Learning
Define a multilevel measurement model (MLMM) O bJECtlves

ldentify when an MLMM is needed

Describe and execute an MLMM in a multilevel
modelling framework

Describe and execute an MLMM in a structural
equation modelling framework




Module Overview

« 5 sections of content
 Review of multilevel modelling
« Review of measurement modelling
« Multilevel measurement modelling (MLMM) overview
« MLMM in MLM framework
« MLMM in SEM framework

 Code and data for each module available to download
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Section
Learning

Multilevel Modelling Overview Objectives

Understand when and why to use Recognize when the model is cross-
multilevel models sectional or repeated measures
|
Write and understand multilevel Interpret output for fixed and random
modelling equations effects




Clustered Data Structures

« Common in educational and psychological research

[ )
ln‘./— Students within classes

@ Patients within clinicians

B% Trials within people (repeated measures)



Why Care About Clustering?
v

e At least two levels of variance: within and between clusters
e Level 1 = students
e Level 2 = class

« What if we neglect clustering?

* Inflates sample size, deflates standard errors, increases likelihood of Type 1
Error

« We miss out on interesting multilevel questions!



Example Equations

v

Outcome: student math achievement (math)

Level 1 predictor: hours spent studying (hours)
Level 2 predictor: teacher’s years of experience (texp)

« Random intercept and random slope



Random Intercept and Random Slope

Outcome: student math achievement (math)
Level 1 predictor: hours spent studying (hours)
Level 2 predictor: teacher’s years of experience (texp)

Random intercept, consistent slope  Random slope, consistent intercept Random slope and intercept
Class 1

Class 2
Class 3




Example Equations

Outcome: student math achievement (math)

Level 1 predictor: hours spent studying (hours)

Level 2 predictor: teacher’s years of experience (texp)
« Random intercept and random slope

- Level 1 equation: math;; = By; + f1jhours;; + €;;
- Level 2 equations: By; = yoo + Yo1texp; + Uy;

* Total: math;; = yoo + Yortexp; + yiohours;; + Uy; + Uy jhours;; + €;;

Enders, C., & Tofighi, D. (2007). Centering Predictor Variables in Cross-Sectional
Multilevel Models: A New Look at An Old Issue. Psychological Methods, 12, 121-138.
doi:10.1037/1082-989X.12.2.121



Generalized Equation

Level 1: Yij = ,B()] + 25:1 ,Bijpij + €ij
Level 2 intercept: By, = yo0 + 23=1 YogZqj 1 Uo;j

Level 2 slopes: 8,; = y,o + Z?,:l VpqZqj t Up;

-E~N(O,02) . [TOO ]
° UjNMVN(O,T)— To1 T11



Repeated Measures

« Our example thus far has been cross-sectional, but sometimes data
are repeated measures, with multiple responses on the outcome
per person

* For example, students in a driver's ed class are shown 51 pictures,
and they change slightly while they're looking

« Qutcome variable is log reaction time to notice a change
* Here, trials/measures are nested within students

* Level 1 variables are characteristics of the pictures
- How big is the change? Is the picture related to driving? Etc.

* Level 2 variables are characteristics of the person
« Gender? Age? etc.

Example From: Hoffman, L., & Rovine, M.J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative
examples. Behavior Research Methods, 39(1), 101-117. https://doi.org/10.3758/bf03192848



Coding an MLM in R

« Data and example from Hoffman and Rovine (2007)

« Qutcome of interest is log of reaction time for participants to detect
a change to a picture

* Pictures varied on how salient the change in the picture was
(salience)

« One of the primary questions was how age related to reaction time,
given picture characteristics

Example From: Hoffman, L., & Rovine, M.J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative
examples. Behavior Research Methods, 39(1), 101-117. https://doi.org/10.3758/bf03192848



Example Equations: Repeated Measures

Outcome: log of reaction time to notice difference between pictures (IogRT)
Level 1 predictor: salience of change, centered around a constant (c_sal)
Level 2 predictor: age

« Random intercept and random slope

« Random intercept = how a person’s average RT deviates from mean across people,
controlling for predictors

« Random slope = how the relationship between salience and RT deviates from mean
across people, controlling for age

Level 1 equation: logRT;; = fy; + fyjc_sal;j + €;;

Level 2 intercept equation: y; = yoo + vo1age; + Uy;
Level 2 slope equation: ;; = y;¢ + Uy

Total: lOgRTIJ = Yoo T )/01ag€j + leC_Salij + UOJ + Ule—Salij + Eij



« Repeated measures data, with many pictures per participant

id

L = = T = = R = Y = R =

sex

e N T = = = T = T

age

20
20
20
20
20
20
20
20
20

NAME

rt_secl
rt_sec2
rt_sec3
rt_sec4
rt_secS
re_sec7
re_sec8

rt_sec9

rt_seclO

Coding an MLM in R

rt_sec
4.662
6.660
6.602
1.332
1.332
1.302
2.601
23.287
3.330

Item

W 00 N v b W N =

[
o

meaning

3.5
0.0
4.0
4.0
0.0
3.5
5.0
0.0
4.0

salience

4.0
3.0
2.0
4.0
5.0
4.5
1.5
5.0
3.5

lg_rt

1.5394445
1.8961195
1.8873726
0.2866816
0.2866816
0.2639015
0.9558960
3.1478953
1.2029723

oldage

OO0 |00 | 0| O 0|0 |O

yrs65

OO0 | OO0 | 0|0 OO | O

c_mean
0.5

-3.0

1.0

1.0

-3.0

0.5

2.0

-3.0

1.0

c_sal
1.0
0.0
-1.0
1.0
2.0
1.3
-1.5
2.0
0.5



Coding an MLM in R

« Data and example from Hoffman and Rovine (2007)

# package install, if needed
install.packages("1me4")

# Load dependency
library(1lme4)

# Read data
hoffman2007 <- read.csv("hoffman2007.csv")

# Run model

model <- 1lmer(logRT ~ 1 + c_sal + age + (1 + c_sallid),
data = hoffman2007,
REML = FALSE)

