=1 

Equation 80. The probability of being in the hth performance level is given by 
c −1h 

Pr(X P∈ h |h) = f x h (112)∑ ( | ). 
x c= h−1 

^f hFor a person with ĥ = y n/ , the conditional agreement index, ( )  , is computed i i p 

using Equations 104 and 105. These conditional agreement indices for all N  persons 
are averaged to obtain the marginal agreement index: 

N 
^f =åf(  ) .h p (113) 

p=1 

Using observed score x  as an estimate of true score, each person’s true performance 

level is determined by comparing x  to true cut scores. For a person with observed ĥ and 

l t̂ x 
k

a y <l , the probability of accurate classifications is simply the h-1 £ = =å i i  hi=1 

probability of being classified into the hth performance category: 

( )ĥ 
p = Pr(X P |t ÎG ), (114)g Î h 

^ h 

which is computed using ĥ  in place of h in Equation 112. The gamma coefficient for a 
group of test takers is 

N 
^ g = g(  ) .  å h p (115) 

p=1 

The methodology discussed above can be extended to cases where the score type 
of interest is a composite score. The key difference is to model errors according to the 
compound binomial model, as discussed in detail by W. Lee (2005, 2007) and W. Lee 



345 Reliabil it y in Educational Measurement

 

 

 
 

   

 

 

 

 

 

σ θ θ�1 /  ( ,  )I 
 

et al. (2009). Brennan and Lee (2008) considered correcting for bias in classification 
consistency indices by proposing an estimator of true score that has the same variance 
as true scores. 

IRT Procedures 
Several procedures exist for computing classification indices under the IRT framework. 
For example, Huynh (1990) considered the Rasch model for classification consis-
tency, with subsequent extensions to accommodate other UIRT models (W. Lee, 2010; 
W. Lee et al., 2002; Schulz et al., 1999; T. Wang et al., 2000). S. Y. Kim and Lee (2019) 
and W. Lee et al. (2020) further expanded the UIRT procedures to handle composite 
scores using assumptions of SS-MIRT and BF-MIRT models. While these procedures 
were primarily designed for tests based on summed scoring, those developed by 
Rudner (2001, 2005) and Guo (2006) are geared toward ML proficiency estimates. 
We first review Rudner’s proficiency-based procedure, followed by methods tailored 
for summed scoring. 

ML Proficiency Estimates 

Rudner’s procedure operates under the assumption that, for person p with an ML 


 
estimate qp , errors are asymptotically normal with a mean of qp and standard deviation 

� 
of �p = , where I q q (̂ , ) is a sample estimate of the test information function 

evaluated at qp . The expected probability of falling in the hth category is expressed as 
� � � � 

Φ θ σ Φ θ σ  c ), (116)Pr(θ ∈ P | θ p ) = ( p , � p ,c ) − ( p , � p,h h h−1 

 
F qp ŝ 

 
on the normal distribution, ( ,  )p . Assuming errors are identically distributed for 
where ( ,  ,p c ut) is the cumulative probability below the theta cut score, cut, based 

N q ŝ p 

two replications, the probability of consistent classifications for each person is calcu-
lated as 

H H 2
      

( )  ∑ 1 h P | )  
 
θ  (117)φ θ p = Pr(θ ∈ P , θ 2 ∈ h θ p = ∑ Pr( ∈ Ph | θ p ) 

 
. 

h= 1 h= 1   
 

For a test taker with λh 1 ≤ <θ p λh , the probability of accurate classifications is equal− 

to the probability of being placed in the hth category: 
   

γ θ( )p = Pr(θ∈ Ph |θ p ∈Γh ). (118) 

The marginal indices of f and g  for a group of persons are computed by averaging 
conditional indices as in Equations 113 and 115. 

Guo (2006) proposed a modification of Rudner’s procedure that relaxes the 
normality assumption. Instead of using the ML point estimate of q  and its standard 
error, Guo’s approach utilizes the likelihood function of a test taker’s item responses 
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given item parameters to compute probabilities of classifications. Research has shown 
that both Rudner’s and Guo’s procedures tend to yield similar results (Guo, 2006; Wyse 
& Hao, 2012). 

Summed Scoring 
The formulation of IRT summed-score procedures is virtually the same as, or similar 
to, that of other procedures, particularly the strong true score models. However, there 
are two main distinctions: (a) the models used to derive the conditional observed score 
distribution (i.e., errors) and (b) the conditioning variables. For example, conditional 
distributions are defined for a UIRT model in Equation 50 or a MIRT model for com-
posite scores in Equation 60. Subsequently, the steps outlined in Equations 102 through 
108 can be applied to compute classification indices by replacing p with either q  or q 
depending on the model used. 

Aggregation Methods 
Estimating marginal classification indices requires a distribution of q  (or q) for a popu-
lation of test takers. While a discrete quadrature distribution is typically employed for 
a UIRT model, computational complexity grows exponentially with a MIRT model 
as the number of dimensions increases. To address this challenge, W. Lee et al. (2020) 
suggested alternative approaches for aggregating conditional indices. These include 
using: (a) quadrature distributions (D method), (b) individual proficiency estimates 
(P method), and (c) Monte Carlo simulation (M method). These three marginal-
ization methods can also be applied to estimating CSEMs and reliability coefficients 
(see W. Lee et al., 2020). 

The D method involves specifying a discrete set of combinations of quadrature points 
and associated weights for q, often using a multivariate standard normal distribution. 
For example, with four dimensions and 21 quadrature points per dimension, there are 
214 =194,481  possible combinations of quadrature points. Conditional agreement 
indices, f( )q , are computed for each combination and aggregated over the entire q dis-
tribution to obtain the marginal index: f =∑ q 

f( )q wq , where the sum is taken over 
all combinations of theta values and wq  is the weight associated with quadrature com-
bination q. 

In contrast, the P method utilizes proficiency estimates as the conditioning variable 
^for each person. Conditional indices are computed for each person with q , and a mar-

ginal index is obtained by averaging the conditional indices over the number of per-
sons in the group: f =åf(q ̂) /N. The P method is typically computationally less p 

intensive than the D method; however, results may be subject to the chosen proficiency 
estimator. The P method would be most useful when the purpose is to quantify classifi-
cation errors for each individual test taker. 

The M method combines elements of the D and P methods. Similar to the D method, 
it begins with an assumed distribution of q, from which a large number of random 
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deviates are drawn. For example, N =100 000  combinations of theta values could ,r 
be drawn from a multivariate standard normal distribution. Conditional results are 
estimated for each of the N r ,=100 000  simulated test takers. Then, similar to the P 
method, marginal results are computed by averaging the conditional results over the 
N r test takers: f f q N r =∑ ( )/ . 

While these methods typically produce similar results (W. Lee, 2010; W. Lee 
et al., 2020), the M method is often preferred for MIRT models. It offers computa-
tional efficiency, eliminates unrealistic theta combinations, and yields conditional 
estimates—such as classification errors and SEMs—that are visually more interpreta-
ble when plotted. 

Other Issues 
The foregoing discussion on classification errors is restricted to cut scores established 
on untransformed score metrics. However, in many large-scale educational testing 
programs, cut scores are often set on reported score scales. Once a score scale is estab-
lished for the initial test form, it is maintained across subsequent forms through test 
equating (Kolen & Brennan, 2014). In this scenario, there are at least two ways to esti-
mate classification indices for scores on each test form. The easiest method would be to 
use the operational raw-to-scale score conversion table, in which the raw-score points 
that correspond to the cut scores on the scale-score metric could be identified. Alterna-
tively, the conditional distribution of scale scores can be computed, as discussed in the 
section “Estimators of CSEMs.” Then, the processes of constructing category probabil-
ities and computing conditional and marginal indices, outlined in the section “Reliabil-
ity of Classification Category Scores,” can be applied. 

