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Generalizability theory consists of a conceptual framework and a
methodology that enable an investigator to disentangle multiple sources
of error in a measurement procedure. The roots of generalizability
theory can be found in classical test theory and analysis of variance
(ANOVA), but generalizabilily theory is not simply the conjunction of
classical theory and ANOVA. In particular, the conceptual framework
in generalizability theory is unique. This framework and the procedures
of generalizability theory are introduced and illustrated in this
instructional module using o hypothetical scenario involving writing
proficiency.

Historically, in psychology and education, measurement
issues have been addressed principally using classical test
theory, which postulates that an observed score can be
decomposed into a “true” score and a single, undifferentiated
random error term, E. Generalizability theory liberalizes
classical theory by providing models and methods that allow an
investigator to disentangle multiple sources of error that
contribute to E. This is accomplished in part through the
application of certain ANOVA methods.

In a sense, then, classical test theory and ANOVA can be
viewed as the parents of generalizability theory. However, this
analogy limps somewhat, because the ANOVA issues empha-
sized in generalizability theory are different from those that
predominate in experimental design and ANOVA texts. More
importantly, however, generalizability theory has a unique
conceptual framework. Among the concepts in this framework
are universes of admissible observations and G (Generalizabili-
ty) studies, as well as universes of generalization and D
(Decision) studies. These concepts and the methods of
generalizability theory are introduced here using a hypotheti-
cal scenario involving the measurement of writing proficiency.
As illustrated by this scenario, generalizability analyses are
useful not only for understanding the relative importance of
various sources of error but also for designing efficient
measurement procedures.

Universe of Admissible Observations and G Study
Considerations

Suppose an investigator, Mary Smith, decides that she wants to
construct one or more measurement procedures for evaluating
writing proficiency. She might proceed as follows. First she
might identify, or otherwise characterize, essay prompts that
she would consider using, as well as potential raters of writing
proficiency. At this point, Smith is not committing herself to
actually using, in a particular measurement procedure, any
specific items or raters—or, for that matter, any specific
number of items or raters. She is merely characterizing the
facets of measurement that might interest her or other investi-
gators. A facet is simply a set of similar conditions of measure-
ment. Specifically, Smith is saying that any one of the essay
prompts constitutes an admissible (i.e., acceptable to her)
condition of measurement for her essay-prompt facet. Simi-
larly, any one of the raters constitutes an admissible condition

Winter 1992

of measurement for her rater facet. We say that Smith’s
universe of admissible observations contains an essay-prompt
facet and a rater facet.

Furthermore, suppose Smith would accept as meaningful to
her a pairing of any rater (r) with any prompt (¢). If s0, Smith’s
universe of admissible observations would be described as
being crossed, and it would be denoted £ % r, where the “x” is
read “crossed with.” Specifically, if there were N, prompts and
N, raters in Smith’s universe, then it would be described as
crossed if any one of the N;N, combinations of conditions from
the two facets would be admissible for Smith. Here, it will be
assumed that N, and N, are both very*large—approaching
infinity, at least theoretically.

Note that it is the particular investigator, Smith, who
decides which prompts and which raters constitute the uni-
verse of conditions for the prompt and rater facets, respec-
tively. Generalizability theory does not presume that there is
some particular definition of prompt and rater facets that all
investigators would accept. For example, Smith might charac-
terize the potential raters as college instructors with a PhD in
English, whereas another investigator might be concerned
about-a rater facet consisting of high school teachers of
English. If so, Smith’s universe of admissible observations may
be of little interest to the other investigator. This does not
invalidate Smith’s universe, but it does suggest that other
investigators need to pay careful attention to Smith’s state-
ments about facets if they are to judge the relevance of Smith’s
universe of admissible observations to their own concerns.

In the above scenario, no explicit reference has been made to
persons who respond to the essay prompts in the universe of
admissible observations. However, Smith's ability to specify a
meaningful universe of prompts and raters is surely, in some
sense, dependent upon her ideas about a population of examin-
ees for whom the prompts and raters would be appropriate.
Without some such notion, any characterization of prompts
and raters as “admissible’’ seems vague at best. Even so, in
generalizability theory the word universe is reserved for condi-
tions of measurement (prompts and raters, in the scenario),
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whereas the word population is used for the objects of measure-
ment (persons, in this scenario).