# Print output
summary(model)



Interpreting Output

Linear mixed model fit by maximum likelihood ['lmerMod']

MOdel inPUt information Formula: 1ogRT ~ 1 + c_sal + age + (c_sal | id)
Data: hoffman2007

.. . AIC BIC loglLik deviance df.resid
Fltlnformatlon 16404.1 16452.7 -8195.0 16390.1 7639

Scaled residuals:
Min 1Q Median 30 Max
-2.5591 -0.7430 -0.1218 ©.6220 4.1749

Ra ndom effe cts Random effects:

Groups  Name Variance Std.Dev. Corr
id (Intercept) 0.0224610 @.14987

c_sal 0.0004847 0.02201 -0.05
Residual 0.4870854 0.69792

Number of obs: 7646, groups: 1id, 153

: Fixed effects:
FlXEd effeCtS Estimate Std. Error t value

(Intercept) 1.0429887 0.0259398 40.21
c_sal -0.1518363 ©0.0075316 -20.16
age 0.0143094 0.0005319 26.90



* (Intercept) = y,o = average log reaction
time across all people across all photos,
controlling for predictors

 c_sal = y;o = average effect of photo
salience on reaction time across all
people, controlling for age

e age = y,, = effect of age on average log
reaction time, controlling for c_sal

Fixed effects:

Estimate Std. Error t value
(Intercept) 1.0429887 0.0259398 40.21
c_sal -0.1518363 ©0.0075316 -20.16
age 0.0143094 0.0005319 26.90



Random Effects

e (Intercept) = 7§ = var(Upj) = variance Random effects:
Groups  Name Variance Std.Dev. Corr
dESCFIbIﬂg how peoples mean RT id (Intercept) 0.0224610 @.14987
' _sal 0.0004847 0.02201 -0.05
vary around grand mean intercept il 0200817 902201

° C_Sal — T]Z_ — var(Ulj) — Varlance Number of obs: 7646, groups: 1id, 153

describing how people’s relationship
with salience and RT varies around
grand mean slope

» Residual = 0% = var(e;;) = residual
describing how people’s responses
vary around their own mean



Two-Level MLM




Three-Level MLM

Driver's

Education
Class 1




Three-Level MLM: Equations

Outcome: log of reaction time to notice difference between pictures (logRT)
Intercept-only model: no predictors yet

Level 1 equation: logRTjjx = mojx + €;ji

Level 2 intercept equation: g, = Boor + Tojk

Level 3 intercept equation: Sy = Y000 + Uook

Total: l0gRTijx = Y000 + Uook + Tojk + €ijk

* logRTj;i is log reaction time for picture /, person j, in class k
* Yooo IS grand mean RT across all pictures, all people, all classes

* Uyox is residual term describing how class k's average deviates from grand
mean

* Tojk IS residual term describing how person j deviates from class mean

* €;11 IS residual term describing how logRT to picture j deviates from person’s
ean



Three-Level MLM: Code

# three-level null model

model3 <- 1mer(logRT ~ 1 + (1lid) + (1llclass),
data = hoffman2007,
REML = FALSE) Drivars

summary(model3) E%thn
ass 1




Three-Level MLM: Output

Random effects
Groups  Name

Residual

Number of obs: 7646, groups:

Fixed effects:

Estimate Std. Error

(Intercept)

Signif. codes:

Variance Std.Dev.
id (Intercept) 0.02556 0.1599
class (Intercept) 0.14045 0.3748
©.51573 0.7181

1.5885

@ Cdkkk?

0.1093 12.0212

id, 153; class, 12

df t value Pr(>1tl)

14.54 0.00000000544 ***

0.001 ‘**’ 9.01 ‘*° 0.05 ‘.’ 0.1 * ’ 1



Long vs Wide Data

« We often work with “wide” data: one row per person

id meaningl meaning2 meaning3 saliencel salience2 salience3
1 3.5 0 4 4 3 2
2 3.5 0 4 4 3 2

« To run a repeated measures model, we need “long” data: one row
per measurement

id Item meaning salience
3.5
0.0
4.0
3.5
0.0

NN R =
w N oH W N =
NwWw R N W A

4.0

 In many cases, this will require transposing data



« Multilevel modelling is used in data structures where responses are
clustered (e.g., students in classes, responses within person)

e [t involves partitioning total variance to variance within and
between clusters

« We reviewed formulae for cross-sectional, repeated measures, and
three-level MLMs

« We implemented and interpreted a repeated measures and three-
level MLM in R



Measurement Modelling Overview



Section

| Learning
Measurement Modelling

Overview Objectives

List the two elements of a structural

Define measurement modelling equation model

Code a confirmatory factor analysis Interpret loadings, variances, and fit
using lavaan in R indices for CFA




What are Measurement Models?

* In educational and psychological research, we often work with latent
constructs
* Theoretical entities that account for characteristics or behaviors (Bandalos, 2018)
e e.g., motivation, depression, anxiety

« We create items (prompts, questions) to capture elements of these
constructs so we can theorize about them

- Measurement modelling is the process of relating these items to the
latent variables they (supposedly) capture

« Any kind of relationship between an item and a latent variable is a
measurement model
e Sum scores
* Single items
 Factor analysis

Bandalos, D. L. (2018). Measurement theory and applications for the social sciences. New
York, NY, US: The Guilford Press.



Structural Equation Modelling

« Combination of a type of measurement modelling (e.g., CFA) and
analyzing relationships between variables of interest (path analysis)

» Three inputs, three outputs

In:
1. Theory of causal relationships between variables
2. Specification of relationships between variables of interest
3. Data

Out:

1. Numeric estimates of model parameters for hypothesized relationships
between variables

2. Implications of the model not directly specified (e.g., W and Y unrelated,
controlling for Z)

3. Fitindices reflecting degree to which testable implications are supported by data

Kline, R. B. (2015). Principles and practice of structural equation modeling, Fourth Edition: Guilford Publications.