The marginal classification indices provide useful information about the overall 
precision of classifying a group of test takers. However, they do not provide infor-
mation about the precision of classifications at different score or proficiency levels. 
For this purpose, conditional indices along the score scale can be examined. Studies 
have consistently shown that classification errors tend to be larger near cut scores, as 
one might expect. Examples of exploring conditional classification indices are found 
in W. Lee (2010), W. Lee et al. (2002, 2020), and Wyse and Hao (2012). Wainer 
et al. (2005) considered a Bayesian method, involving the Markov Chain Monte 
Carlo procedure to produce samples from the posterior distribution of a test taker’s 
proficiency estimate. The probability of passing, what they call the posterior proba-
bility of passing curve, is determined by counting the number of sampled proficiency 
values that exceed the cut score. 

Most research to date on classification consistency and accuracy has focused on 
measurement errors that are attributable to items or forms. It seems natural to consider 
an extension of the current theories and methodologies to broader measurement 
situations. For example, classification decisions could be made based on test tak-
ers’ responses to a set of essay prompts scored by raters. In such cases, an effective 
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procedure should allow measurement errors attributable to essay prompts and raters to be 
modeled separately in constructing performance category probabilities. GT might prove 
to be a useful tool for developing such estimation models in classification contexts. 

OTHER MODELS, AGGREGATION, AND PRECISION 
ISSUES 

There are many additional aspects of reliability this chapter can only touch on. 

Other Models and Assessment Types 
Diagnostic Classification Models 
With diagnostic classification models (DCMs), the latent traits are assumed to 
be categorical. This implies, typically, that there is a more limited range of possi-
ble latent values (e.g., master and nonmaster) than actual score values (raw scores, 
IRT proficiency estimates, or scale scores). In DCMs, the error variance and the 
latent trait variance are not independent, causing some complications in estimating 
reliability. 

Using a replication definition of reliability, simulations are used to administer an 
assessment (the same form, a parallel form, or M. S. Johnson and Sinharay’s (2018) 
definition of multiple assessments with an identical Q matrix and item parameters) 
repeatedly. What category test takers were assigned to each time was observed. Several 
authors have investigated different methods of estimating precision in DCMs, includ-
ing M. S. Johnson and Sinharay (2018), who noted that simply reporting the estimated 
probability that an individual test taker is correctly classified may be misleading without 
considering the distribution of the categorical trait in the population. For instance, if 
95% of a population are “masters,” simply classifying every test taker as a master will 
result in 100% of the masters being correctly classified and 100% of the nonmasters 
being incorrectly classified. 

Templin and Bradshaw (2013) introduced a measure of DCM reliability and 
compared it to an IRT measure. Replications for the DCM method can be obtained 
by repeated sampling from test takers’ posterior distributions. For the IRT model 
estimate, the observed item responses provide an estimate of the latent trait, the 
standard error of which can be calculated using the test information function. Res-
ampling via simulation can be used to obtain the distribution of the latent variable 
across the test-taker population, and the correlation computed between scores from 
two administrations can be used as an IRT reliability estimate. Comparing reliability 
estimates over the hypothetically repeated administrations, Templin and Bradshaw 
illustrated both theoretically and through the simulations that DCMs exhibited 
greater precision than IRT model-based estimates. Thompson et al. (2019) looked 
at DCM results for an operational assessment system reporting information, 
including reliability, at five levels and also found that the DCM reliabilities based on 
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simulations approximating replications of testing were higher than those for CTT or 
IRT methods. 

Structural Equation Models 
Structural equation models allow for comparing various models for assessment 
data, which aids in the determination of an appropriate reliability coefficient in 
situations where one is uncertain about the dimensionality, tau equivalency, and 
other aspects of the data. Graham (2006) provided a hierarchy of models to esti-
mate reliability, using structural equation models to test model fit to data, lament-
ing that 

many students and researchers in education and psychology are unaware of many 
of the assumptions required by a given statistical procedure, are unaware of how 
to test those assumptions, or are unaware of acceptable alternatives should those 
assumptions not be met. (p. 942) 

Bacon et al. (1995) looked at the underestimation of reliability using coefficient 
alpha and omega across different conditions, advocating for weighted omega. Hand-
cock and An (2018) provided an introduction to scale reliability within the context 
of confirmatory factor analysis and structural equation models, endorsing the use 
of McDonald’s ω instead of Cronbach’s alpha. S. B. Green and Yang (2008) derived 
a nonlinear structural equation model method to compute reliability for ordered 
categorical items. Raykov and Shrout (2002) presented a method to compute 
point and bootstrapped confidence interval estimates of reliability for weighted and 
unweighted composites with a general structure. Karimi (2015) illustrated structural 
equation models in estimating model-based reliability, including applications for the 
bifactor and mixed reflective-formative models, as well as covariate-dependent and 
covariate-free reliability. 

Raykov and Penev (2010) outlined a latent variable analysis approach to provide 
both point and confidence interval estimates of reliability of group means, the overall 
reliability of group means, and conditional reliability for conditional and unconditional 
two-level models. Kano and Azuma (2003) discussed both the essential tau equiva-
lence and the independence assumptions in a structural equation model environment 
for coefficient alpha, stating, “the independence assumption is more important than 
the essential τ equivalence assumption because dependency among unique factors can 
cause overestimation of the true reliability” (p. 147). 

Oberski and Satorra (2013) addressed the “usual practice” of using error variances 
from an independent study as population variances in subsequent structural equation 
model analyses, showing how this may make the structural parameters’ standard error 
too small. They provided an adjustment factor, illustrating its use with simulations 
and empirical data. Structural equation modeling continues to be a productive area of 
research related to precision coefficients. 
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Reliability Related to Longitudinal Data and Growth Models 
Examining trends, such as an individual’s scores over time or pretest and posttest scores 
to examine the effectiveness of a treatment, involves additional precision issues. Rogosa 
and Willett (1983) observed that when test takers have similar true growth changes, 
difference scores cannot adequately distinguish the amounts of true change among test 
takers. However, if the test takers differ in the amount of true growth, difference scores 
may indeed be adequate in distinguishing among test takers. Kane (1996) noted, 

The precision of change scores will depend on the intended interpretation of the 
change scores, in particular, on whether the interpretation focuses on the abso-
lute magnitude of change for each individual or on the change for each individual 
compared with the average change in some reference group. (p. 368) 

Thomas and Zumbo (2012) provided some support for the use of difference scores. 
Raudenbush and Jean (2012) looked at reliability in the context of using value-added 

scores to examine teacher effectiveness, endorsing the use of confidence intervals over 
point estimates, and discussing multiple issues related to the use of value-added scores. 
Brennan et al. (2003) discussed various univariate and multivariate GT approaches to 
examine the reliability of group mean difference scores based on longitudinal data, from 
both norm-referenced and criterion-referenced perspectives, viewing the difference 
score as a composite score (the difference) of the two individual assessment scores. 

Geldhof et al. (2014) examined reliability for data based on multistage sampling, 
concluding that level-specific calculations are appropriate when using multilevel data. 
Marcoulides (2019) examined reliability estimation in longitudinal studies, specifying the 
need to ensure that the approach used to model growth and measurement error aligned 
with the data being analyzed. Boyd et al. (2013) proposed an approach for estimating 
measurement error when students were administered three or more assessments, such 
as state assessments in consecutive grades. Their model allows for changes (increases or 
decreases) in knowledge and skills between administrations, as well as for the assessments 
to be neither parallel nor vertically scaled and to vary in their degree of measurement error. 