Presumably, Smith would accept as admissible the response
of any person in the population to any prompt in the universe
evaluated by any rater in the universe. If so, the population and
universe of admissible observations are crossed, which is
represented p X (¢ X r), or simply p X ¢ X r. For this situation,
any observable score for a single essay prompt evaluated by a
single rater can be represented as:

o= kg i Fvet W b0 0 ki, @)

where p.is the grand mean in the population and universe and v
designates any one of the seven uncorrelated effects, or
components, for this design. (Actually, the effect ptr is a
residual effect involving the triple interaction and all other
sources of error not explicitly represented in the universe of
admissible observations.)

This population and universe can also be represented in
terms of the Venn diagram in Figure 1. In this diagram, the
three circles represent persons, essay prompts, and raters;
circle-overlap areas represent interactions; and the seven
distinet areas correspond to the seven effects.

The variance of the scores given by Equation 1, over the
population of persons and the conditions in the universe of
admissible observations is:

Uz(Xp,,.) = o?(p) + o*(t) + o?(r)
+ o?(pt) + o pr) + o*itr) + Alptr). (2)

That is, the total observed score variance can he decomposed
into seven independent variance components. It is assumed
here that the population and both facets in the universe of
admissible observations are infinite. Under these assumptions,
the variance components in Equation 2 are called random
effects variance components. It is important to note that they
are for single person-prompt-rater comhinations, as opposed to
average scores over prompts and/or raters, Average scores are
considered in D studies.

Now that Smith has specified her population and universe of
admissible observations, she needs to collect and analyze data
to estimate the variance components in Equation 2. To do so,
Smith conducts a study in which, let us suppose, she has a
sample of n, raters use a particular scoring procedure to
evaluate each of the responses by a sample of n, persons to a
sample of n; essay prompts. Such a study is called a G
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FIGURE 1. Venn diagram for p X t X r design
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(Generalizability) study. The design of this particular study
(i.e., the G study design) is denoted p x £ X r. We say thisis a
two-facet design because the objects of measurement (persons)
are not usually called a “facet.” Given this design, the usual
procedure for estimating the variance components in Equation
2 employs the expected mean square (EMS) equations in Table
1. The resulting estimators of these variance components, in
terms of mean squares, are also provided in Table 1. These
estimators are for a random effects model.

Suppose the following estimated variance components are
obtained from Smith’s G study:

&2(p) = .25, &%) = .06, &%) = .02,
&%(pt) = .15, &(pr) = .04, &%(¢tr) = .00,
and &%(ptr) = .12. (3)

These are estimates of the actual variances (parameters) in
Equation 2. For example, 6%(p) is an estimate of the variance
component o%(p), which can be interpreted roughly in the
following manner. Suppose that, for each person in the
population, Smith could obtain each person’s mean score
(technically, “‘expected” score) over all N, essay prompts and all
N, raters in the universe of admissible observations, The
variance of these mean scores (over the population of persons)
is *(p). The other “main effect” variance components for the
prompt and rater facets can be interpreted in a similar manner.,
Note that for Smith’s universe of admissible observations the
estimated variance attributable to essay prompts, 6%(¢) = .06, is
three times as large as‘the estimated variance attributable to
raters, 6%(r) = .02. This suggests that prompts differ much
more in average difficulty than raters differ in average
stringency.

Interaction variance components are more difficult to
interpret verbally, but approximate statements can be made.
For example, 6%(pt) estimates the extent to which the relative
ordering of persons differs by essay prompt, and &%(pr)
estimates the extent to which persons are rank ordered
differently by different raters. For the illustration considered
here, it is especially important to note that ¢%(pt) = .15 is
almost four times as large as 6%(pr) = .04. This fact, combined
with the previous observation that 6%(¢) is three times as large
as 6%(r), suggests that prompts are a considerably greater
source of variability in persons’ scores than are raters. The
implication and importance of these facts will become evident
in subsequent sections.

D Study Considerations for thep x T X R Design and
an Infinite Universe of Generalization

The purpose of a G study is to obtain estimates of variance
components associated with a universe of admissible observa-
tions. These estimates can be used to design efficient measure-
ment procedures for operational use and to provide informa-
tion for making substantive decisions about objects of
measurement (usually persons) in various D (Decision) studies.
Broadly speaking, D studies emphasize the estimation, use,
and interpretation of variance components for decision-making
with well-specified measurement procedures.