Example CFA

« We'll now look at an example of a confirmatory factor analysis, a
very common and useful measurement model

 First, we'll look at the data structure and discuss the models we'll
run

* Then, we'll look at two different (equivalent) ways to identify the
model and code it

* Finally, we'll look at output and interpret loadings, variances, and fit
indices



Example CFA: Data Structure

 Simulated data

« Responses range from 1 to 5 for questions about anxiety and
depression symptoms

al a2 a3 a4 dl d2 d3

N U = = W W e
= ON = N = = NN
=N N e e
= N N N bR = N =
=N N W N =N W
o= N =N = N
NN R W =N NN



Example CFA: Model Specification

« Two-factor model: anxiety and depression
* Four items assessing anxiety: al - a4
* Three items assessing depression: d1 - d3




Example CFA: Code

# @ Load dependencies and data ----------------—-m o

library(lavaan)
data <- read.csv("sim_cfa.csv")

model <-
# Item loadings
ANX =~ NA*al + a2 + a3 + a4
DEP =~ NA*dl + d2 + d3

# Factor co/variances
ANX ~~ 1*ANX

DEP ~~ 1*DEP

ANX ~~ DEP

model_cfa <- cfa(model, data)

summary(model_cfa, fit.measures = TRUE, standardized = TRUE)



Example CFA: Loadings and Variances

Latent Variables:
Estimate Std.Err z-value P(>lzl) Std.lv Std.all

ANX =~
al -0.467  0.140 -3.345  0.001 -0.467 -0.549 -0.32
al -0.073 0.040 -1.800 0.072 -0.073 -0.112
a3 -0.026 0.038 -0.691 0.489 -0.0206 -0.041
a4 -0.200 0.064 -3.116 0.002 -0.200 -0.287
DEP =~
dl 0.370 0.072 5.106 0.000 0.370 0.454
d2 0.195 0.047 4.191 0.000 @.195 0.273
d3 0.274 0.057 4.839 0.000 0.274 0.371
Covariances:
Estimate Std.Err z-value P(>lzl) Std.lv Std.all
ANX ~~
DEP -0.324 0.120 -2.693 0.007 -0.324 -0.324
Variances:
Estimate Std.Err z-value P(lzl)  Std.lv Std.all
ANX 1.000 1.000 1.000
DEP 1.000 1.000 1.000
.al 0.507 0.130 3.888 0.000 0.507 0.699
.az 0.418 0.021 19.489 ?.000 0.418 @.988
.a3 0.415 0.021 19.940 0.000 0.415 ©.998
.a4 0.445 0.033 13.680 9.000 0.445 0.918
.dl @.528 0.056 9.393 ?.000 0.528 0.794
.d2 0.474 0.028 16.779 0.000 0.474 ©.926
.d3 0.469 0.236 12.903 9.000 0.469 0.862



Example CFA: Fit Indices

Model Test User Model:

Test statistic
Degrees of freedom
P-value (Chi-square)

Model Test Baseline Model:
Test statistic

Degrees of freedom
P-value

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

McNeish & Wolf (2021)
https://dynamicfit.app/__landing__/

10.084
13
0.687

84.604

0.000

1.000
1.074

Loglikelihood and Information Criteria:

Loglikelihood user model (H®)
Loglikelihood unrestricted model (H1)

Akaike (AIC)
Bayesian (BIC)
Sample-size adjusted Bayesian (BIC)

Root Mean Square Error of Approximation:

RMSEA

9@ Percent confidence interval - lower
990 Percent confidence interval - upper
P-value RMSEA <= 0.05

Standardized Root Mean Square Residual:

SRMR

-6121.
-bll6.

12273.
12344,
12296.

< B I )

951
909

902
171
538

.000
.000
.028
.000

.021



Example CFA: Code

# Unit loading identification

model <-
# Item loadings
ANX =~ al + a2 + a3 + a4
DEP =~ d1 + d2 + d3

# Factor co/variances
ANX ~~ ANX
DEP ~~ DEP
ANX ~~ DEP

model_cfa <- cfa(model, data)

summary(model_cfa, fit.measures = TRUE, standardized = TRUE)



Example CFA: Loadings and Variances

Latent Variables:
Estimate Std.Err z-value P(lzl) Std.lv Std.all

ANX =~
al 1.000 0.467 9.549 0.06
a2 @.155 0.110 1.416 @0.157 0.073 0.112
a3 0.056 0.085 0.662 0.508 0.026 0.041
a4 0.428 0.247 1.732 0.083 0.200 0.287
DEP =~
dl 1.000 0.370 0.454
d2 0.528 0.180 2.932 0.003 0.195 0.273
d3 0.741 0.255 2.906 0.004 0.274 0.371
Covariances:
Estimate Std.Err z-value P(lzl) Std.lv Std.all
ANX ~~
DEP @.056 0.021 2.691 0.007 0.324 0.324
Variances:
Estimate Std.Err z-value P(lzl)  Std.1lv Std.all
ANX 0.218 0.130 1.673 0.09%4 1.000 1.000
DEP 0.137 0.054 2.553 0.011 1.000 1.000
.al 0.507 0.130 3.888 0.000 0.507 0.699
.a2 0.418 0.021 19.489 0.000 0.418 0.988
.a3 0.415 0.021 19.940 0.000 0.415 0.998
.a4 @.445 0.033 13.080 0.000 0.445 0.918
.dl 0.528 0.056 9.393 0.000 0.528 0.794
.d2 0.474 0.028 16.779 0.000 0.474 0.926
.d3 0.469 0.036 12.903 0.000 0.469 0.862



From CFA to SEM

« Once you have your measurement model sorted (in our case, the
CFA), you can move on to SEM

 You can add more variables and use the latent variables from the
measurement model as predictors or outcomes for other latent
variables or observed variables

e Qur focus is on the measurement model, so we won't cover SEM
further



« Measurement modelling is the process of relating items to latent
constructs

« Confirmatory factor analysis is one kind of measurement model

e Structural equation modelling combines measurement modelling
(e.g., CFA) with structural modelling of relationships between
latent variables

« We implemented a confirmatory factor analysis using lavaan in R



Multilevel Measurement Modelling



Section

| Learning
Multilevel Measurement

Modelling Objectives

Define a multilevel measurement

model (MLMM) Understand when to use an MLMM

Describe two different approaches to State two issues that arise from not
multilevel measurement modelling using an MLMM




What is a Multilevel Measurement Model?