Some research has examined change, difference, or growth scores in more compli-
cated settings. Schuurman and Hamaker (2019) provided a preliminary model for 
some types of measurement error within the framework of autoregressive time series 
modeling, discussing how it could be relevant to both within-person and between-per-
son precision. Tisak and Tisak (1996) used a latent curve approach to look at longitu-
dinal models of reliability (see also Brandmaier et al., 2018). 

DCMs have advanced to accommodate longitudinal data, examining how test takers’ 
status changes over time. Madison (2019) defined and evaluated two reliability mea-
sures for longitudinal DCMs. The first measure is based on the idea of administering 
the same test repeatedly; the second is focused on the consistency of attribute mastery 
transitions, calculating the average most likely transition probability. Madison used both 
simulations and an empirical data set to study the two reliability metrics compared to a 
longitudinal IRT model. Consistent with the results of Templin and Bradshaw (2013), 
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the longitudinal DCMs had higher reliability than the longitudinal IRT models and 
were easier to interpret. 

Brennan et al. (2003) focused on longitudinal difference scores for matched students. 
In practice, schools likely have three groups of test takers when looking at growth across 
grades: students present (and tested) in both grades, students present in only the lower 
grade, and students present in only the higher grade. For the test takers having assess-
ment scores in both grades, their scores tend to be positively correlated, which tends to 
decrease the standard error associated with the mean difference scores, whereas this is 
not the case when the test takers in the lower and higher grade samples do not overlap. 
In addition to larger error, conceptually using independent samples to look at differ-
ences across grades makes drawing conclusions about instructional effectiveness ques-
tionable (Brennan et al., 2003), a reminder that the data collection design needs to be 
considered in terms of the questions one wishes to consider. 

These more complex designs and analyses tend to introduce additional sources of 
error that need to be considered in addressing precision issues, some of which may 
not be estimable. Haertel (2013) discussed many issues to consider related to teacher 
value-added scores, and Kane (2017) laid out issues related to using residualized stu-
dent gain scores for value-added models, including bias in the individual student resid-
ual gain scores and the impact of this bias when averaging across students to obtain 
estimates of a teacher- or school-level effect. A discussion of possible “corrections” is 
provided, but with the caution that estimates reflecting “all sources of random error in 
the prior scores” (Kane, 2017, p. 10) are typically not available. 

Adaptive Testing 
Computerized adaptive tests (CATs) differ from other assessments in that the items 
a test taker is administered depend on the test taker’s estimated proficiency. Multi-
stage tests (MST) are typically of a fixed length, meaning a predetermined number of 
stages (and items) are administered to each test taker. Item or passage CATs generally 
stop after a set number of items are administered or after a fixed precision is reached. 
Although the standard errors of the proficiency estimates for each test taker can be used 
to obtain an approximate estimate of reliability, the standard errors will typically differ 
across test takers based on augmented stopping rules, such as stopping testing after a 
maximum test length is reached, regardless of the standard error of the current profi-
ciency estimate. 

A salient issue in adaptive testing is that basing which item or set of items a test taker 
sees next on how they responded to previous items suggests a violation of the item 
independence assumption, which IRT methods tend to rely on. The majority of meth-
ods used to estimate reliability for adaptive assessments use IRT methodology, though 
Divgi (1989) presented two methods to estimate reliability for a CAT without invoking 
IRT, and S. Kim and Livingston (2017) investigated a CTT-based procedure to estimate 
reliability for a MST, finding through their simulation that the method produced 
accurate results. 
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B. F. Green et al. (1984) stated, “Many psychometricians feel that devising a reliability 
coefficient for an adaptive test is inappropriate and misguided” (p. 352), but pro-
vided two alternatives, one being similar to an information function and the other 
using marginals. The authors suggested getting empirical reliability through test–retest 
designs. Beiser et al. (2016) computed test–retest reliability on an adaptive assessment 
of depression, concluding that the assessment provided “reliable screening.” Haley 
et al. (2010) reported a study where test–retest reliability was computed using intraclass 
correlations across four CATs. 

The Standards (AERA et al., 2014) suggest estimating reliability and precision infor-
mation through simulations. Thissen (2000, p. 166) concurs, stating that 

because the entire system is used, including the item pool, the item selection algo-
rithm, and the item exposure control system, such simulations may be expected 
to give accurate predictions about the performance of the CAT. . . . Simulation is 
the only situation in which the “real reliability” or “theoretical reliability” of a test 
can be determined. 

Nicewander and Thomasson (1999) presented three test information–based 
reliability estimates for the Bayes modal estimate (i.e., MAP) and the ML estimate 
of proficiencies derived from direct definition, harmonic means, and Jensen’s 
inequality, demonstrating that the latter two estimates were upper bounds for 
the true reliability. The results of multiple simulations found that ML and MAP 
provided nearly identical true reliabilities in all data sets and that all reliability 
estimates were within .02 of the true reliabilities. Segall (2001) introduced two 
methods designed to improve measurement precision of “a general test factor,” 
one using a MIRT proficiency estimate and the other adaptively choosing items 
to maximize precision of a general proficiency score. Both methods were found to 
improve precision. 

Nicewander (2018) transformed a reliability index to provide precision informa-
tion for individuals, subgroups, and cut scores (conditional reliability coefficients), 
applying them to number-correct scores and theta estimates computed from num-
ber-correct scores, as well as theta estimates used as CAT scores. Seo and Jung (2018) 
compared three observed standard error marginalization methods (arithmetic mean, 
harmonic mean, and Jensen equality) in estimating empirical CAT reliabilities, find-
ing that the Jensen equality method provided better accuracy and easy computation. 
Park et al. (2017) introduced a new method to obtain an analytic derivation of MST 
information. 

Jodoin et al. (2006) studied test–retest and alternate forms reliability coefficients for 
several designs, including two- and three-stage MSTs, speculating that they would obtain 
higher coefficient values if there were more separations between their modules (i.e., if the 
medium module would have been less similar to the easy and difficult modules). Zhang 
et al. (2006) compared two IRT-based procedures for computing an aggregate reliability 
estimate using data from an MST assessment consisting of both MC and performance 
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tasks. One procedure used an empirical ability distribution to estimate score variance, 
whereas the other assumed a normal distribution. The authors concluded that the two 
methods tended to produce similar results. The authors raised the issue that if the two 
methods provide quite different estimates, the question to consider is “whether reliabil-
ity estimation in IRT scored tests, especially adaptive tests, should be sample-driven or 
sample-free” (Zhang et al., 2006, p. 13). 

One issue to keep in mind in MST is that test takers are routed to a subset of items, 
so computing precision information over all items in a panel falsely inflates precision 
because each test taker is administered only the items included in a single path, not all 
possible items included over all paths. 

C. Wang (2014) combined adaptive testing with hierarchical latent trait estimation, 
in hopes of increasing the reliability of hierarchical latent trait estimation. Two item 
selection methods were proposed, and both improved measurement precision over 
a unidimensional item selection method, particularly for short tests and when the 
correlation between dimensions was high. 

Schmitt et al. (2010) investigated how speededness affected the reliability of pro-
ficiency estimation in a CAT, using simulation and two item pools, one “real” and 
one “ideal.” The proficiency estimates became increasingly negatively biased as the 
CAT became more speeded in the real pool; these results were not replicated with 
the ideal pool. 

Future precision research in adaptive testing will likely incorporate more complex 
IRT models, scoring with plausible values, and more complex assessment situations 
involving gaming and other simulations, where routing may be based on factors in 
addition to ability estimation. 

