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Generalizability theory consists of a conceptual framework and a 

methodology that enable an investigator to disentangle multiple sources 
of error in a measurement procedure. The roots of generalizability 

theory can be found in classical test theory and analysis of variance 
(ANOVA), but generalizability theory is not simply the conjunction of 
classical theory and ANOVA. In particular, the conceptual framework 

in generalizability theory is unique. This framework and the procedures 
of generalizability theory are introduced and illustrated in this 
instructional module using a hypothetical scenario involving writing 
proficiency. 

Historically, in psychology and education, measurement 
issues have been addressed principally using classical test 
theory, which postulates that an observed score can be 
decomposed into a "tr,ue" score and a single, undifferentiated 
random error term, E. Generalizability theory liberalizes 
classical theory by providing models and methods that allow an 
investigator to disentangle multiple sources of error that 
contribute to E. This is accomplished in part through the 
application of certain ANOVA methods. 

In a sense, then, classical test theory and ANOV A can be 
viewed as the parents of generalizability theory. However, this 
analogy limps somewhat, because the ANOVA issues empha­
sized in generalizability theory are different from those that 
predominate in experimental design and ANOV A texts. More 
importantly, however, generalizability theory has a unique 
conceptual framework. Among the concepts in this framework 
are universes of admissible observations and G (Generalizabili­
ty) studies, as well as universes of generalization and D 
(Decision) studies. These concepts and the methods of 
generalizability theory are introduced here using a hypotheti­
cal scenario involving the measurement of writing proficiency. 
As illustrated by this scenario, generalizability analyses are 
useful not only for understanding the relative importance of 
various sources of error but also for designing efficient 
measurement procedures. 

Universe of Admissible Observations and G Study 
Considerations 

Suppose an investigator, Mary Smith, decides that she wants to 
construct one or more measurement procedures for evaluating 
writing proficiency. She might proceed as follows. First she 
might identify, or otherwise characterize, essay prompts that 
she would consider using, as well as potential raters of writing 
proficiency. At this point, Smith is not committing herself to 
actually using, in a particular measurement procedure, any 
specific items or raters-or, for that matter, any specific 
number of items or raters. She is merely characterizing the 
facets of measurement that might interest her or other investi­
gators. A facet is simply a set of similar conditions of measure­
ment. Specifically, Smith is saying that anyone of the essay 
prompts constitutes an admissible (i.e., acceptable to her) 
condition of measurement for her essay-prompt facet. Simi­
larly, anyone of the raters constitutes an admissible condition 
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of measurement for her rater facet. We say that Smith's 
universe of admissible observations contains an essay-prompt 
facet and a rater facet. 

Furthermore, suppose Smith would accept as meaningful to 
her a pairing of any rater (r) with any prompt (t). If so, Smith's 
universe of admissible observations would be described as 
being crossed, and it would be denoted t x r, where the" x" is 
read "crossed with." Specifically, if there were Nt prompts and 
N r raters in Smith's universe, then it would be described as 
crossed if anyone of the NtNr combinations of conditions from 
the two facets would be admissible for Smith. Here, it will be 
assumed that Nt and Nr are both very'llirge-approaching 
infinity, at least theoretically. 

Note that it is the particular investigator, Smith, who 
decides which prompts and which raters constitute the uni­
verse of conditions for the prompt and rater facets, respec­
tively. Generalizability theory does not presume that there is 
some particular definition of prompt and rater facets that all 
investigators would accept. For example, Smith might charac­
terize the potential raters as college instructors with a PhD in 
English, whereas another investigator might be concerned 
about, a rater facet consisting of high school teachers of 
English. If so, Smith's universe of admissible observations may 
be of little interest to the other investigator. This does not 
invalidate Smith's universe, but it does suggest that other 
investigators need to pay careful attention to Smith's state­
ments about facets if they are to judge the relevance of Smith's 
universe of admissible observations to their own concerns. 

In the above scenario, no explicit reference has been made to 
persons who respond to the essay prompts in the universe of 
admissible observations. However, Smith's ability to specify a 
meaningful universe of prompts and raters is surely, in some 
sense, dependent upon her ideas about a population of examin­
ees for whom the prompts and raters would be appropriate. 
Without some such notion, any characterization of prompts 
and raters as "admissible" seems vague at best. Even so, in 
generalizability theory the word universe is reserved for condi­
tions of measurement (prompts and raters, in the scenario), 
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whereas the word population is used for the objects of measure­
ment (persons, in this scenario). 