Perhaps the most important D study consideration is the
specification of a universe of generalization, which is the
universe to which a decision-maker wants to generalize based
on the results of a D study with a particular measurement
procedure. To understand the concept of a universe of general-
ization, it is helpful to consider certain D study design issues,
first.

D Studyp x T x R Design

Let us suppose that Smith decides to design her measurement
procedure such that each person will respond to n; essay
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Table 1

Expected Mean Squares and Estimators of Variance Components for the G Study

p X t X r Design

Effect (a) EMS(a) % (a)

p o¥(ptr) + no?(pr) + no?(pt) + nn,o?(p) IMS(p) — MS(pt) — MS(pr) + MS (ptr)l/n.n,
t o?(ptr) + n,a?(tr) + n,o*(pt) + nyn,a’(t) (MS(t) — MS(pt) — MS (tr) + MS(ptn]/nyn,

r a?(ptr) + nya(tr) + na?(pr) + npno(r) [MS(r) — MS(pr) — MS(tr) + MS(ptr)]/n,n,
pt o?(ptr) + n,o?(pt) [MS(pt) — MS(ptr)l/n,

pr o’(ptr) + n,?(pr) IMS(pr) — MS(ptr)l/n,

tr a?(ptr) + nya(tr) [MS(tr) — MS(ptrl/n,

ptr a¥(ptr) MS(ptr)

Note. o represents any one of the effects.

prompts, with each response to every prompt evaluated by the
same n, raters. Furthermore, assume that decisions about a
person will be based on his or her mean score over the nin}
observations associated with the person. This is a verbal
description of the p X T' x R design for a D study. It appears to
be much like the p X ¢ X r design for Smith’s G study, but there
are two important differences.

First, the sample sizes for the D study (n;and n.) need not be
the same as the sample sizes for the G study (r, and n,). This
distinction is highlighted by the use of primes with D study
sample sizes. Second, for the D study, interest focuses on mean
scores for persons, rather than single person-prompt-rater
observations that are the focus of G study estimated variance
components. This emphasis on mean scores is highlighted by
the use of upper-case letters for the facets in Smith’s D study
p X T x R design.

Relating Smith’s D Study and an Infinite Universe of
Generalization
The universe of generalization can be conceptualized as a
universe of measurement procedures each employing the spec-
ified D study sample sizes and design structure, In generalizabil-
ity theory these measurement procedures are described as
“randomly parallel,” and it is assumed that any particular
measurement procedure consists of a random sample of condi-
tions for at least one facet (e.g., essay prompts, raters, or both).
Randomly parallel measurements need not have equal means,
which is an assumption for classically parallel measurements.
Here, let us suppose that Smith decides that, in theory, any
one of the randomly parallel instances of her measurement
procedure would involve a different sample of n} essay prompts
and a different sample of n; raters from her universe of
admissible observations. As such, replications of her measure-
ment procedure would span a universe that theoretically
includes all the prompts and raters in her universe of admissi-
ble observations. Under these circumstances, we would de-
scribe Smith’s universe of generalization as being infinite.
More specifically, for Smith’s universe of generalization, the
rater and item facets are both infinite. In analysis of variance
terminology, this model is described as random. (For this
reason, it is sometimes stated that prompt and rater facets are
random.) In short, under this scenario, Smith wants to general-
ize persons’ scores based on the specific prompts and raters in
her measurement procedures to their scores for a universe of
generalization that involves many other prompts and raters.

Universe Scores

In principal, for any person, Smith can conceive of obtaining
the person’s mean score for every instance of the measurement
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procedure in her universe of generalization. For any such
person, the expected value of these mean scores is defined as
the person’s universe score.

The variance of universe scores over all persons in the
population is called universe score variance. It has conceptual
similarities with true score variance in classical test theory.

D Study Random Effects Variance Compo;zents

For Smith’s D study p x T' X R design the linear model for an
observable mean score over n; essay prompts and n,. raters can
be represented as:

Xorr =+ v, +tvptvg +vp
b va e vTR = vaR' (4)

The variances of the score effects in Equation 4 are called D
study variance components. When it is assumed that the
population and all facets in the universe of generalization are
infinite, these variances components are random effects
variance components. They can be estimated using the G study
estimated variance components in Equation Set 3.