Reliability Issues Related to Speeded Assessments 
Operationally, some assessments are untimed, some are generously timed or partially 
speeded for at least some test takers, and still others have time limits imposed for practical 
reasons, such as when a test is administered in a school cafeteria and needs to be finished 
in time for lunch (for issues related to timing, see Margolis & Feinberg, 2020). 

Estimating reliability for pure speed assessments from a single administration has 
been discredited for some time, with a consensus that administering two or more 
forms of an assessment to a group of test takers is the appropriate way to investigate 
precision (Anastasi & Drake, 1954; Cronbach & Warrington, 1951; Gulliksen, 
1950), though attempts have been made to develop improved methods because of 
practical difficulties in obtaining data on two or more forms for a group of test takers 
(see Gulliksen, 1950). Cronbach and Warrington (1951) listed three conditions that 
result in inaccurate split-half or coefficient alpha reliabilities based on a single form 
when the assessment is speeded, including small variability in the number of items 
test takers have answered, when test takers have responded to all items they are likely 
to answer correctly within the time limit, and when the variation in the number of 
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items responded to from form/occasion to form/occasion is small compared to the 
number of items responded to across test takers. According to these authors, if data 
from an assessment with a time limit do not meet one or more of these conditions, a 
split-half reliability estimate from a single administration might be usable. 

In achievement and licensure/certification testing, relatively few assessments are 
pure speed tests, meaning there is not an expectation that lack of time is the sole, or 
even primary, reason for test takers not answering every item correctly. According to 
Cronbach and Warrington (1951), speededness is a factor to consider when a test 
taker’s position in a group of test takers would change if the test taker were given addi-
tional time to respond to the assessment. Speededness violates the assumption of local 
independence of items, in that for those items a test taker does not have time to answer, 
the lack of time affects the test taker not answering the item correctly more than other 
characteristics, such as item difficulty, thus impacting the assumptions both GT and 
IRT methods make about local item independence for estimating coefficients. 

Attali (2005) used simulations to illustrate the impact of speededness on reliability, 
assuming that test takers who were running out of time would engage in rapid guessing 
on their remaining items as opposed to leaving them unanswered, which tends to lower 
reliability because some items are answered correctly by chance, which is unlikely to be 
consistent across multiple test forms. Whether the speed at which a test taker works is 
consistent across alternate forms is another consideration. 

The salient point is to what degree the test taker differences in scores are due to speed, 
or what proportion of total score variance is “speed” variance (Attali, 2005; Anastasi 
& Drake, 1954). When assessments are slightly speeded, or only a small portion of 
total variance is due to speed factors, internal consistency coefficients may not be too 
misleading. However, with the increase in computerized testing and the collecting of 
timing information, such as the amount of time a test taker spends responding to each 
item, more sophisticated methods of addressing speededness are possible, such as 
explicitly including timing information in estimating proficiency. Petscher et al. (2015) 
used a conditional item response model that incorporates response time as an item 
parameter in the context of a reading fluency assessment. Their model subsumes the 
idea of independence at the individual level, but incorporates a joint relation between 
speed and accuracy at the population level. The authors found their model improved 
the precision of student scores by an average of 5%. The increase was not uniform, how-
ever, having the most improvement for higher proficiency students. Other models, such 
as those introduced by van der Linden (2009) that incorporate latency, could also be 
used. 

Aggregation Issues 
Reliability of Group Means 
The reliability coefficients dealt with in this chapter have concentrated on individual 
test takers and precision related to normative or criterion-referenced issues related to 
individuals. There are, however, instances where the unit of interest is at the aggregate 
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level, for example, looking at a classroom. Examining trends, such as a cohorts’ set of 
scores over time, or change scores, such as pretest and posttest scores to examine the 
effectiveness of a treatment, involves additional precision issues. Geldhof et al. (2014) 
examined level-specific (e.g., individual and group) reliability using three estimates and 
simulated and real multilevel data, finding support for the use of level-specific reliability 
estimates. 

It is well known that the variability of, for example, individual fifth graders’ assess-
ment scores in a school district is generally greater than the variability of the average 
scores of the fifth-grade classrooms. Brennan (1995) used GT to illustrate, however, 
that the error variance for individuals could be less than the error variance for groups 
under certain conditions, depending on whether one considered persons and items ran-
dom or fixed in terms of the universe of generalization. According to Brennan (1995), 
“Aggregation may well lead to a sizable decrease in error variance, but this can be very 
misleading if an investigator fails to take into account the corresponding decrease in 
true (or universe) score variance” (p. 395). 

Reliability Generalization 
Reliability is not a constant property of an assessment, but may vary based on 
context, such as a particular sample of test takers or number of raters, and the defi-
nition of a replication. Reliability generalization (RG) is basically a meta-analysis 
of reliability coefficient estimates across different studies, with the goal of estimat-
ing an average reliability across studies, as well as investigating the variability in the 
reported estimates and identifying factors that seem to be influencing the reliability 
estimates. 

The importance of RG studies is that many researchers do not provide reliability 
estimates based on their particular context, but instead rely on, perhaps, a publisher’s 
technical documentation for their reported reliability information, even though their 
context may differ in ways likely to affect precision. Although not as ideal as having pre-
cision information calculated on their particular data, RG analyses may provide some 
information on whether “borrowing” reliability information from one context and 
assuming it applies in another is likely to be reasonable (see Vacha-Haase et al., 2002, 
and Whittington, 1998). 

There are different ways to implement an RG study and different factors to consider 
as possible influencers on estimated coefficient values. Holland (2015) examined 
107 peer-reviewed RG studies, finding most analyzed coefficient alpha coefficients. 
He provided a set of guidelines for both conducting and reporting RG studies. 
Sánchez-Meca et al. (2019) also developed a checklist to assist researchers in reporting 
reliability generalization results. Henchy (2013) examined 64 RG studies, compar-
ing the recommendations around such studies to how they were actually conducted, 
finding that some recommendations, such as conducting a priori power analyses, were 
not followed. Those conducting RG studies need to attend to issues such as whether 
to weight study results by test-taker sample size and how to treat a possible lack of 
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independence of reliability estimates where a given study has reliability estimates from 
various subgroups, subscales, or multiple methodologies. 

Precision Issues Related to Raters 
Rater Reliability 
When the scoring of a test taker’s responses is impacted by who does the scoring, this 
source of variability should be incorporated when computing reliability. Rater impact 
is often a matter of degree and encompasses various situations, such as a teacher and 
a teacher’s aide interpreting penmanship differently to various trained raters scoring 
constructed response items using an elaborate rubric on a statewide accountabil-
ity assessment. The more likely different raters are to assign the same score to a test 
taker’s response, and the more likely the same rater is to assign the same score to the 
same response, the less rater variability contributes to error variance. Good rater train-
ing, well-defined scoring rubrics, and monitoring to ensure raters are interpreting the 
rubrics and responses the same way help increase rater consistency. 

GT is frequently used to model the variability of raters, as well as to estimate preci-
sion information over various features, such as the number of raters and the number of 
prompts or tasks administered. However, it is not always clear how well the results of 
these studies generalize to a particular context. Studies done by publishers during the 
initial administration of an assessment may include expert raters, training materials that 
are still under development, and prompts and rubrics that are still being tweaked, as 
well as administration conditions, such as time limits, that are still being determined, 
and they may or may not include test takers who are motivated. All of these factors 
can impact the GT precision information and make it less relevant for a later context. 
In addition, under operational conditions, raters are likely not all at the expert level, 
and raters may not be assigned randomly but rather by convenience, such as which rat-
ers happen to be available for a particular shift when a particular set of responses are 
available for grading. For local GT analyses, existing data are often searched for a small 
subset of data that align with a standard GT design, such as a fully crossed rater by 
test taker nested within prompt design, to gather precision information, including rater 
effects. 