Presumably, Smith would accept as admissible the response 
of any person in the population to any prompt in the universe 
evaluated by any rater in the ulliverse. If 0, the population and 
universe of admissible observations are crossed, which is 
representedp x (t x r), or simply p x t x r. For this situation, 
any observable score for a single essay prompt evaluated by a 
single rater can be represented as: 

Xptr = J.I. + vp + VI + VI' + vpl + vpr + VII' + Vptn (1) 

where J.I. is the grand mean in the population and universe and v 

designates anyone of the seven uncorrelated effects, or 
components, for this design. (Actually, the effect ptr is a 
residual effect involving the triple interaction and all other 
sources of error not explicitly represented in the universe of 
admissible observations.) 

This population and universe can also be represented in 
terms of the Venn diagram in Figure 1. In this diagram, the 
three circles represent persons, essay prompts, and raters; 
circle-overlap areas represent interactions; and the seven 
distinct areas correspond to the seven effects. 

The variance of the scores given by Equation 1, over the 
population of persons and the conditions in the universe of 
admissible observations is: 

u
2(Xptr ) = u

2(p) + u
2(t) + u

2(r) 

+ u
2(pt) + u

2(pr) + u
2(tr) + u

2(ptr). (2) 

That is, the total observed score variance can be decomposed 
into seven indepenll.ent variance components. It is assumed 
here that the population and both facets in the universe of 
admissible observations are infinite. Under these assumptions, 
the variance components in Equation 2 are called random 
effects variance components. It is important to note that they 
are for single person-prompt-rater combinations, as opposed to 
average scores over prompts and/or raters. Average scores are 
considered in D studies. 

Now that Smith has specified her population and universe of 
admissible observations, she needs to collect and analyze data 
to estimate the variance components in Equation 2. To do so, 
Smith conducts a study in which, let us suppose, she has a 
sample of nr raters use a particular scoring procedure to 
evaluate each of the responses by a sample of np persons to a 
sample of nt essay prompts. Such a study is called a G 

FIGURE 1. Venn diagram for p X t X r design 
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(Generalizability) study. The design of this particular study 
(i.e., the G study design) is denoted p x t x r. We say this is a 
two-facet design because the objects of measurement (persons) 
are not usually called a "facet." Given this design, the usual 
procedure for estimating the variance components in Equation 
2 employs the expected mean square (EMS) equations in Table 
1. The resulting estimators of these variance components, in 
terms of mean squares, are also provided in Table 1. These 
estimators are for a random effects model. 

Suppose the following estimated variance components are 
obtained from Smith's G study: 

&2(p) = .25, &2(t) = .06, &2(r) = .02, 

&2(pt) = .15, &2(pr) = .04, &2(tr) = .00, 

and &2(ptr) = .12. (3) 

These are estimates of the actual variances (parameters) in 
Equation 2. For example, &2(p) is an estimate of the variance 
component (J2(p), which can be interpreted roughly in the 
following manner. Suppose that, for each person in the 
population, Smith could obtain each person's mean score 
(technically, "expected" score) over all Nt essay prompts and all 
Nr raters in the universe of admissible observations. The 
variance of these mean scores (over the population of persons) 
is (J2(p). The other "main effect" variance components for the 
prompt and rater facets can be interpreted in a similar manner. 
Note that for Smith's universe of admi!3sible observations the 
estimated variance attributable to essay prompts, &2(t) = .06, is 
three times as large as 'the estimated variance attributable to 
raters, &2(r) = .02. This suggests that prompts differ much 
more in average difficulty than raters differ in average 
stringency. 

Interaction variance components are more difficult to 
interpret verbally, but approximate statements can be made. 
For example, &2(pt) estimates the extent to which the relative 
ordering of persons differs by essay prompt, and &2(pr) 

estimates the extent to which persons are rank ordered 
differently by different raters. For the illustration considered 
here, it is especially important to note that &2(pt) = .15 is 
almost four times as large as &2(pr) = .04. This fact, combined 
with the previous observation that &2(t) is three times as large 
as &2(r), suggests that prompts are a considerably greater 
source of variability in persons' scores than are raters. The 
implication and importance of these facts will become evident 
in subsequent sections. 

D Study Considerations for the p x T x R Design and 
an Infinite Universe of Generalization 

The purpose of a G study is to obtain estimates of variance 
components associated with a universe of admissible observa­
tions. These estimates can be used to design efficient measure­
ment procedures for operational use and to provide informa­
tion for making substantive decisions about objects of 
measurement (usually persons) in various D (Decision) studies. 
Broadly speaking, D studies emphasize the estimation, use, 
and interpretation of variance components for decision-making 
with well-specified measurement procedures. 