For example, suppose Smith wants to consider using the
sample sizes ny = 3 and n;. = 2 for her measurement procedure.
If so, the estimated D study random effects variance compo-
nents are

GAT) = .02, 6&%R) = .01,

&*(pR) = .02, 6XTR) = .00, (5)

and &%(pTR) = .02.

These estimated variance components are for person mean
scores over nj = 3 essay prompts and n, = 2 raters.

Rule. Obtaining these results is simple. Let ¢%(c) be any one
of the G study estimated variance components. To get the
estimated D study variance components, one simply divides
&%(a) by n}if @ contains ¢ but not r, by n} if o contains r but not ¢,
and by nin | if « contains both ¢ and r.

The estimated variance component 6%(p) = .25 is particu-
larly important because it is the estimated universe score
variance in this scenario. In terms of parameters, when
prompts and raters are both random, universe score is defined
as

Wy = ETERXPTR =p+ Vs (6}

where E stands for expected value. The variance of universe
scores (i.e., universe score variance) is denoted generically
o?(7), and it is simply o*(p), here.
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Error Variances

Given Smith’s infinite universe of generalization, variance
components other than o%(p) contribute to one or more differ-
ent types of error variance. Considered below are “absolute”
and ‘“‘relative’’ error variances.

Absolute error variance, o*(4). Absolute error is simply the
difference between a person’s observed and universe scores:

Ap = XpTR — - (7
For this scenario, given Equations 4 and 6,
Ap = Vp + Vg + ‘UPT + I}PH + Vg + UPTR‘ {8)

Consequently, the variance of the absolute errors, 0?(A), is the
sum of all the variance components except o(p). This result is
also provided in Table 2 under the column headed “T, R
random.”

Given the estimated D study variance components in
Equation Set 5, the estimate of ¢2(A) for three prompts and two
raters is:

6%(A) = .02 + .01 + .05 + .02 + .00 + .02 = .12,

and its square root is §(A) = .35, which is interpretable as an
estimate of the “absolute” standard error of measurement.
Consequently, with the usual caveats, X7z + .35 constitutes a
68% confidence interval for persons’ universe scores.

Suppose Smith judged &(A) = .35 to be unacceptably large
for her purposes, or suppose she decided that time constraints
preclude using three prompts. For either of these reasons, or
other reasons, she may want to estimate &(A) for a number of
different values of 'n; and/or n;. Doing so is simple. Smith
merely uses the rule following Equation Set 5 to estimate the D
study variance components for any pair of D study sample sizes
of interest to her. Then, as indicated in Table 2, she sums all
the estimated variance components except ¢2(p), and takes the
square root.

Figure 2 illustrates results for both n} and n} ranging from
one to four. It is evident from Figure 2 that increasing n;
and/or n, leads to a decrease in &(A), This result is sensible,
because averaging over more conditions of measurement
should reduce error. Figure 2 also suggests that using more
than three raters leads to only a very slight reduction in &(A).
Consequently, probably it would be unnecessary to use more
than three raters (and perhaps only two) for an actual
measurement procedure. In addition, Figure 2 indicates that
using additional prompts decreases ¢(A) quicker than using
additional raters. This is a direct result of the fact that 6%(¢) =
.06 is bigger than &%(r) = .02, and 6%(pt) = .15 is higger than
&%(pr) = .04. Consequently, for this example, all other things
being equal, it would seem desirable to use as many prompts as
possible,

Relative error variance, o°(5). Relative error is defined as the
difference between a person’s observed deviation score and his
or her universe deviation score:

Bp = (pr{'h' - I‘LTR) - (p‘p il ll); (9)
where pry is the expected score over persons of the observed

scores, X,rp. For the p X T' X R design and an infinite universe
of generalization, it can be shown that

Sp = va + va + vaR! (10)

and the variance of these relative errors is the sum of the
variance components for the three effects in Equation 10. This
result is also given in Table 2, under the column headed “T, R
random.” Relative error variance is similar to error variance in
classical theory.

hFor the example introduced previously, if n} = 3and n, = 2,
then

%(3) = .05 + .02 + .02 = .09,
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Table 2

Estimated Random Effects Variance
Components That Enter 62(v), 6(3), and
G2(A) for the p X T X R Design

T, R random

T fixed

a(p)
a(T)
a(R)