Rater scores are often compared through either a rank ordering of responses (cor-
relation between rater scores over a group of test-taker responses) or a match of actual 
assigned scores (often contingency tables focusing on exact or adjacent matched scores, 
frequently corrected for chance agreement). Rater severity and leniency; the tendency 
of a rater to assign high or low scores, respectively; and proclivity of a rater to use 
the whole range of scores or not are perhaps the most frequently cited rater effects. 
The scoring process logistics, such as scoring all responses to a single prompt versus 
scoring all responses by a single test taker, can mitigate some rater issues, such as the 
halo effect. 

Studies should account for variability within and across raters. Models incorporating 
rater effects include IRT models (Linacre, 1989; Lunz et al., 1990; Verhelst & Verstralen, 
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2001), a hierarchical rater model (Patz et al., 2002), a signal detection theory model 
(DeCarlo, 2010; DeCarlo et al., 2011), Yao’s rater model (Z. Wang & Yao, 2013), and 
Longford’s (1994) model-based approach for multiple raters of essays. Recent research 
includes that of Zapf et al. (2016), who investigated confidence intervals for nominal 
data and Fleiss’s kappa and Krippendoff ’s α for interrater reliability in multiple scenar-
ios, finding that bootstrapped confidence intervals provided coverage probability close 
to the theoretical ones. Choi and Wilson (2018) proposed a generalized linear latent 
and mixed model approach, combining IRT and GT, which allows ML estimation of 
individual random effects and variance components for generalizability coefficients. 
Gianinazzi et al. (2015) asked the same raters to rate the same responses at two points 
in time, looking at both intrarater and interrater reliability. Abdalla (2019) looked at the 
scoring of prompts reused over time under different conditions of rater drift, looking at 
the percentage of exact agreement and Cohen’s kappa as interrater agreement measures, 
and the paired t test and Stuart’s Q as marginal homogeneity measures, under two data 
frameworks: the generalized partial credit model and latent-class signal detection the-
ory model. 

Haertel (2006) discussed several rater issues, including what is the true score of test 
takers on a prompt where raters score responses. Is it the average score across replica-
tions of raters? Or across a test taker’s repeated responses to the prompt, if the test taker 
could be repeatedly administered the same prompt? Or is it based on the rubric and 
not on rater’s assigned score? Haertel (2006) also mentioned issues related to scoring 
with a finite rubric, such as 0 to 3, and the implications for test takers with true scores 
at the extremes. For example, a test taker with a true score of zero can only have mea-
surement errors in one direction. Haertel (2006) stated, “Unless all raters assign the 
identical score, the mean observed score over raters is a biased estimator of the essay’s 
true score. Thus, from this perspective, true score cannot be equal to the expected value 
of observed score” (p. 102). Haertel emphasized the need for precisely specifying the 
definition of true score and error, as well as the model being proposed, to minimize 
ambiguity and determine the appropriateness for a particular context. 

Haertel (2006) also raised the issue of what score is assigned when multiple raters 
score the same response. Typically, multiple scores are averaged only if the scores are 
identical or fall within some predetermined range of each other; for example, adjacent 
scores may be averaged, but scores that are not identical or adjacent may be sent to 
resolution. Resolution may involve ignoring the previous rater scores and using only 
a score assigned by a more expert rater. Other rules may involve keeping the original 
rater score that most aligns with an expert score, discarding the more disparate original 
rater score. It is also the case that any averaging of ratings is likely to result in fractional 
scores that do not directly align with the scoring rubric. Both fractional scores and res-
olution scores impact variability due to raters. Haertel (2006) suggested that additional 
research on how to incorporate these cases into a rater model is warranted. 

Variability across raters can be examined by assigning multiple raters to score the 
same responses. Variability within a rater is somewhat more difficult. A rater may 



358 EDUCATIONAL MEASUREMENT

  
  

 

 
 

  
 

 

 
 

remember seeing a particular response previously, so having a rater score a single 
response multiple times as independent scores may be challenging, as well as resource 
intensive. Examining how consistently a rater scores “essentially identical” responses 
might provide some insight, though the issue then becomes what is essentially identi-
cal and under what conditions (time of day, position in a stack of responses, before or 
after a higher or lower scoring response, length of time between scorings, etc.). Though 
raters are typically not the largest source of error in the precision of rater-scored 
responses, lagging behind task/prompt variability, rater variability is still a source of 
unreliability to minimize. 

Automated Scoring Issues 
Machine scoring, or artificial intelligence (AI) scoring, involves training a computer, 
through natural language processing or other methodology, to score essay/constructed 
responses by machine, rather than human raters. AI scoring is appealing because, in 
theory at least, it is more efficient and returns scores faster and more cost-effectively 
than human raters. Note, however, that current AI engines tend to require some training 
on each individual prompt, so the benefit in efficiency is largely manifest at scale when 
large numbers of test takers respond to the same prompt. (See, however, Attali, 2011 
and Foltz et al., 2013 for a generic model; Foltz et al., 2013 reported the generic AI rater 
as having about 10% lower reliability than the prompt-specific rater). Although most of 
the research literature in AI seems to focus on essay scoring, there have been studies on 
other types of constructed response items (see Shermis, 2015, who looked at machine 
scoring short-answer items). 

Whether assessment responses are scored solely by a single AI engine, multiple AI 
engines, or a combination of an AI engine and one or more human raters, precision 
coefficients are impacted. The most common way AI scores are currently evaluated is to 
look at the consistency between scores assigned by human raters to a group of test-taker 
responses correlated with the scores an AI engine assigns, where the AI engine scoring 
is typically trained to maximally predict the human scores based on features that may 
or may not resemble the human scoring rubrics. Various coefficients, including Pearson 
correlations between the two sets of scores, exact and adjacent agreement, and kappa, 
have been used (see, for example, Attali, 2013, who examined correlations between 
AI and human scoring across multiple studies, typically comparing human–human 
correlations to AI–human correlations). Attali (2015) examined different weights 
applied to AI features to find the optimal weights for reliability and validity, as opposed 
to the traditional use of predicting scores human raters would assign, reporting that 
the feature weights that predicted human rater scores were different from those that 
emphasized reliability coefficients. 

Attali and Burstein (2006) discussed issues related to using human rater and AI 
agreement as reliability, including when data on only a single prompt are used. While 
a human rater may or may not assign the same score to a test-taker response presented 
twice, an AI engine would be expected to return the same score, assuming that no 
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intervening tweaking or training of the engine occurred, suggesting it may be preferable 
to compare scores across multiple prompts rather than a single prompt. 

Attali et al. (2013) looked at increasing the reliability of combined human and 
AI scores, both by decreasing the overlap in the features rated and by increasing the 
reliability of the human scores. Both methods proved effective. Attali (2011) reported 
that a test–retest reliability for a single human rater was .53, while that of a generic 
AI rater was .80. However, in the same way that all prompts, rubrics, administration 
conditions, samples, human rater training protocols, and so on vary, so do different AI 
engines, so while these results may be informative, they may not generalize to other 
contexts. 

One question that arises in considering AI scoring is what actually constitutes a 
replication. Sending a specific response through the same AI scoring engine twice 
does not reflect the same variability as sending the same response through human 
scoring twice, with either the same or a different rater. The same test taker could 
be administered the same prompt or form twice and both responses could be sent 
through the AI engine, but this is not really a replication to investigate the AI engine 
because the within-person variability confounds the interpretation. Perhaps train-
ing the AI engine twice on two separate sets of training or calibration papers and 
then running a new set of responses through both engines and comparing the paired 
scores would be informative, but still would not really align with the typical human 
rater analyses. 