So far, we've introduced and reviewed two modelling frameworks
1. Multilevel modelling for clustered data
2. Measurement modelling in single-level data

We use multilevel measurement models (MLMMSs) when these
circumstances collide, i.e. when:
« We want to conduct measurement modelling (linking items to factors)
 |n clustered data structures



Why use an MLMM?

MLMMs are a mix of measurement modelling and clustered data

modelling
If you don't use one, you run into two main issues:

No Measurement Modelling

Nno accounting for measurement error

No Multilevel Modelling

no accounting for clustered data

Dyer, N., Hanges, P, & Hall, R. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership
Quarterly, 16, 149-167. doi:10.1016/j.leaqua.2004.09.009

Huang, F. (2017). Conducting Multilevel Confirmatory Factor Analysis Using R.

Muthén, B. O. (1994). Multilevel Covariance Structure Analysis. Sociological Methods & Research, 22(3), 376-398.
doi:10.1177/0049124194022003006



No Measurement Modelling

« Assumes perfect measurement

* In our MLM example, we used hours studied and teacher salary,
which could plausibly have no measurement error

* In our SEM example, we talked about anxiety and depression which
are more clearly latent constructs



Why use an MLMM?

MLMMs are a mix of measurement modelling and clustered data

modelling
If you don't use one, you run into two main issues:

No Measurement Modelling

Nno accounting for measurement error

No Multilevel Modelling

no accounting for clustered data

Dyer, N., Hanges, P, & Hall, R. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership
Quarterly, 16, 149-167. doi:10.1016/j.leaqua.2004.09.009

Huang, F. (2017). Conducting Multilevel Confirmatory Factor Analysis Using R.

Muthén, B. O. (1994). Multilevel Covariance Structure Analysis. Sociological Methods & Research, 22(3), 376-398.
doi:10.1177/0049124194022003006



No Multilevel Modelling

« Without MLM, we don't account for clustered data
» Violates assumption of independence
« Can bias parameter estimates, standard errors, and model fit

* Denies ability to ask multilevel questions
« Some constructs have different factor structures across levels

« Some constructs only exist at the group level, e.g.,
“classroom environment”



MLM and SEM: Analogous Frameworks

MLM SEM
Yij =,B+Uj+6ij Ypi zvp_l_ﬂ'pqnqi_l_epi
Between variance Common variance

Within variance Unique variance

Mehta & Neale (2005)



Two Frameworks: MLM or SEM

We can adapt each of the two frameworks reviewed to MLMM
MLM: Use multilevel modelling for measurement modelling




Two Frameworks: MLM or SEM

We can adapt each of the two frameworks reviewed to MLMM
SEM: Add multilevel modelling to measurement modelling




Unclustered Factor Model: MLM vs SEM

e Let's run a factor model in each framework assuming no clustering,
to compare and set the stage for adding another level

« We're not getting into data preparation (that's in the next section) or
model details, just looking at code and output

Example: Teacher perception of student engagement
* One factor

 Six items
* e.g., “Students generally like this school.”

e« Data from: Huang F.L. & Cornell D.G. (2015). Factor structure of the high school teacher version of the
authoritative school climate survey. Journal of Psychoeducational Assessment, 1557-5144.
doi:10.1177/0734282915621439.



Unclustered Factor Model: MLM vs SEM

MLM data structure SEM data structure

response x1 x2 x3 x4 x5 x6 teacherlD “ x1 x2 x3 x4 x5 x6 sid
1 4 1 0 0 0 0 0 1 1 4 4 3 4 4 3 55
2 4 0 1 0 0 0 0 1 2 6 6 4 6 4 4 55
3 3 0 0 1 0 0 0 1 3 5 5 2 6 4 4 55
4 4 0 0 0 1 0 0 1 4 4 4 5 5 3 3 55
5 4 0 0 0 0 1 0 1 5 4 4 4 4 3 2 55
6 3 0 0 0 0 0 1 1 6 4 4 2 4 2 2 55
7 6 1 0 0 0 0 0 2 7 5 4 3 5 3 3 41
8 6 0 1 0 0 0 0 2 8 3 2 2 3 3 2 41

data_t <- data %%
rename(schoolID = sid) %%
mutate(teacherID = 1:nrow(data)) %>% # add row for teacher ID
pivot_longer(
cols = starts_with("x"),

names_to = "item",
names_prefix = "x",
values_to = "response"

) %%

mutate(
x1l = ifelse(item == 1, 1, @),
x2 = ifelse(item == 2, 1, @),
x3 = ifelse(item == 3, 1, @),
x4 = ifelse(item == 4, 1, @),
x5 = ifelse(item == 5, 1, @),
x6 = ifelse(item == 6, 1, @)

) %%
select(response, x1:x6, item, teacherID, schoolID)



Unclustered Factor Model: MLM vs SEM

MLM code: Ime4 SEM code

sem <-
mlm <- lmer(response ~ 1 + x2 + X3 + x4 + x5 + x6 + (1llteacherID),
data = data_t, engagement =~ NA*x1 + x2 + x3 + x4 + x5 + x6
REML = TRUE)
summary(mlm) engagement ~~ 1*engagement

sem_fit <- cfa(model sem, data = data, meanstructure = TRUE)
summary(sem_fit,
fit.measures

standardized

TRUE,
TRUE)



Unclustered Factor Model: MLM vs SEM

me4 SEM results

Latent Variables:

MLM results:

Random effects: Estimate Std.Err z-value P(>lzl) Std.lv Std.all
Groups Name Variance Std.Dev. engggement - 0.736 0.012 62.120  0.000 736 0.840
. . . . d. .