&7 (pT)
62(pR)
G2(TR)
&pTR)

a

[= =]

S
N
o0

(=
=)

Note: 7 is universe score.

and its square root is 4(3) = .30, which is interpretable as an
estimate of the “relative” standard error of measurement.
Note that this value of &(3) is smaller than ¢(A) = .35 for the
same pair of sample sizes, In general, 6(3) is less than &(A)
because, as indicated in Table 2, 62(5) involves fewer variance
components than %(4). In short, relative interpretations about
persons’ scores are less error prone than absolute interpreta-
tions. '

Coefficients

Two types of reliability-like coefficients are available in general-
izability theory. One coefficient is called a “generalizability
coefficient”” and denoted here as p2. The other coefficient is an
“index of dependability” that is denoted &.

Generalizability coefficient, p?. A generalizability coefficient
is defined as

) a?(7)
plaseae————
(1) + o?(3d)

It is the analogue of a reliability coefficient in classical theory,
For the example considered here, with n; = 3 and n; = 2,

p* = .25/[.25 + .09] = .74,

(11)
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FIGURE 2. 6(A) for the p X T X R design and an infinite
universe of generalization, with the number of prompts
and the number of raters ranging from one to four
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Figure 3 provides a graph of §? for values of n; and n; ranging
from one to four. As observed in the discussion of Figure 2,
little is gained by having more than three raters, and using a
relatively large number of prompts seems highly desirable.

Index of dependability, ®. An index of dependability is
defined as:

B a?(1)
(1) + oXA)

¢ differs from p? in that @ involves o%(A), whereas p? involves
0%(3). Consequently, ® is generally less than p?. The index @ is
appropriate when scores are given “absolute” interpretations,
as in domain-referenced or eriterion-referenced situations. For
the example considered here, with n;, = 3and n; = 2,

& = 25/[.25 + .12] = .68.

(12)

D Study Considerations for Different Designs and/or
Universes of Generalization

The previous section assumed that the D study employed a p X
T x R design and the universe of generalization was infinite,
consisting of two random facets, 7' and R. Recall that the G
study also employed a fully crossed design (p x ¢ x r) for an
infinite universe of admissible observations. In short, to this
point, it has been assumed that both designs are fully crossed
and the size or “extent” of both universes is essentially the
same. This need not he the case, however. For example, the
universe of generalization may be narrower than the universe
of admissible observations. Also, the structure of the D study
can be different froni that employed to estimate variance
components in the G study. Generalizability theory does not
merely permit such differences—it effectively encourages inves-
tigators to give serious consideration to the consequences of
employing different D study designs and to assumptions about
a universe of generalization. This is illustrated below using two
examples.

The p x T x R Design With a Fixed Facet

Returning to the previously introduced scenario, suppose
another investigator, Sam Jones, has access to Smith’s G study
estimated variance components in Equation Set 3. However,
Jones is not interested in generalizing over essay prompts.
Rather, if he were to replicate his measurement procedure, he
would use different raters but the same prompts. If so, we
would say that Jones’ universe of generalization is “‘restricted”
in that it contains a fixed facet, T. Consequently, Jones's
universe of generalization is narrower than Smith’s infinite
universe of generalization. (In ANOVA terminology, the con-
text here is essentially that of a mixed model.)

Suppose, also, that Jones decides to use the same D study
design structure as Smith: namely, the p x T x R design.
Under these circumstances, the last column of Table 2 indi-
cates which of the estimated random effects D study variance
components need to be summed to obtain estimated universe
score variance, (1), as well as 62(A) and 6%(3).

For example, if n; = n} = 3 and n; = 2, then the estimated
random effects D study variance components are given by
Equation Set 5, and using the last column in Table 2

&%) = &%(p) + &*(pT)
= .25 + .05 = .30,
&4(A) = 6%(R) + 6*(pR) + 6%TR) + ¢°(pTR)
=.01 + .02 + .00 + .02 = .05, and
6%(8) = 6*(pR) + 6*(pTR)
=.02 + .02 = .04.
It is particularly important to note that, with prompts fixed,
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FIGURE 3. ? for the p X T X R design and an infinite
universe of generalization, with the number of prompts
and the number of raters ranging from one to four

o?(pT) contributes to universe score variance, not either error
variance. Consequently, for a restricted universe of generaliza-
tion with 7T fixed, universe score variance is larger than it is for
an infinite universe of generalization in which both 7"and R are
random. '

Given these results, it follows from Equation 11 that

p? = .30/[.30 + .04] = .88.