Reliability of Behavioral Observations 
Another setting where raters are involved is in observations of behavior, such as 
observers in a classroom setting looking for incidences of certain behaviors, the 
absence or presence of which on the part of teachers and/or students is recorded. 
Individual rater errors consist of recording an occurrence when it is not manifest 
and not recording an occurrence when one is manifest. Issues in this context involve 
rater consistency (one rater observes a behavior and one does not) and rater accuracy 
(either the behavior did or did not occur, so both raters observing the same incident 
are not correct), and representativeness—if one wishes to make inferences about 
behaviors based on the observed/rated sample, how representative is the observation 
period? For example, is an observed teacher demonstrating typical behavior, or is the 
fact of being observed leading a teacher to be more likely to demonstrate a desired 
behavior? 

Gwet (2012) discussed issues around interrater reliability in medical settings, rais-
ing the issue of whether two raters whose ratings correlate highly are “interchangeable” 
and to what extent we can extrapolate from raters in a study rating particular subjects 
to a broader context, emphasizing the importance of gathering precision information 
using raters similar to those that will be used operationally. Gwet (2014) also discussed 
ordinal measurement issues, when the distinction of whether raters agree or disagree 
may be a matter of degree as opposed to absolute, offering the illustration, 
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Two raters A and B who rate the same patient as “Certain Multiple Sclerosis” 
and “Probable Multiple Sclerosis” are not quite in total agreement. But are they 
in disagreement? Maybe to some extent only. That is, with ordinal scales, a 
disagreement is sometimes seen as a different degree of agreement. (p. 16) 

This suggests that a rank ordering of test takers, rather than a contingency table, might 
be preferred to examine consistency. 

The reader is referred to Haertel (2006) for additional information on issues related 
to precision with behavioral observations, particularly his treatment of Rogosa and 
Ghandour (1991) and their framework for considerations of score accuracy. 

Error in Reliability Estimates 
Reliability coefficients are used to provide an indication of the uncertainty in measure-
ments (see Frank, 2002, for the use of reliability coefficients to correct effect sizes), 
but reliability estimates also contain error. In the examples provided in W. Lee et al. 
(2025), coefficient values across the two contrived forms can be used as a measure of 
consistency, but in practice, it is uncommon for more than one administration to occur, 
and simulations or resampling procedures are often used to estimate standard errors 
and confidence intervals. While this information can be informative, some sources of 
error, such as test-taker consistency across alternate forms or separate administrations, 
are not fully considered. 

Several researchers have investigated issues around error in reliability and precision 
estimates. Andersson and Xin (2018) derived asymptotic variances for IRT marginal 
and test reliability coefficient estimates for both dichotomous and polytomous IRT 
models and demonstrated through simulations that the resulting confidence intervals 
had “good coverage” under several conditions studied, with the marginal reliability 
coefficient having somewhat lower sampling variability and larger bias than the test 
reliability coefficient. 

Feldt (1990) provided methodology to create confidence intervals for the intra-
class reliability coefficient, used when there is a single rater for individual responses, 
based on sampling theory. Ogasawara (2009) derived asymptotic distributions of 
several sample coefficients with and without stratification under nonnormality. 
Terry and Kelly (2012) focused on estimating the sample size needed to obtain nar-
row confidence intervals for composite coefficients. Bujang et al. (2018) looked at 
sample sizes relative to hypothesis tests for Cronbach’s alpha coefficient. Zapf et al. 
(2016) looked at confidence intervals for interrater reliability estimates for nominal 
data. 

When using an estimate of precision, particularly to inform a high-stakes deci-
sion, it is important to consider the precision of the estimate as well. This is likely 
to be of particular concern in GT where variance component estimates may be 
based on a sampling of very few levels from an infinite population (see Brennan, 
2001c). 
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Practical Guidelines 
What Reliability Computations Are Most Appropriate 
for What Context? 
As has been discussed throughout this chapter, there are a variety of methodologies 
that can be used to compute precision information. According to the Standards 
(AERA et al., 2014), the reliability methodology selected for use in a particular 
context should “be consistent with the structure” of the assessment, providing the 
example that an assessment with considerable multidimensionality would indicate 
that a composite score reliability be used. It is also recommended that precision 
information be computed for the scores on which decisions are going to be made. 
For example, if equated and rounded scale scores are used for placing students into 
their first-year college math class, precision information provided on equated and 
rounded scale scores will be more appropriate than internal consistency informa-
tion on raw scores. 

E. Haertel (personal communication, March 8, 2019) advocated framing the issue 
of which reliability computations are most important by first considering what the 
intended use of the data is and what sources of error should be considered (“begin 
with a substantive definition of the intended universe of generalization”). This is then 
followed with selecting a data collection design that would populate the appropriate 
model. GT can often be extremely helpful here by explicitly identifying what factors 
one wishes to generalize over calculations (see Revelle & Condon, 2019). It is not 
always possible to collect the desired data, for example, administering the same assess-
ment over and over to the same test takers. However, knowing what is desired can be 
helpful in choosing what available methodology to substitute. 

To explore the various reliability statistics that can be used to represent consis-
tency and inconsistency of scores, two large-scale examples are provided by W. Lee 
et al. (2025). For each of the examples, multiple reliability coefficients, CSEMs, and 
classification consistency and accuracy coefficients are provided. In addition, results 
are provided for number-correct raw score, IRT proficiency, and scale-score metrics for 
various statistics and indices. The purpose of providing these examples is to illustrate 
similarities and differences in values across multiple reliability statistics and to reinforce 
the importance of identifying details about how a reliability estimate was computed, 
instead of simply reporting “the reliability was [some value].” 

W. Lee et al. (2025) demonstrated through examples that different reliability 
coefficients calculated on a single set of data yield different values. This is largely 
because the different coefficients make different assumptions. Simply running a mul-
titude of analyses and choosing to report the highest values is counterproductive. 
Woodruff and Wu (2012), in a paper comparing coefficient alpha with multiple other 
coefficients, reminded us to remember what each reliability coefficient indicates and 
that we should be reporting the coefficient that best aligns with the inferences we 
plan to make. 
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How Do I Increase Reliability and How Much Do I Need? 
The Standards (AERA et al., 2014) do not provide criteria for minimally acceptable 
reliability coefficients. Occasionally a request for proposal, a government organization, 
or an author (see Dimitrov et al., 1999) may specify a particular value of reliability that 
should or must be achieved, but there is rarely any rationale provided for the chosen 
value or any criteria for the conditions under which the value must be achieved (such 
as test-taker sample size, whether under operational or special study conditions, or the 
metric or type of coefficient). Reliability coefficients appearing in technical manuals 
may provide some indication of the magnitude thought acceptable, but typically these 
are lacking in detail about the data collection, and there is no evidence that these values 
are “adequate” other than that the test publisher thought they were sufficient to publish 
the assessment. Ellis (2013) commented, “The absence of such standards is a serious 
gap in existing behavioral research methods and leads one to ask why reliabilities 
are routinely computed if their acceptable values are unknown” (p. 16). Wainer and 
Thissen (1996) brought up the related issue of the practical impact of small differences 
in reliability coefficients. 

Kane (1996) advocated judging how adequate a precision level is for one’s intended 
use by considering the measurement error in relation to the “tolerance for error” in a 
specific situation: 

The level of error that is tolerable in a particular context is determined by the 
interpretations to be applied to the measurements and the uses to be made of 
the measurements. To the extent that errors do not interfere with intended inter-
pretations or uses, they are not a serious problem. (p. 356) 

This leads to reframing the question “How much reliability do I need?” to “How much 
error (uncertainty) can I tolerate in the decisions I need to make with these data?” Prac-
titioners may not be concerned with relatively large CSEMs occurring far away from a 
cut score. However, when using an assessment as a component in a decision, such as 
a test score, a grade point average, or soft skill measures in determining college admis-
sions, it may be much more difficult to articulate the amount of “tolerance for error” in 
a component. 