Perhaps t,he mo t important D study consideration is the 
specification of a universe of generalization, which is the 
univer e to which a decision-maker wants to generalize based 
on the results of a D study with a particular measurement 
procedure. To understand the concept of a universe of general­
ization, it is helpful to consider certain D study design issues, 
first. 

D Study p x T x R Design 

Let us suppose that Smith decides to design her measurement 
procedure such that each person will respond to n t essay 
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Table 1 

Bxpected Mean Squares and Bstimators of Variance Components for the G Study 

p x t x r Design 

Effect (a) EMS(a) (F(a) 

P 
t 
r 
pt 

pr 

tr 

ptr 

u 2(ptr) + n 1u
2(pr) + n ru

2(pt) + nln ru
2(p) 

u 2(ptr) + npu 2 (tr) + n ru
2(pt) + npn ru

2(t) 

u 2(ptr) + npu 2(tr) + n tu
2(pr) + npn 1u

2(r) 

u 2(ptr) + n ru
2(pt) 

u 2(ptr) + n tu
2

( prj 

u 2(ptr) + npu 2(tr) 

u 2(ptr) 

Note. ex represents anyone of the effects. 

prompts, with each response to every prompt evaluated by the 
same n~ raters. Furthermore, assume that decisions about a 
person will be based on his or her mean score over the nin;. 
observations associated with the person. This is a verbal 
description of the p x T x R design for a D study. It appears to 
be much like the p x t x r design for Smith's G study, but there 
are two important differences. 

First, the sample sizes for the D study (n; and n;.) need not be 
the same as the sample sizes for the G study (nt and n r ). This 
distinction is highlighted by the use of primes with D study 
sample sizes. Second, for the D study, interest focuses on mean 
scores for persons, rather than single person-prompt-rater 
observations that are the focus of G study estimated variance 
components. This emphasis on mean scores is highlighted by 
the use of upper-case letters for the facets in Smith's D study 
p x T x R design. 

Relating Smith's D Study and an Infinite Universe of 
Generalization 

The universe of generalization can be conceptualized as a 
universe of measurement procedures each employing the spec­
ified D study sample sizes and design structure. In generalizabil­
ity theory these measurement procedures are described as 
"randomly parallel," and it is assumed that any particular 
measurement procedure consists of a random sample of condi­
tions for at least one facet (e.g., essay prompts, raters, or both). 
Randomly parallel measurements need not have equal means, 
which is an assumption for classically parallel measurements. 

Here, let us suppose that Smith decides that, in theory, any 
one of the randomly parallel instances of her measurement 
procedure would involve a different sample of n; essay prompts 
and a different sample of n~ raters from her universe of 
admissible observations. As such, replications of her measure­
ment procedure would span a universe that theoretically 
includes all the prompts and raters in her universe of admissi­
ble observations. Under these circumstances, we would de­
scribe Smith's universe of generalization as being infinite. 
More specifically, for Smith's universe of generalization, the 
rater and item facets are both infinite. In analysis of variance 
terminology, this model is described as random. (For this 
reason, it is sometimes stated that prompt and rater facets are 
random.) In short, under this scenario, Smith wants to general­
ize persons' scores based on the specific prompts and raters in 
her measurement procedures to their scores for a universe of 
generalization that involves many other prompts and raters. 

Universe Scores 

In principal, for any person, Smith can conceive of obtaining 
the person's mean score for every instance of the measurement 
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[MS(p) - MS(pt) - MS(pr) + MS (ptr)]/ntn r 

[MS(t) - MS(pt) - MS (tr) + MS(ptr)]/npn r 

[MS(r) - MS(pr) - MS(tr) + MS(ptr)]/npn 1 

[MS(pt) - MS(ptr)]/n r 

[MS(pr) - MS(ptr)]/n t 
[MS(tr) - MS(ptr)]/np 
MS(ptr) 

procedure in her universe of generalization. For any such 
person, the expected value of these mean scores is defined as 
the person's universe score. 

The variance of universe scores over all persons in the 
population is called universe score variance. It has conceptual 
similarities with true score variance in classical test theory. 

D Study Random Effects Variance Compo~e~ts 
For Smith's D study p x l' x R design the linear model for an 
observable mean score over n; essay prompts and n ~ raters can 
be represented as: 

XpTR = /.1 + vp + VT + VR + vpT 

+ vpR + VTR + vpTR' (4) 

The variances of the score effects in Equation 4 are called D 
study variance components. When it is assumed that the 
population and all facets in the universe of generalization are 
infinite, these variances components are random effects 

variance components. They can be estimated using the G study 
estimated variance components in Equation Set 3. 