teacherID (Intercept) 0.5620 0.7497 X2 0.840 ©0.013 63.372 ©0.000 ©0.840  0.851
Residual 0.54% 0.7414 x3 0.700 ©0.018 39.239 0.000 ©0.700  ©.599
Number of obs: 23364, groups: teacherID, 3894 x4 0.550 ©0.016 33.425 0.000 0.550  0.524
X5 0.804 0.016 50.571 0.000 ©0.804 0.728

Fixed effects: x6 0.821 0.016 51.505 0.000 ©0.821  0.738

Estimate Std. Error t value Intercepts:

(Intercept) 4.7774 0.0169 282.75 Estimate Std.Err z-value P(>lzl) Std.lv Std.all
x2 -0.1721 0.0168 -10.24 x1 4.777 ©0.014 340.099 Q.000 4.777  5.450
3 -1.2360 9.0168 -73.56 X2 4.605 0.016 291.129 0.000 4.605  4.665
.x3 3.541 0.019 189.049 0.000  3.541  3.030

x4 -0.3983 0.0168 -23.71 x4 4.379 0.017 260.388 0.000 4.379  4.173
X5 -0.5354 0.0168 -31.87 X5 4.242  0.018 239.665 0.000 4.242  3.841
x6 -0.8318 9.0168 -49.51 .X6 3.946  0.018 221.289 ©0.000 3.946  3.546
engagement 0.000 0.000 0.000

Variances:

Estimate Std.Err z-value P(1zl) Std.lv Std.all

engagement 1.000 1.000 1.000

x1 0.226 0.007 30.699 0.000 ©0.226 ©0.294

X2 0.268  ©0.009 29.443 0.000 0.268  0.275

.x3 0.876 ©0.021 41.111 0.000 0.876  0.641

x4 0.799 0.019 42.095 0.000 ©0.799  0.725

X5 0.573  0.015 37.956 0.000 ©0.573  0.469

X6 0.56¢4 0.015 37.582 0.000 ©0.564  ©.455



MLM: nlme approach
SEM code

sem <-
engagement =~ NA*x1 + x2 + x3 + x4 + x5 + x6

engagement ~~ 1*engagement

sem_fit <- cfa(model sem, data = data, meanstructure = TRUE)

[ ] ( —.F. ]
M LM COdeo n | me s :ﬁ.mzzsures TRUE,

TRUE)

standardized

mlm_nlme <- 1me(
response ~ @ + x1 + x2 + x3 + x4 + X5 + x6,
data = data_t,
random = ~ 1 | teacherlID,
weights = varldent(form = ~ 1 | item)

)

summary(mlm_nlme)

# level-1 variance components
(c(1.000, coef(mlm_nlme$modelStruct$varStruct, unconstrained = FALSE))*mlm_nlme$sigma)/2

# level-2 error variance (factor variance)
.7604%*2



Unclustered Factor Model: MLM vs SEM

MLM Results: nime SEM results

Latent Variables:

Random effects: Estimate Std.Err z-value P(>1zl) Std.lv Std.all
Formula: ~1 | teacherID engagement =~
(Intercept) Residual x1 0.736 0.012 62.120 0.000 0.736 0.840
. x2 0.840 0.013 63.372 0.000 0.840 0.851
Stdpev: 0.7603665 0.4741239 x3 0.700 0.018 39.239 0.000 0.700 0.599
Vari P ti x4 @.550 0.016 33.425 0.000 0.550 0.524
ariance runction; x5 0.804 0.016 50.571 0.000 0.804 0.728
Structure: Different standard deviations per stratum x6 0.821 9.016 51.505 0.000 0.821 0.738
Formula: ~1 | item
Parameter estimates: Intercepts:

1 2 3 4 5 6 Estimate Std.Err z-value P(>1zl) Std.lv Std.all
1.000000 1.144862 1.967339 1.893319 1.607276 1.600786 -x1 4.777  0.014 340.039  0.800  4.777  5.450
Fixed effects: response ~ @ + x1 + x2 + x3 + x4 + X5 + x6 X2 4.605  0.016 291.129  0.000  4.605  4.665

Value Std.Error DF t-value p-value .X3 3.541 0.019 189.049 0.000 3.541 3.030

) x4 4.379 ©0.017 260.388 0.000 4.379 4.173

x1 4.777350 0.01435974 19465 332.6907 ) ;5 4 242 0.018 239.665 0.000 4 242 3841

x2 4.605290 0.01497126 19465 307.6087 ) %6 3.946 0.018 221.289 ?.000 3946 3 546

x3 3.541346 0.01928487 19465 183.6334 ] engagement 0.000 0.000 0.000

x4 4.379045 0.01885230 19465 232.2817 Q

x5 4.241911 0.01725123 19465 245.8903 Q Variances:

X6 3.945557 0.01721636 19465 229.1749 1) Estimate Std.Err z-value P(>1zl) Std.lv Std.all

engagement 1.000 1.000 1.000

.x1 0.226 0.007 30.699 0.000 0.226 0.29%4

¥ @.268 0.0029 29.443 0.000 0.268 0.275

.X3 0.876 0.021 41.111 0.000 0.876 0.641

2 3 4 5 6 x4 0.799 0.019 42.095 0.000 0.799 0.725

.x5 0.573 0.915 37.956 0.000 0.573 0.469

0.2247934 0.29460390 0.8700454 ©.8058071 ©.5807167 @.5760366 X6 0.564 0.015 37.582 0.000 0.564 0.455



MLM: nlme approach
SEM code

# SEM with loadings constrained to 1

sem <-
engagement =~ 1*x1 + 1*x2 + 1*x3 + 1*x4 + 1*x5 + 1*x6

engagement ~~ engagement

MLM code: nime '

sem_fit <- cfa(model
summary(sem_fit,
mlm_nlme <- 1me( fit.measures
response ~ @ + x1 + x2 + x3 + x4 + X5 + x6, standardized
data = data_t,
random = ~ 1 | teacherlID,
weights = varldent(form = ~ 1 | item)

)

summary(mlm_nlme)

sem, data = data, meanstructure = TRUE)

TRUE,
TRUE)

# level-1 variance components
(c(1.000, coef(mlm_nlme$modelStruct$varStruct, unconstrained = FALSE))*mlm_nlme$sigma)/2

# level-2 error variance (factor variance)
.7604%*2



Latent Variable Variance
MLM Results: nime SEM results

Random effects: Latent Variables:
Formula: ~1 | teacherID Estimate Std.Err z-value P(>lzl) Std.lv Std.all
(Intercept) Residual engzge""e”t =~ . 000 0760 o 849

. X . . .