Recall that, for these sample sizes (n}; = 3 and n} = 2), when
prompts were considered random, Smith obtained p? = .74.
The estimated generalizability coefficient p? is larger when
prompts are considered fixed because a universe of generaliza-
tion with a fixed facet is narrower than a universe of
generalization with both facets random. That is, generaliza-
tions to narrow universes are less error prone than generaliza-
tions to broader universes. It is important to note, however,
this does not necessarily mean that narrow universes are to be
preferred, because restricting a universe also restricts the
extent to which an investigator can generalize. For example,
when prompts are considered fixed, an investigator cannot
logically draw inferences about what would happen if different
prompts were used.

The D Study p x (R:T) Design
To expand our scenario even further, consider a third investiga-
tor, Ann Hall, who decides that practical constraints preclude
her from having all raters evaluate all responses of all persons
to all prompts. Rather, she decides that, for each prompt, a
different set of raters will evaluate persons’ responses. This is a
verbal description of the D study p x (R:T") design, where ““:” is
read “nested within.” Figure 4 provides a Venn diagram
representation of this design. In this Venn diagram, the
nesting of R within T is represented by the inclusion of one
entire circle within another circle.

As suggested by the five distinct areas in Figure 4, for the
p % (R:T) design, the total variance is the sum of five
independent variance components, i.e.,

A Xpp1) = o%p) + oXT) + *(R:T)
+ o*(pT) + *(pR:T).  (18)

For a random effects model, these variance components can
be estimated using Smith’s estimated G study variance
components, even though Smith’s G study design is fully
crossed, whereas Hall’s D study design is partially nested. The
process of doing so involves two steps.
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FIGURE 4. Venn diagram for p x (R:T) design

First, the G study variance components for the p x (r:f)
design are estimated using the results in Equation Set 3 for the
p X ¢ X r design. For both designs, 6%p) = .25, 6%(¢) = .06, and
&*pt) = .15, and it can be shown that estimates of the
remaining two G study variance components for the p x (r:t)
design are:

&Hr:t) = 64r) + 6*(r) and (14)
&(pr:t) = *(pr) + *(ptr). (15)
Using Equations 14 and 15,
G2(r:t) = .02 + .00 = .02 and
&Xpr:t) = .04 + .12 = .16.

Second, the rule following Equation Set 5 is applied to the
estimated G study variance components for the p x (r:f) design.
Assumingn; = 3 and n} = 2, the results are:

6%(p) = .25, &HT)=.02, &XpT) = .05,
6%R:T)=.003 and &%pR:T) =.027. (16)

The second column in Table 3 specifies how to combine the
estimates in Equation Set 16 to obtain &%(t), 3%(A), and 6%(3) for
an infinite universe of generalization in which both T'and R are
random. The third column applies when prompts are fixed.
Once &%), 6%(A), and 6%3) are obtained, p? and ® can be
obtained using Equations 11 and 12, respectively.

Suppose, for example, that Hall decides to generalize to a
universe in which both T and R are considered random. For
this universe of generalization, given the results in Equation
Set 16, and using Table 3,

2() = 6%(p) = .25,

G%(A) = 6UT) + %(pT) + 6%R:T) + 6*(pR:T)
.02 + .05 + .003 + .027 = .10, and
G48) = 6‘2(pT) + 6‘2(pR.'T)

05 + .027 = .077.

It follows that
p? = &40 /[6%(1) + 64B))
= .256/[.26 + .077] = .76.

Recall that for the p x T x R design with T and R random,
Smith obtained p? = .74, which is somewhat different from p* =
.16 for the same universe using the p x (R:T) design. The
difference in these two results is not rounding error. Rather, it
is attributable to the fact that 6%3) = .09 for thep x T x R
design is larger than 6%(8) = .077 for the p x (R:T) design. This
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illustrates that reliability, or generalizability, is affected by
design structure. Recall that it has been demonstrated
previously that reliahility, or generalizability, is also affected by
sample sizes and the size or “extent” of a universe of
generalization. These results illustrate an important fact:
namely, it can be very misleading to refer to the reliability or
the error variance of a measurement procedure without
considerable explanation and qualification.