For example, suppose Smith wants to consider using the 
sample sizes n; = 3 and n~ = 2 for her measurement procedure. 
If so, the estimated D study random effects variance compo­
nents are 

&2(p) = .25, 

&2(pT) = .05, 

&2(T) = .02, &2(R) = .01, 

&2(pR) = .02, UZ(TR) = .00, (5) 

and &2(pTR) = .02. 

These estimated variance components are for person mean 
scores over n; = 3 essay prompts and n~ = 2 raters. 

Rule. Obtaining these results is simple. Let &2(0:) be anyone 
of the G study estimated variance components. To get the 
estimated D study variance components, one simply divides 
&2(a) by n; if a contains t but not r, by n ~ if 0: contains r but not t, 
and by n;n~ if 0: contains both t and r. 

The estimated variance component &2(p) = .25 is particu­
larly important because it is the estimated universe score 
variance in this scenario. In terms of parameters, when 
prompts and raters are both random, universe score is defined 
as 

(6) 

where E stands for expected value. The variance of universe 
scores (i.e., universe score variance) is denoted generically 
a2( T), and it is simply a2(p), here. 
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Error Variances 

Given Smith's infinite universe of generalization, variance 
components other than (J2(p) contribute to one or more differ­
ent types of error variance. Considered below are "absolute" 
and "relative" error variances. 

Absolute error variance, a'2( flJ. Absolute error is simply the 
difference between a person's observed and ~niverse scores: 

/1p = X pTR - fLp ' (7) 

For this scenario, given Equations 4 and 6, 

/1p = VT + VR + vpT + vpR + VTR + vpTR' (8) 

Consequently, the variance of the absolute errors, (J2(t1), is the 
sum of all the variance components except (J2(p) . This result is 
also provided in Table 2 under the column headed "T, R 
random." 

Given the estimated D study variance components in 
Equation Set 5, the estimate of (J2(t1) for three prompts and two 
raters is: 

&2(t1) = .02 + .01 + .05 + .02 + .00 + .02 = .12, 

and its square root is &(L~) = .35, which is interpretable as an 
estimate of the "absolute" standard error of measurement. 
Consequently, with the usual caveats, XpTR ± .35 constitutes a 
68% confidence interval for persons' universe scores. 

Suppose Smith judged &(t1) = .35 to be unacceptably large 
for her purposes, or suppose she decided that time constraints 
preclude using three prompts. For either of these reasons, or 
other reasons, she may want to estimate &(t1) for a number of 
different values of'n; and/or n~. Doing so is simple. Smith 
merely uses the rule following Equation Set 5 to estimate the D 
study variance components for any pair of D study sample sizes 
of interest to her. Then, as indicated in Table 2, she sums all 
the estimated variance components except &2(p), and takes the 
square root. 

Figure 2 illustrates results for both n; and n~ ranging from 
one to four. It is evident from Figure 2 that increasing n; 
and/or n~ leads to a decrease in &(t1). This result is sensible, 
because averaging over more conditions of measurement 
should reduce error. Figure 2 also suggests that using more 
than three raters leads to only a very slight reduction in &(t1). 

Consequently, probably it would be unnecessary to use more 
than three raters (and perhaps only two) for an actual 
measurement pt'ocedure. In addition, Figure 2 indicates that 
using additional prompts decreases &(t1) quicker than using 
additional raters. This is a direct result of the fact that &2(t) = 
.06 is bigger than &2(r) = .02, and &2(pt) = .15 is bigger than 
&2(pr) = .04. Consequently, for this example, all other things 
being equal, it would seem desirable to use as many prompts as 
possible. 

Relative error variance, a'2(8). Relative error is defined as the 
difference between a person's observed deviation score and his 
or her universe deviation score: 

(9) 

where fLTR is the expected score over persons of the observed 
scores, XpTR' For the p x T x R design and an infinite universe 
of generalization, it can be shown that 

op = vpT + vpR + vpTR' (10) 

and the variance of these relative errors is the sum of the 
variance components for the t,hree effects in Equation 10. This 
result is also given in Table 2, under the column headed "T, R 
random." Relative error variance is similar to errOl" variance in 
classical theory. 