StdDev: 0.7603665 0.4741239 2 1000 0. 760 0. 314

X3 1.000 0.700 0.632

Variance function: x4 1.000 0.760 0.646

Structure: Different standard deviations per stratum X5 1.000 0.700 0.7006

Formula: ~1 | item X6 1.000 0.760 0.708
Parameter estimates: I .
ntercepts:

1 2 3 4 5 6 Estimate Std.Err z-value P(>lzl) Std.lv Std.all
1.000000 1.144862 1.967339 1.893319 1.007276 1.600786 .x1 4,777 0.014 332.734 0.000 4,777 5.332
Fixed effects: response ~ @ + x1 + x2 + x3 + x4 + X5 + x6 -X2 4.605  0.015 307.647  0.000  4.605  4.930

Value Std.Error DF +t-value p—value .X3 3.541 0.919 183.655 0.000 3.541 2.943

) x4 4,379 0.919 232.311 0.000 4,379 3.723

x1 4.777350 0.01435974 19465 332.6907 ] %5 4 242 0.017 245 920 2.000 4 242 3 941

xZ2 4.605290 0.01497126 19465 307.0087 1)} X6 3.946 0.017 229.202 2.000 3.946 3.673

x3 3.541346 0.01928487 19465 183.6334 7] engagement 0.000 0.000 0.000

x4 4.379045 0.01885230 19465 232.2817 /] Vari

x5 4.241911 0.01725123 19465 245.8903 0 artances:

Estimate Std.Err z-value P(1zl) Std.lv Std.all

X6 3.945557 0.01721636 19465 229.1749 0 engagement 0.578 0.015 39.098 ©0.000 1.000  1.000

.x1 0.225 0.907 31.058 0.000 0.225 0.280

X2 @.295 0.909 34.130 0.000 0.295 ©.338

.x3 0.870 0.021 40.802 0.000 0.870 0.601

x4 0.806 0.920 40.535 0.000 0.806 0.582

.X5 ©.581 0.915 39.121 0.000 0.581 0.501

X6 ©.576 0.915 39.079 0.000 0.576 0.499



A multilevel measurement model (MLMM) is used to do
measurement modelling in clustered data

« We outlined two approaches: (1) using an MLM framework and (2)
using an SEM framework

« We ran an unclustered (i.e., single-level) measurement model in
each framework to demonstrate the analogy and preview the
similarities and differences



Multilevel Measurement Models in a
Multilevel Modelling Framework



Section

Learning
MLMMs in MLM Framework Objectives

State the 5-step process for conducting Restructure data to be used with MLM
an MLMM in MLM framework framework

Execute multilevel
measurement model in R
package nime and interpret output

List and interpret equations for
multilevel measurement models in
MLM framework




Our Example

e Data structure: teachers within schools

« Between 5 and 50 teachers per school
« 254 schools

« Qutcome: perception of student engagement

« Qutcome variance can be decomposed into three parts
« Within teachers: variance across item responses
« Between teachers: variance across teachers within schools
 Between schools: variance across schools

* 6 items assessing student engagement

« 1 =strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 =
somewhat agree, 5 = agree, 6 = strongly agree

« Random subset of data from Huang and Cornell (2015)


https://github.com/flh3/pubdata/blob/main/MLCFA/raw.csv

Our Example

« x1: Students generally like this school.

« x2: Students are proud to be at this school.

 x3: Students finish their homework at this school.

 x4: Students hate going to school. (reverse-coded)

« x5: Getting good grades is very important to most students here.

« X6: Most students want to learn as much as they can at this school.




MLMM: Equations

* Qutcome: response to item
* Level 1 equation: Y, = moj + mq i X1k + -+ + 751 X6k + €5k
- Level 2 equations: my, = Boox + Tojk

Tk = Biok

. Tsjk = Bsox

 Level 3 equation: Byox = Yooo + Uoox
Biok = Y100
Bsok = V500

¢ TOtaI: Yijk = ]/100X1ijk + -+ y50()X6ijk T UOOk + rOjk + Eijk
* Yooo S€t tO zero



MLMM: What the Model Means

« We are specifying a measurement model for the items, providing a
student engagement factor score for each teacher and for each
school

 Model results:

e Intercept for each item that we assume holds across all teachers and
schools (testable assumption)

« Variance across teachers in student engagement factor scores
» Variance across schools in student engagement factor scores

 Factor loadings for each item are assumed to be 1 across teachers and
schools

Bauer, D.J. (2003). Estimating multilevel linear models as structural equation models. Journal of Educational and
Behavioral Statistics, 28, 135-167. d0i:10.3102/10769986028002135



Steps for Running MLMM

Load data

Prepare data for MLMM
Check extent of clustering

Step4 EYIYLY,

Interpret output



_ step 1 JESKETE

library(RCurl) # for extracting data from web
library(dplyr) # for data manipulation
library(tidyr) # for pivoting data
library(lme4) # for MLMs

library(performance) # for ICCs

data <- read.csv(text = getURL("https://raw.githubusercontent.com/fl1h3/pubdata/main/MLCFA/raw.csv"))



m Prepare data for MLMM

« Qur structure is responses to items, clustered within teachers,
clustered within schools

* We need long data when working with repeated measures
« That means transposing our dataset