Other Issues

All other things being equal, the power of generalizability
theory is most likely to be realized when a G study employs a
fully crossed design and a large sample of conditions for each
facet in the universe of admissible observations. A large sample
of conditions is beneficial because it leads to more stable
estimates of G study variance components. A crossed design is
advantageous because it maximizes the number of design
structures that can be considered for one or more subsequent D
studies.

It is important to note, however, that any design structure
can be used in a G study. For example, the scenario discussed
previously could have used a G study p x (r:t) design. However,
under these circumstances an investigator could not estimate
results for a D study p X T x R design, This limitation occurs
because independent estimates of ¢2(r) and ¢%(tr) are needed
for the D study, but they are completely confounded in the
a¥(r:t) G study variance component, and independent estimates
of o?(pr) and o*(ptr) are completely confounded in o®(pr:t).

It often happens that the distinction between a G and D
study is blurred, usually because the only available data are for
an operational administration of an actual measurement proce-
dure. In this case, the methods discussed can still be followed to
estimate parameters such as error variances and generalizabil-
ity coefficients, but obviously under these circumstances an
investigator cannot take advantage of all aspects of generaliz-
ability theory.

In most applications of generalizability theory, examinees or
persons are the objects of measurement. Occasionally, how-
ever, some other collection of conditions plays the role of
objects of measurement, For example, in evaluation studies,
classes are often the objects of measurement with persons and
other facets being associated with the universe of generaliza-
tion. It is straightforward to apply generalizability theory in
such cases.

Summary

Classical test theory and ANOVA can be viewed as the parents
of generalizahility theory in the sense that generalizability
theory employs ANOVA procedures with models that are

Table 3

Estimated Kandom Effects Variance
Components That Enter 6?(1), %(3), and
G2(A) for the p x (R:T) Design

T, R random R fixed
a(p) % T
() A
G2R:T) A A
a’(pT) A B T
G*(pR:T) A8 A, B

Note. T is universe score,
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extensions of the model used in classical theory. However,
generalizability theory is not simply a conjunction of classical
theory and ANOVA. For example, classical theory has an
undifferentiated error term, whereas the models and methods
used in generalizability theory allow an investigator to system-
atically distinguish among multiple sources of error. Also,
generalizability theory emphasizes the estimation of variance
components, rather than F-tests, which predominate in most
experimental design and ANOVA texts. Further, generalizabil-
ity theory has a conceptual framework that is not part of either
classical theory or ANOVA.

A generalizability analysis begins with the specification of a
universe of admissible observations. A G study is employed to
estimate variance components for this universe and a relevant
population. These G study estimated variance components are
used to estimate results (error variances, generalizability coef-
ficients, etc.) for one or more D studies associated with a
prespecified universe of generalization. D studies may differ in
terms of sample sizes and/or design structure. Specifying a
universe of generalization requires identifying which facets are
random and which are fixed.

Generalizability theory is a very broadly defined measure-
ment model, and different applications of generalizability
theory tend to involve somewhat different mixes of conceptual
and statistical concerns. Consequently, conducting a generaliz-
ability analysis is often a nontrivial exercise. The process of
doing so, however, reveals the importance and consequences of
various sources of measurement error, and aids an investigator
in better understanding measurement itself.

Self-Test

1. Suppose an investigator obtains the following mean
squares for a G study p X ¢ X r design using n, = 100
persons, 1, = b essay items, and n, = 6 raters:

MS(p) =6.20 MS(t) = 57.60, MS(r) = 28.26,
MS(pt) = 1.60, MS(pr) = .26, MS(ir) = 8.16,
and  MS(ptr) = .16.

a. Estimate the G study variance components assum-
ing both ¢ and r are infinite in the universe of
admissible observations.

b. Estimate the D study random effects variance
components for aD studyp X T X R design with n; =
4, n, = 2, and persons as the objects of measure-
ment.

¢. Forthe D study design and sample sizes in 1b, above,
estimate absolute error variance, relative error
variance, a generalizability coefficient, and an index
of dependability.

d. Estimate o(A) if an investigator decides to use the D
study p x (R:T) design with n; = 3 and n} = 2,
assuming 7' and R are both random in the universe
of generalization.

2. Suppose an investigator specifies that a universe of
generalization consists of only two facets and both are
fixed. From the perspective of generalizability theory,
why is this nonsensical?