For the example introduced previously, if n; = 3 and n~ = 2, 
then 

&2(0) = .05 + .02 + .02 = .09, 
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Table 2 

Estimated Random Effects Variance 

Components That Enter &2(r), &2(0), and 

&2( D.) for the p x T x R Design 

T, R random Tfixed 

&(p) T T 

&2(T) /1 
&2(Rl /1 /1 
&2(p T) /1, 1:l T 

&2(pR) /1, 1:l /1, 0 
&2(TRl /1 /1 
&2(pTRl /1, 1:l /1, 1) 

Note: T is universe score . 

and its square root is &(0) = .30, which is interpretable as an 
estimate of the "relative" standard error of measurement. 
Note that this value of &(0) is smaller than &(t1) = .35 for the 
same pair of sample sizes. In general, &(0) is less than &(t1) 

because, as indicated in Table 2, &2(0) involves fewer variance 
components than &2(t1). In short, relative interpretations about 
persons' scores are less error prone th!m absolute interpreta­
tions. 

Coefficients 

Two types of reliability-like co fficients are available in genel'al­
izability theory. One coefficient i called a "generalizability 
coefficient" and denoted here as p2. The other coefficient is an 
"index of dependability" that is denoted <I>. 

Generalizability coefficient, ,;. A generalizability coefficient 
is defined as 

2 (J2(T) 
P = 

cr2(T) + cr2(0) . 
(11) 

It is the analogue of a reliability coefficient in classical theory. 
For the example considered here, with n; = 3 and n~ = 2, 

p2 = .25/[.25 + .09] = .74. 
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FIGURE 2. 6(t1) for the p x T x R design and an infinite 
universe of generalization, with the number of prompts 
and the number of raters ranging from one to four 
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Figure 3 provides a graph of p2 for values of n~ and n;. ranging 
from one to four. As observed in the discussion of Figure 2, 
little is gained by having more than three raters, and using a 
relatively large number of prompts seems highly desirable. 

Index of dependability, rfJ. An index of dependability is 
defined as: 

a 2
(,.) 

cp=-----
~(,.) + a 2(Ll) . 

(12) 

cP differs from p2 in that <I> involves (f2(Ll), whereas p2 involves 
(f2(6). Consequently, <I> is generally less than p2. The index <I> is 
appropriate when scores are given "absolute" interpretations, 
as in domain-referenced or criterion-referenced situations. For 
the example considered here, with n; = 3 and n~ = 2, 

ci> = .25/[.25 + .12] = .68. 

D Study Considerations for Different Designs and/or 
Universes of Generalization 

The previous section assumed that the D study employed ap x 
T x R design and the universe of generalization was infinite, 
consisting of two random facets, T and R. Recall that the G 
study also employed a fully crossed design (p x t x r) for an 
infinite universe of admissible observations. In short, to this 
point, it has been assumed that both designs are fully crossed 
and the size or "extent" of both universes is essentially the 
same. This need not be the case, however. For example, the 
universe of generalization may be narrower than the universe 
of admissible observations. Also, the structure of the D study 
can be different froni that employed to estimate variance 
components in the G study. Generalizability theory does not 
merely permit such differences-it effectively encourages inves­
tigators to give serious consideration to the consequences of 
employing different D study designs and to assumptions about 
a universe of generalization. This is illustrated below using two 
examples. 

The p x T x R Design With a Fixed Facet 

Returning to the previously introduced scenario, suppose 
another investigator, Sam Jones, has access to Smith's G study 
estimated variance components in Equation Set 3. However, 
Jones is not interested in generalizing over essay prompts. 
Rather, if he were to replicate his measurement procedure, he 
would use different raters but the same prompts. If so, we 
would say that Jones' universe of generalization is "restricted" 
in that it contains a fixed facet, T. Consequently, Jones's 
universe of generalization is narrower than Smith's infinite 
universe of generalization. (In ANOVA terminology, the con­
text here is essentially that of a mixed model.) 

Suppose, also, that Jones decides to use the same D study 
design structure as Smith: namely, the p x T x R design. 
Under these circumstances, the last column of Table 2 indi­
cates which of the estimated random effects D study variance 
components need to be summed to obtain estimated universe 
score variance, &2(,.), as well as &2(Ll) and &2(6). 

For example, if nt = n; = 3 and n~ = 2, then the estimated 
random effects D study variance components are given by 
Equation Set 5, and using the last column in Table 2 

&2(,.) = &2(p) + &2(pT) 

= .25 + .05 = .30, 

&2(Ll) = &2(R) + &2(pR) + &2(TR) + &2(pTR) 

= .01 + .02 + .00 + .02 = .05, and 

&2(6) = &2(pR) + &2(pTR) 

= .02 + .02 = .04. 

It is particularly important to note that, with prompts fixed, 
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FIGURE 3. IF for the p x T x R design and an infinite 
universe of generalization, with the number of prompts 
and the number or raters ranging from one to four 

(f2(PT) contributes to universe score variance, not either error 
variance. Consequently, for a restricted universe of generaliza­
tion with T fixed, universe score variance is larger than it is for 
an infinite universe of generalization in wh~ch both T and Rare 
random. 