« Our model outcome will be the response to a given item

« Each row is one item, with dummy coded variables
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m Prepare data for MLMM

Code

data_t <- data %>%
rename(schoolID = sid) %>%
mutate(teacherID = 1:nrow(data)) %>% # add row for teacher ID
pivot_longer(
cols = starts_with("x"),

names_to = "item",
names_prefix = "x",
values_to = "response”

) %>%

mutate(
x1l = ifelse(item == 1, 1, 0),
x2 = ifelse(item == 2, 1, @),
X3 = ifelse(item == 3, 1, @),
x4 = ifelse(item == 4, 1, @),
x5 = ifelse(item == 5, 1, @),
X6 = ifelse(item == 6, 1, @)

) %%
select(response, x1:x6, item, teacherID, schoolID)



m Check extent of clustering

« We check the extent of clustering to ascertain whether we need to go through
this multi-step process

« We do this with the intraclass correlation coefficient (ICC), a ratio of variance
between clusters to total variance

« With three levels, you can consider variance explained by clustering at level 2:

2
ICC;, = ‘o
Lz ps + 15 + 02

 Or variance explained by clustering at level 3:

ICCL3= ¢(2)
Pz + T8 + 02

e Ranges from 0 to 1, with higher numbers indicating that a larger proportion of
item response variance is between clusters

* If the data aren't very clustered gfICC below .05), may not be necessary to
take the extra steps accounting tor clustering




m Check degree of clustering

nime: Unconditional ICCs nime: Conditional ICCs

# conditional
conditional_nlme <- 1me(
response ~ @ + x1 + x2 + x3 + x4 + x5 + X0,

null_nlme <- 1me(
response ~ 1,

data = data_t, data = data_t,

method = "REML", method = "REML",

random = ~ 1 | schoolID/teacherID/item, random = ~ 1 | schoolID/teacherID/item,

control = lmeControl(optimizer = "Nelder-Mead") control = lmeControl(optimizer = "Nelder-Mead")
), ),

summary(null_nlme) summary(conditional_nlme)



m Check degree of clustering

* nlme outputs standard deviations, so we need to square them to
get variances

e item %in% teacherID %in% school ID indicates level-1 variance, ¢*
- teacherID %in% schoollD indicates level-2 variance, 7§
- schoollD indicates level-3 variance, ¢§

Random effects: Random effects:

Formula: ~1 | schoollID Formula: ~1 | schoollD
(Intercept) (Intercept)
StdDev: 0.4075208 StdDev: 0.4181061

Formula: ~1 | teacherID %in% schoolID
(Intercept)
StdDev: 0.00208

Formula: ~1 | teacherID %in% schoolID
(Intercept)
StdDev: 0.0386338

Formula: ~1 | item %in% teacherID %in% schoolID ) ) .
(Intercept) Residual Formula: ~1 | item %in¥% teacherID %i1n% schoollID

StdDev: 0.8006477 0.3341296 (Intercept) Residual
StdDev: ©.3570088 ©0.3177386



m Check degree of clustering

2 2
. 1CCy, = 22 . [CCpq = 20

pg+T5+0? P+ 15+02

. 0.607 o 0.41%
* Unconditional = — > > =0.30 * Unconditional = —; > >=0.14
0.602+0.412+0.80 0.602+0.412+0.80
s 0.64% - 0.4272
* Conditional = —; > > = 0.57 * Conditional = —; > > =0.25
0.642+0.422+0.36 0.642+0.422+0.36

Random effects: Random effects:

Formula: ~1 | schoollD Formula: ~1 | schoolID

(Intercept) (Intercept)

StdDev:  0.4075208 StdDev:  ©.4181061

Formula: ~1 | teacherID %in% schoolID
(Intercept)
StdDev: 0.00208

Formula: ~1 | teacherID %in% schoolID
(Intercept)
StdDev: 0.0386338

Formula: ~1 | item %in% teacherID %in% schoolID ) ) .
(Intercept) Residual Formula: ~1 | item %in¥% teacherID %i1n% schoollID

StdDev: 0.8006477 0.3341296 (Intercept) Residual
StdDev: ©.3570088 0.3177386



Total: Yijk — y100X1ijk + e+ y50()X6ijk + Upox + Tojk + €ijk

* The MLM framework allows us to model the relationships between
items and latent student engagement factor, and obtain standing of
teachers and schools on this factor

e Partitions total variance into 3 levels: within-teacher, between-
teacher, and between-schools

* Yields fixed effects for items (average responses to items across all
teachers and schools) and random effects for U, (how school
mean varies from grand mean), Fojk (how teacher's mean response
varies from school mean), and e;; (how teacher’s response to item
deviates from their own mean response across items controlling for
L1 predictors)




Total: Yijk — y100X1ijk + o+ Y500X6ijk T UOOk + Tojk + €ijk

mlmm <- 1lme(
response ~ @ + x1 + x2 + X3 + x4 + X5 + xb,
data = data_t,
random = ~ 1 | schoolID/teacherID/item,
weights = varldent(form = ~ 1 | item)

)

summary(mLmm)



Random effects: m Interpret OUtPUt

Formula: ~1 | schoolID

(Intercept)
StdDev:  0.4181061 Total: Yijx = v100X 1iji + - + V500X 6ijk + Uook + Toji + €ijic
Formula: ~1 | teacherID %in% schoolID

(Intercept)

StdDev: ©0.6386338

Formula: ~1 | item %in% teacherID %in% schoolID
(Intercept) Residual
StdDev: ©.3570088 ©.3177386

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | item
Parameter estimates:

1 2 3 4 5 6
1.000000 1.273703 2.708233 2.593207 2.100547 2.124616
Fixed effects: response ~ @ + x1 + x2 + X3 + x4 + x5 + x6