Different factors impact different precision calculations differently, again depend-
ing on what the specific calculations account for. For example, differences in test 
specifications across test forms have no impact on computing a reliability coefficient 
based on only one administration of a single form, but would have an impact on a coef-
ficient involving parallel forms or on analyses involving different forms over time. Alter-
nate forms reliabilities will tend to increase as the forms are more similar. 

Internal consistency measures increase as the items within an assessment have higher 
discrimination values. To rank order test takers according to some characteristic or 
trait, items that all test takers or no test takers answer correctly provide no informa-
tion. Jodoin et al. (2006) reported that higher coefficient values for MST tests would be 
obtained if there was more separation between the easy, medium, and difficult modules. 
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The more objectively an assessment or item is scored, the more likely the reported 
scores are to be consistent and the less the scoring process is likely to contribute to 
error variance. The way an assessment is scored can affect reliability; Pugh and Brunza 
(1975) stated that the reliability of a test increased from .57 to .85 when comparing 
traditional number-correct scoring to a confidence scoring method. In addition, when 
multiple components are used to form a composite score, giving more weight to the 
more reliable components tends to increase reliability of the composite. Kane and 
Case (2004), for example, addressed how to weight two components of a composite 
score to maximize correlation with desired true score (defined as a specified weighted 
composite of component true scores) when the observed component scores have 
different reliabilities. 

Another factor that can impact reliability coefficients is the metric used, as shown 
in tables associated with the two examples reported by W. Lee et al. (2025). There are 
multiple ways in which scale scores, theta scores, and cut scores could be set, which 
would also potentially influence precision calculations. 

One factor that seems to be generally accepted is that longer assessments have more 
precision than shorter assessments because they provide a larger sample of tasks or 
items. However, there are caveats to keep in mind. One is that increases in precision 
due to increasing assessment length is likely most effective when the initial test is short. 
Adding 30 items to a 10-item test typically will increase reliability more than adding 
30 items to a 200-item test, other things being equal. “Other things being equal” is an 
important caveat. Adding poor items (where “poor” may indicate inferior statistically, 
or in terms of alignment to a test blueprint, or items of such novel format that test takers 
are confused, or items that make the test so long fatigue and lack of motivation become 
issues) are more likely to lower precision than increase it. As Thorndike (1951) stated, 
“It has been shown that the reliability of many tests could actually be increased by omit-
ting a number of items on the test” (p. 602). 

In addition to increasing the number of items, the length of a multiple-choice assess-
ment may also be considered in terms of increasing the number of options per item, again 
assuming the additional options are viable and of equivalent quality. The relationship 
of item sets to reliability may be somewhat more complex because of local dependence. 
Adding additional items per item set, where all items refer to the same set of stimulus 
material, is unlikely to have the same impact on reliability as adding additional item sets. 
According to Livingston (2018), “A test taker who has difficulties with that particular 
stimulus will have trouble with all the questions about it. To improve alternate-forms 
reliability, we need to increase the number of item sets” (p. 16). 

Wainer and Thissen (1996) provided an example for which a test of shorter passage 
sets needed 43% additional items and a test of longer passages need 65% more items 
for each to obtain the reliability of a test of 40 stand-alone items. Lawrence (1995) also 
looked at the issues of local item dependence and the effect on reliability, finding that 
item sets effectively reduced test length: “The effect of item sets is revealed by a system-
atic discrepancy between the internal consistency estimates, which treats items based 
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on the same passage as independent, and the parallel-form estimates” (p. 13). Passage 
sets may be an excellent way to assess certain content, but the introduction of item 
dependence affects some precision coefficients through a violation of assumptions. 

When scores involve raters, adding additional independent raters tends to increase 
precision, again assuming the additional raters are of similar quality as the original 
raters. The question of whether adding additional prompts/items or additional rat-
ers would be most likely to improve reliability in a particular setting requires the total 
design to be considered. GT studies allow one to estimate the influence different factors 
would have on certain types of reliability coefficients, such as whether adding addi-
tional items or prompts, raters, clusters of students per school or more schools, and so 
on would provide a better return on investment in a particular context (see Sun et al., 
1997). The design implemented for data collection impacts precision, especially from 
the standpoint of the intended universe of generalization. Whether a particular set of 
raters or prompts is considered fixed or random may have a substantial impact on the 
coefficient values. However, the goal is not to choose a design, such as assuming that 
raters are fixed, to raise a coefficient value, but to have the design reflect the context one 
is interested in. 

Different data models, as well as different precision estimates, have different assump-
tions and incorporate different sources of variability into their definition of error. 
Therefore, selecting a coefficient because it is larger is not recommend. Coefficients 
should be selected to fit one’s desired use and to align with the data collection design 
one implements. 

Inappropriate administration conditions for an assessment can lower precision 
estimates by adding in additional error. These factors can range from inappropriate time 
limits, use of unfamiliar item formats or technology, inadequate motivation on the part of 
test takers to score their best, inadequate test directions, sloppy scoring, and a myriad of 
other conditions. Adequate instructions and practice exercises to ensure test takers under-
stand what they are being asked to do tends to increase precision (see Thorndike, 1951). 

For some consistency measures, the test-taker sample on which they are computed 
is a factor with large influence on the calculated value of the coefficient, such as the 
distribution of masters/nonmasters for a classification consistency measure or the over-
all distribution of test takers, such as how bunched or spread out the test takers are in 
terms of the underlying trait one is trying to estimate. The issue of restriction of range, 
when the possible value range is truncated through self-selection (for example, when 
only previously failing candidates are administered a retest or only high-proficiency 
candidates self-select to take an assessment) has been studied by various researchers. 
Sackett et al. (2002) examined the effect of different scenarios of range restriction on 
reliability coefficients, finding that the different scenarios resulted in different underes-
timates of criterion reliability. Fife et al. (2012) also looked at various selection ratios 
in relation to several reliability coefficients, including KR20 and test–retest, corrected 
and uncorrected, under varying selection ratios. These estimators were examined in 
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terms of bias and precision, with test–retest reliability usually being the best estimator 
of reliability across conditions. 

Improving precision has multiple perspectives. Deliberately testing a sample with an 
extreme range of ability may result in a larger calculated value of a coefficient for, say, 
technical documentation, but doing so influences only that particular administration, 
whereas adding additional items to the test will likely improve precision for every future 
administration. Similarly, narrowing the desired universe of generalization, from a GT 
perspective, by considering, for example, raters fixed may raise a value, but is inappro-
priate if those raters will not be scoring future responses. Knowing what factors may 
influence a particular reliability coefficient facilitates comparing values across assess-
ments by considering the context under which each coefficient was calculated. 

Effective Ways to Communicate Reliability Information 
Once reliability information has been estimated, these values need to be communicated 
to those wanting to make decisions based on the scores. The statement “The reliability of 
Assessment A is .80” is virtually meaningless in terms of helping a user know how much 
confidence to place in the scores of interest. Without additional information, one cannot 
even be sure that a value of “.80” is better than a value of “.70” but not as good as a value of 
“.90,” because one does not know whether the three values are for the same type of coef-
ficient (or what sources of error were incorporated), or what sample of test takers was 
used in each instance, or other details, such as administration conditions, scoring, and so 
on. When presenting precision information, the relevant context must also be presented, 
so in addition to information about the actual coefficients computed, information on 
the assessment, the administration, the test-taker sample, the scoring, the reported score 
metric, and other pertinent details should be included. An internal consistency coeffi-
cient of a released practice form given under lax conditions with no stakes to students 
reported on number-correct scores and an alternate-forms coefficient under high-stakes 
standardized conditions to a self-selected sample reported on a scale score metric might 
be interpreted quite differently by someone planning to incorporate the assessment into 
a composite for decision-making, even if the coefficient values were similar. 