Given these results, it fallows from Equation 11 that 

p2 = .30/[.30 + .04] = .88. 

Recall that, for these sample sizes (n; = 3 and n~ = 2), when 
prompts were considered random, Smith obtained p2 = .74. 
The estimated generalizability coefficient p2 is larger when 
prompts are considered fixed because a universe of generaliza­
tion with a fixed facet is narrower than a universe of 
generaJization with both facets random. That is, generaliza­
tions to narrow universes are less error prone than generaliza­
tions to broader universes. It is important to note, however, 
this does not necessarily mean that narrow universes are to be 
preferred, because restricting a universe also restricts the 
extent to which an investigator can generalize. For example, 
when prompts are considered fixed, an investigator cannot 
logically draw inferences about what would happen if different 
prompts were used. 

The D Study p x (R:T) Design 

To expand our scenario even further, consider a third investiga­
tor, Ann Hall, who decides that practical constraints preclude 
her from having all raters evaluate all responses of all persons 
to all prompts. Rather, she decides that, for each prompt, a 
different set of raters will evaluate persons' responses. This is a 
verbal description of the D study p x (R:T) design, where":" is 
read "nested within." Figure 4 provides a Venn diagram 
representation of this design. In this Venn diagram, the 
nesting of R within T is represented by the inclusion of one 
entire circle within another circle. 

As suggested by the five distinct areas in Figure 4, for the 
p x (R:T) design, the total variance is the sum of five 
independent variance components, i.e., 

a2(XpRT) = ~(p) + a2(T) + a2(R:T) 

+ a2(pT) + a2(pR:T). (13) 

For a random effects model, these variance components can 
be estimated using Smith's estimated G study variance 
components, even though Smith's G study design is fully 
crossed, whereas Hall's D study design is partially nested. The 
process of doing so involves two steps. 
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FIGURE 4. Venn diagram for p x (R:T) design 

First, the G study variance components for the p x (r:t) 

design are estimated using the results in Equation Set 3 for the 
p x t x r design. For both designs, &2(P) = .25, UZ(t) = .06, and 
&2(Pt) = .15, and it can be shown that estimates of the 
remaining two G study variance components for the p x (r:t) 

design are: 

&2(r:t) = &2(r) + &2(tr) and (14) 

&2(pr:t) = &2(pr) + &2(ptr). (15) 

Using Equations 14.and 15, 

&2(r:t) = .02 + .00 = .02 and 

&2(pr:t) = .04 + .12 = .16. 

Second, the rule following Equation Set 5 is applied to the 
estimated G study variance components for the p x (r:t) design. 
Assuming n~ = 3 and n~ = 2, the results are: 

&2(p) = .25, 

&2(R:T) = .003 

&2(T) = .02, &2(pT) = .05, 

and &2(pR:T) = .027. (16) 

The second column in Table 3 specifies how to combine the 
estimates in Equation Set 16 to obtain &2(1'), &2(il), and &2(0) for 
an infinite universe of generalization in which both T and Rare 
random. The third column applies when prompts l);re fixed. 
Once &2(1'), &2(1l), and &2(0) are obtained, p2 and <P can be 
obtained using Equations 11 and 12, respectively. 

Suppose, for example, that Hall decides to generalize to a 
universe in which both T and R are considered random. For 
this universe of generalization, given the results in Equation 
Set 16, and using Table 3, 

&2(1') = &2(p) = .25, 

&2(d) = &2(T) + &2(pT) + &2(R:T) + &2(pR:T) 

= .02 + .05 + .003 + .027 = .10, and 

&2(8) = &2(pT) + &2(pR:T) 

= .05 + .027 = .077. 

It follows that 

p2 = &2(1')/[&2(1') + &2(8)J 

= .25/[.25 + .077] = .76. 

Recall that for the p x T x R design with T and R random, 
Smith obtained p2 = .74, which is somewhat different from p2 = 
.76 for the same universe using the p x (R:T) design. The 
difference in these two results is not rounding error. Rather, it 
is attributable to the fact that &2(0) = .09 for the p x T x R 
design is larger than &2(0) = .077 for the p x (R:T) design. This 
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illustrates that reliability, or generalizability, is affected by 
design structure. Recall that it has been demonstrated 
previously that reliability, or generalizability, is also affected by 
sample sizes and the size or "extent" of a universe of 
generalization. These results illustrate an important fact: 
namely, it can be very misleading to refer to the reliability or 
the error variance of a measurement procedure without 
considerable explanation and qualification. 