3. Brennan (1992, p. 65) states that ‘“the Spearman-Brown
Formula does not apply when one generalizes over more
than one facet.”

a. Illustrate this fact using the example in the
instructional module for thep x 7' x R design with T
and R random, i.e., ¢ = .74 with three prompts and
two raters. Assume the number of prompts is
doubled, in which case the Spearman-Brown For-
mulais 2 * rel/(l + rel), where ‘“‘rel” is reliability.

b. Explain why the two procedures give different
results.
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Answers to Self-Test
a. Using the formulas in Table 1

6%p) = IMS(p) — MS(pt) — MS(pr)
+ MS(ptr)l/n,n,
(6.20 — 1.60 — .26 +.16)/(5 % 6)
=15,
62(t) = .08, &%) = .04, 6 pt) = .24
(pr) = .02, &%) = .08, and 6%(ptr) = .16

b. Because persons are the objects of measurement,

&%p) = .15 is unchanged, and using the rule
following Equation Set 5:

GAT) = .02, 6%R) = .02, &(pT) = .06
%(pR) = .01, 6*(TR) = .01, and 6% pTR) = .02.

c. Absolute error variance: from the “T, R random”
column of Table 2,

G2(A) = 6X(T) + 6*R) + 6% pT) + 6%pR)
+ 62(TR) + 6%(pTR)
=.02+.02+.06+.01+.01+.02=.14

Relative error variance: from the “T, R random”
column of Table 2, R

&%(8) = 6%pT) + 6*(pR) + 6%(pTR)
=.06 + .01 + .02 + .09

Generalizability coefficient; from Equation 11, be-
cause 62(1) = 6%(p) when T and R are both random,

p* = 6%(p)/[6%(p) + 6°(3)]
= .15/(.15 +.09) = .63

" Index of dependability: from Equation 12, because
¢2(r) = 6%(p) when T and R are both random,

& = 6%(p)/[6%(p) + 6%(A)]
=.15/(.15 + .14) = 52.

d. First, we need to estimate G study variance
components for the p X (r:t) design given the results
in la for the p x ¢ X r design. Under these
circumstances, 6%(p) = .15, 6%(¢) = .08, and 6*(pt) =
.24 are unchanged. Using Equation 14,

G2(rit) = 62(r) + 62tr) = .04 + .08 = .12,
and using Equation 15,
prit) = 6%pr) + 6%ptr) = .02 + .16 = .18,

Second, using the rule following Equation Set 5,
fornt =3 and n} = 2, the estimated random effects D
study variance components are

G¥p) = .15, 6%T) = .027, GAR:T) = .02,
&%(pT) = .08 and 6*(pR:T) = .03.

Third, because T and R are random, we use the
next to the last column in Table 2 to obtain

6%A) = 6XT) + 6%(R:T) + 6%(pT) + 6*(pR:T)
=.027 + .02 + .08 + .03 = .157.

The square root is ¢(A) = .40,
If there are only two facets and both facets are
considered fixed, then every instance of a measurement
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procedure would involve the same conditions. Under
these circumstances, there is no generalization to a
broader universe of conditions of measurement. Logi-
cally, therefore, all error variances are zero, by defini-
tion. No measurement procedure is that precise! To
avoid this problem, at least one of the facets in a universe
of generalization must be viewed as variable across
instances of the measurement procedure.

3. a. Accordingto the Spearman-Brown Formula, reliabil-
ity for a measurement procedure with twice the
number of prompts (i.e., with six prompts) is
2(.74)/(1 + .74) = .85. According to generalizability

theory, however,
2%(3) = 6%(pT) + 6*(pR) + &*(pTR)
- GApt)  &pr) &Aptr)
ny n, nn,
=.15/6 + .04/2 + .12/12
= .055,
and it follows that

= 8%(p)/16%(p) + &*(3)]
=.25/[.25 + .055]
= .82.

b. The explanation for this difference is that the term
G4(pR) = 6%(pr)/n} in 6%(3) is unaffected by doubling
the number of prompts, whereas the Spearman-
Brown ‘procedure effectively divides %(pr)/n; by
two. This is an illustration of the fact that the error
term is undifferentiated in classical theory, whereas
generalizability theory can take into account the
relative contributions of different numbers of
prompts and raters to error variance.
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