Given there is sufficient detail to understand the context of the design and the coef-
ficient calculations used, “uncertainty” needs to be communicated in a manner that 
facilitates understanding. A statement such as “A coefficient value of .75 suggests that 
75% of the variance in scores is due to actual differences in ability while the remaining 
25% is attributable to measurement error” is unlikely to be helpful to a lay audience. 
S. Johnson and Johnson (2009, p. 51) stated, 

If the public is to be educated about technical issues in assessment, and if reliabil-
ity information is to be routinely published alongside examination results, then we 
need to decide which form of reliability measure would be the most appropriate 
one to use. There are basically two choices: a variance ratio (reliability coefficient), 
and a standard error of measurement. 
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According to C. Wang (2014, p. 454), “reliability has the advantage of being a compact 
measure of precision that has a fixed metric (bounded between 0 and 1) that is widely 
understood.” Cronbach (2004) asserted that the SEM should take precedence as the 
most important piece of information to report, rather than a reliability coefficient. 
Patterson (1955), in an article dedicated to interpreting SEMs, discussed problems 
in making statements about SEM concerning true scores using the standard error of 
observed scores. 

Walsh et al. (2014) illustrated reporting information graphically rather than as a 
single number. Raudenbush and Jean (2012) advocated the use of confidence intervals 
for value-added scores for teachers; they also discussed issues around interpretation, 
such as shorter intervals (e.g., 75% versus 95% confidence intervals) and the different 
interpretations one might make (such as “Where do I as a teacher stand among all 
teachers?” versus an administrator wanting to identify a lower group of teachers for 
training or a higher group for recognition). 

Regardless of one’s view on what measure of precision to report, illustrations and 
examples can help practitioners understand abstract concepts around uncertainty. For 
example, statements suggesting how many masters/nonmasters are likely to be misclas-
sified, or how a test taker is likely to score if given the assessment a second time, or illus-
trating through simulation the distribution of obtained scores a test taker (simulee) of a 
given true proficiency achieves on two different CAT designs may be more impactful than 
simply reporting a coefficient value. Providing a comparison can also be useful to aid in 
interpretation, as Wood (2020) illustrated: 

When possible, documentation should include agreement statistics for two inde-
pendent human raters and for a human rater with automated scoring. The public 
may be surprised if a scoring engine agrees with a human 65% of the time but 
may not be so surprised if two independent humans agree only 67% of the time 
on the same prompt. (p. 144) 

FUTURE DIRECTIONS 

In the years since the fourth edition of Educational Measurement was released, there 
has been progress in addressing reliability issues with more complex data models, with 
incorporating additional sources of error in coefficients, and with the development of 
new methodologies and coefficients. There has also been increased emphasis on the use 
of CSEMs over reliability coefficients, which this chapter hopefully reinforces. 

As computing power and the integration of computer science and data analytics into 
measurement approaches continue to advance, more complicated simulation methods 
are available to examine reliability across more complex assessment models. As our mod-
els and assessments become more complex, so do our methods of estimating reliability. 
From fixed forms to adaptive tests to game-based assessment experiences, the concept 
of replication becomes more challenging. It may be relatively easy to imagine a test taker 
taking the same fixed form (or a randomly parallel or tau-equivalent form) a second time. 
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However, when it comes to adaptive testing and game-based assessment, with various 
possible paths involving the same or different pools, the scenario becomes more complex. 

Simulations have become more necessary to estimate reliability, such as running the 
same simulees through alternate CAT pools multiple times. These simulations rest in 
part on having realistic models to generate test-taker responses, and we are not there 
yet. Too many simulations are conducted with models with too small of a random (or 
even some systematic) error component. We need new models of data generation along 
the lines of those used by Kolen and Harris (1987) and Davey et al. (1997) to more 
accurately reflect actual test-taker behavior if we are going to rely on the generated data 
for reliability information. 

The previous editions of Educational Measurement have primarily focused on the 
reliability of summed scores from a single point in time (Haertel, 2006). This chapter 
extends its focus to include additional metrics such as IRT proficiency estimates and scale 
scores, recognizing the importance of reliability information aligned with the specific 
metric used for decision-making. In the future, additional metrics will likely become 
more prevalent in operational use, requiring further advancements in reliability estima-
tion. Although the adopted definition of reliability in this chapter is replication based, the 
focus remains on discrete points in time rather than the continuous testing model men-
tioned by Haertel (2006). These types of assessment models, familiar to some as ongoing 
formative assessments, still require additional development in terms of reliability infor-
mation across all previously collected data, the definition of what a replication consists of 
in a model continually adding additional assessment information, as well as what we are 
attempting to make inferences about (and when) in an ongoing data stream. 

Additional considerations warrant attention, including the exploration of whether 
automated item generation and item cloning can accurately predict item parameters 
or characteristics to a sufficient extent for computing CSEMs prior to administering 
an assessment. Moreover, evaluating reliability around test takers using plausible val-
ues, imputed item scores, automated scoring, and scoring that incorporates additional 
information from item latencies or item clicks is essential. It is particularly important to 
define the relevant error components and determine the composition of a replication 
in these scenarios. 

Additional ways to communicate what different levels of reliability and CSEM trans-
late to in practice are needed. For example, under classification consistency/accuracy, 
informing users of the likely percentage of test takers being misclassified either at a cut 
score or overall helps a user interpret what a difference in classification consistency/ 
accuracy might mean in practice. Similar ways of translating or illustrating the impact 
of different levels of reliability for a particular inference would be beneficial. Because 
settings differ widely in the type of decisions one is making, for example, whether to 
have a student do additional work with finding common denominators prior to moving 
on to subtraction involving mixed fractions versus licensing an applicant to practice in 
medicine or law, having one-size-fits-all requirements on the level of reliability needed 
is inappropriate. However, providing guidelines on presenting reliability information to 
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enhance users’ understanding of what a particular level of reliability means in a specific 
context would be helpful. In addition, more guidance on which types of coefficients on 
which metrics ought to be reported in different contexts would seem appropriate. 

Cronbach stated in 2004, 

I am convinced that the standard error of measurement . . . is the most important 
single piece of information to report regarding an instrument, and not a coeffi-
cient. The standard error, which is a report on the uncertainty associated with each 
score, is easily understood not only by professional test interpreters but also by 
educators and other persons unschooled in statistical theory, and also to lay per-
sons to whom scores are reported. (p. 413) 

Cronbach’s plea warrants serious attention. 
Since the fourth edition of Educational Measurement, there has been relatively little 

literature published on the integration of IRT, GT, and CTT, despite Haertel (2006) 
and others encouraging it. Hopefully, this chapter is a meaningful response to that goal, 
though there is still plenty of room for additional progress. Also, while there has been 
some progress on integrating the concepts of reliability and validity, to echo Haertel 
(2006), much remains to be done. 
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NOTES 
1. Coefficient alpha can also be derived under the assumption of randomly parallel 

forms. It can be shown that alpha is equal to the generalizability coefficient of a 
p I  design in GT. ´ 

2. Refer to Brennan and Lee (2006) for some other perspectives on KR21, especially 
its relation to absolute error variance. 

3. General procedures are available for the UAO consisting of a mixture of infinite 
and finite universes—that is, a mixed effects model. However, a univariate mixed 
model is often viewed as a special case of a multivariate model, in which there is a 
random effects model within each condition of a fixed facet. 
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