Other Issues 

All other things being equal, the power of generalizability 
theory is most likely to be realized when a G study employs a 
fully crossed design and a large sample of conditions for each 
facet in the universe of admissible observations. A large sample 
of conditions is beneficial because it leads to more stable 
estimates of G study variance components. A crossed design is 
advantageous because it maximizes the number of design 
structures that can be considered for one or more subsequent D 
studies. 

It is important to note, however, that any design structure 
can be used in a G study. For example, the scenario discussed 
previously could have used a G study p x (r:t) design. However, 
under these circumstances an investigator could not estimate 
results for a D study p x T x R design. This limitation occurs 
because independent estimates of (J2(r) and (J2(tr) are needed 
for the D study, but they are completely confounded in the 
(J2(r:t) G study variance component, and independent estimates 
of (J2(pr) and (J2(ptr) are completely confounded in (J2(pr:t). 

It often happens th~t the distinction between a G and D 
study is blurred, usually because the only available data are for 
an operational administration of an actual measurement proce­
dure. In this case, the methods discussed can still be followed to 
estimate parameters such as error variances and generalizabil­
ity coefficients, but obviously under these circumstances an 
investigator cannot take advantage of all aspects of generaliz­
ability theory. 

In most applications of generalizability theory, examinees or 
persons are the objects of measurement. Occasionally, how­
ever, some other collection of conditions plays the role of 
objects of measurement. For example, in evaluation studies, 
classes are often the objects of measurement with persons and 
other facets being associated with the universe of generaliza­
tion. It is straightforward to apply generalizability theory in 
such cases. 

Summary 

Classical test theory and ANOVA can be viewed as the parents 
of generalizability theory in the sense that generalizability 
theory employs ANOVA procedures with models that are 

Table 3 

Estimated Random Effects Variance 

Components That Enter 6-2(r), 6-2(0), and 

6-2(~) for the p x (R:T) Design 

&2(p) 

&2(T) 

&2(R:T) 

&2(pT) 

&2(pR:T) 

Note. l' is universe score . 

T, R random Rfixed 

'T 

A,o 
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extensions of the model used in classical theory. However, 
generalizability theory is not simply a conjunction of classical 
theory and ANOV A. For example, classical theory has an 
undifferentiated error term, whereas the models and methods 
used in generalizability theory allow an investigator to system­
atically distinguish among multiple sources of error. Also, 
generalizability theory emphasizes the estimation of variance 
components, rather than F-tests, which predominate in most 
experimental design and ANOVA texts. Further, generalizabil­
ity theory has a conceptual framework that is not part of either 
classical theory or ANOV A. 

A generalizability analysis begins with the specification of a 
universe of admissible observations. A G study is employed to 
estimate variance components for this universe and a relevant 
population. These G study estimated variance components are 
used to estimate results (error variances, generalizability coef­
ficients, etc.) for one or more D studies associated with a 
pre specified universe of generalization. D studies may differ in 
terms of sample sizes and/ or design structure. Specifying a 
universe of generalization requires identifying which facets are 
random and which are fixed. 

Generalizability theory is a very broadly defined measure­
ment model, and different applications of generalizability 
theory tend to involve somewhat different mixes of conceptual 
and statistical concerns. Consequently, conducting a generaliz­
ability analysis is often a nontrivial exercise. The process of 
doing so, however, reveals the importance and consequences of 
various sources of measurement error, and aids an investigator 
in better understanding measurement itself. 

Self-Test 

1. Suppose an investigator obtains the following mean 
squares for a G study p x t x r design using np = 100 
persons, nl = 5 essay items, and nr = 6 raters: 

MS(p) = 6.20 MS(t) = 57.60, MS(r) = 28.26, 

MS(pt) = 1.60, MS(pr) = .26, MS(tr) = 8.16, 

and MS(ptr) = .16. 

a. Estimate the G study variance components assum­
ing both t and r are infinite in the universe of 
admissible observations. 

b. Estimate the D study random effects variance 
components for a D study p x T x R design with n; = 

4, n~ = 2, and persons as the objects of measure­
ment. 

c. For the D study design and sample sizes in 1b, above, 
estimate absolute error variance, relative error 
variance, a generalizability coefficient, and an index 
of dependability. 

d. Estimate u(Ll) if an investigator decides to use the D 
study p x (R:T) design with ni = 3 and n~ = 2, 
assuming T and R are both random in the universe 
of generalization. 

2. Suppose an investigator specifies that a universe of 
generalization consists of only two facets and both are 
fixed. From the perspective of generalizability theory, 
why is this nonsensical? 

3. Brennan (1992, p. 65) states that "the Spearman-Brown 
Formula does not apply when one generalizes over more 
than one facet." 
a. Illustrate this fact using the example in the 

instructional module for the p x T x R design with T 
and R random, i.e., p2 = .74 with three prompts and 
two raters. Assume the number of prompts is 
doubled, in which case the Spearman-Brown For­
mula is 2 * rell (l + rel), where "reI" is reliability. 

b. Explain why the two procedures give different 
results. 

Winter 1992 

Answers to Self-Test 

1. a. Using the formulas in Table 1 

&2(p) = [MS(p) - MS(pt) - MS(pr) 

+ MS(ptr)]/ntn,. 

= (6.20 - 1.60 - .26 + .16)/(5 X 6) 

= .15, 

&2(t) = .08, &2(r) = .04, &2(pt) = .24 

&2(pr) = .02, &2(tr) = .08, and &2(ptr) = .16 

b. Because persons are the objects of measurement, 
&2(P) = .15 is unchanged, and using the rule 
following Equation Set 5: 

&2(T) = .02, &2(R) = .02, &2(pT) = .06 

&2(pR) = .01, &2(TR) = .01, and &2(pTR) = .02. 

c. Absolute error variance: from the "T, R random" 
column of Table 2, 

&2(6.) = &2(T) + &Z(R) + &2(pT) + &2(pR) 

+ &2(TR) + &2(pTR) 

= .02 + .02 + .06 + .01 + .01 + .02 = .14 

Relative error variance: from the "T, R random" 
column of Table 2, 

&2(8) = &2(pT) + &2(pR) + &2(pTR) 

= .06 + .01 + .02 + .09 

Generalizability coefficient: from Equation 11, be­
cause &2(1) = &2(P) when T andR are both random, 

p2 = &2(p)/[&2(p) + &2(8)] 

= .15/(.15 +.09) = .63 

Index of dependability: from Equation 12, because 
&2(1) = &2(P) when T and R are both random, 

<p = &2(p)/[&2(p) + &2(6.)] 

= .15/(.15 + .14) = .52. 

d. First, we need to estimate G study variance 
components for the p x (r:t) design given the results 
in 1a for the p x t x r design. Under these 
circumstances, &2(P) = .15, &2(t) = .08, and &2(Pt) = 
.24 are unchanged. Using Equation 14, 

&2(r:t) = &2(r) + &2(tr) = .04 + .08 = .12, 

and using Equation 15, 

&Z(pr:t) = &Z(pr) + &2(ptr) = .02 + .16 = .18. 

Second, using the rule following Equation Set 5, 
for n; = 3 and n~ = 2, the estimated random effects D 
study variance components are 

&2(p) = .15, &2(T) = .027, &2(R:T) = .02, 

&2(pT) = .08 and &2(pR:T) = .03. 

Third, because T and R are random, we use the 
next to the last column in Table 2 to obtain 

&2(6.) = &Z(T) + &2(R:T) + &2(pT) + &2(pR:T) 

= .027 + .02 + .08 + .03 = .157. 

The square root is &(Ll) = .40. 
2. If there are only two facets and both facets are 

considered fixed, then every instance of a measurement 
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procedure would involve the same conditions. Under 
these circumstances, there is no generalization to a 
broader universe of conditions of measurement. Logi­
cally, therefore, all error variances are zero, by defini­
tion. No measurement procedure is that precise! To 
avoid this problem, at least one of the facets in a universe 
of generalization must be viewed as variable across 
instances of the measurement procedure. 

3. a. According to the Spearman-Brown Formula, reliabil­
ity for a measurement procedure with twice the 
number of prompts (i.e., with six prompts) is 
2(.74)/(1 + .74) = .85. According to generalizability 
theory, however, 

&2(0) = &2(pT) + &2(pR) + &2(pTR) 

&2(pt) &2(pr) &2(ptr) 
=--+--+---

n; n~ n;n~ 

= .15/6 + .04/2 + .12/12 

= .055, 

and it follows that 

1>2 = &2(p)/[&2(p) + &2(8)] 

= .25/[.25 + .055] 

= .82. 

b. The explanation for this difference is that the term 
O2(pR) = &2(pr)/n~ in 02(0) is unaffected by doubling 
the number of prompts, whereas the Spearman­
Brown 'procedure effectively divides a2(pr)/n~ by 
two. This is an illustration of the fact that the error 
term is undifferentiated in classical theory, whereas 
generalizability theory can take into account the 
relative contributions of different numbers of 
prompts and raters to error variance. 
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