Value Std.Error DF t-value p-value

x1 4.741659 0.02977883 19465 159.2292

X2 4.569599 0.03004852 19465 152.0740

X3 3.505655 0.03241930 19465 108.1348

x4 4.343354 0.03217453 19465 134.9935

x5 4.206220 0.03122896 19465 134.6897

X6 3.909866 0.03127114 19465 125.0311

S I IO O I )



m Interpret output

Total: Yk = v100X1ijk + - + ¥500X 64k + Uoor + Tojk + €ijik

> # level-1 variance components

> (c(1.000, coef(mlmm$modelStruct$varStruct, unconstrained = FALSE))*mlmm$sigma)A2
2 3 4 5 6

0.1009578 0.1637858 0.7404776 0.6789130 0.4454560 @.4557227

> # level-2 error variance (teacher-level student engagement factor variance)

> 0.638%*2

[1] 0.407044

> # level-3 error variance (school-level student engagement factor variance)

> 0.418%*2

[1] 0.174724



« We ran a multilevel measurement model in an MLM framework,
allowing us to recover item means and factor variances
simultaneously

* The MLM framework is useful for obtaining latent trait values at
multiple levels, conducting uniform differential item functioning
analyses, investigating whether item-level predictors vary across
clusters and explain response patterns, etc.



Multilevel Measurement Models in an
SEM Framework



Section

Learning
MLMMs in SEM Framework Objectives

State the six-step process for
conducting an MLMM in an SEM Specify a multilevel CFA
framework
|
Execute a MLMM in an SEM framework Compare a single-level CFA to a
using R package /lavaan and interpret multilevel CFA
the output




Our Example

e Data structure: teachers within schools
» Between 5 and 50 teachers per school
e 254 schools

« Qutcome: perception of student engagement
« Within: teacher's perception of engagement
» Between: school-level factor of general engagement

* 6 items assessing student engagement

« 1 =strongly disagree, 2 = disagree, 3 = somewhat disagree, 4
= somewhat agree, 5 = agree, 6 = strongly agree

« Random subset of data from Huang and Cornell (2015)


https://github.com/flh3/pubdata/blob/main/MLCFA/raw.csv

MLMM in SEM Framework

engagement

« Aregular CFA (pictured) would tell us how our items relate to perceptions of student
engagement via the loadings, accounting for measurement variance and factor variance

. Tlhistmodel assumes overall item variances and covariances, doesn’'t account for potential
clustering

« What if our data are clustered?

« Parameter estimates, standard errors, and model fit might be biased
- Student engagement might have different meanings at individual and cluster level



MLMM in SEM Framework

o d « [«@

<: engagement
W

* In an MLMM in the SEM framework, the “within” portion of the model looks just
like a single-level CFA: items load directly to a within latent variable

 This "within" measurement model captures how the items reflect teacher
perceptions of student engagement

« Higher loading = item related to perception of higher student engagement



MLMM in SEM Framework

engagement Then we add the “between” level,
calculating group means that load
onto a between latent variable

* The "between" measurement
model captures how item means
reflect school-level perception of
student engagement

« Higher loading = item related to
higher levels of school-level
perception of engagement

« Within and between covariance
matrices estimated simultaneously,
partitions mixed total variance into
within and between

engagement_
W



Steps for Running

Step 4

Prepare Data

Check degree of clustering
Conventional CFA

Within CFA

Between CFA

Multilevel CFA

« Steps 4 and 5 are helpful if you're

having convergence issues, generate
suggested starting points

 Full data required

* i.e., notjust variance-covariance matrix

Dyer (2005)
Kaplan (2017)
Muthén (1994)



m Prepare Data

library(RCurl) # for extracting data from web
library(lavaan) # for SEM

library(dplyr) # renaming variables
library(lme4) # for ICCs

library(performance) # for ICCs

data <- read.csv(text = getURL("https://raw.githubusercontent.com/f1h3/pubdata/main/MLCFA/raw.csv")) %>%
rename(schoolID = sid)




m Check degree of clustering

« We check the extent of clustering to ascertain whether we need to go
through this multi-step process

* If the data aren't very clustered, it might be unnecessary to take the extra
steps accounting for clustering

« The intraclass correlation coefficient (ICC) from the multilevel modelling
framework is useful here ;
of

b + 7§
 With our items as the outcome, the ICC reflects how much variance in
item responses is between cluster

« Ranges from 0 to 1, with higher numbers indicating that a larger
proportion of item response variance is between clusters

« With ICC < .05, multilevel approach may not be needed

ICC =

Dyer (2005)



m Check degree of clustering

icc_x1l <- Imer(xl ~ 1 + (1llschoollD), data = data, REML = F) OUtPUt

performance: :icc(icc_x1)

*x1:0.203
icc_x2 <- 1lmer(x2 ~ 1 + (1lschoollID), data = data, REML = F)
performance: :icc(icc_x2) o XZ: 0.258

icc_x3 <- Imer(x3 ~ 1 + (1llschoollD), data = data, REML = F) ° .
performance: :icc(icc_x3) X3 . O . 1 43

F) x4:0.109

Il
Il

Il

Il

Il
Il

icc_x4 <- 1mer(x4 ~ 1 + (1lschoollID), data = data, REML =
performance: :icc(icc_x4)
. [ ]
icc_x5 <- 1mer(x5 ~ 1 + (1lschoolID), data = data, REML = F) XS' 0'240

performance: :icc(icc_x5) o X6. O 127

icc_x6 <- 1lmer(x6 ~ 1 + (1lschoolID), data = data, REML = F)
performance: :icc(icc_x6)

Il
Il



m Conventional CFA

« What is it; factor analysis of the total covariance matrix, which
results in biased model fit and loading estimates because the total
covariance matrix is an uninterpretable blend of within and
between effects

e If the results are biased, why conduct this step?

e If your ICC is greater than .05, you don't need to conduct the
conventional CFA, this model is more to illustrate the effect of
accounting for the clustered structure

e If your ICC is less than .05, you might run a conventional CFA as
normal in lieu of using the multilevel approach

» With insufficient clustering, there is not a lot of mean level variance across
clusters, so estimation might be difficult/impossible

Dyer (2005)



Conventional CFA

regular <-

engagement =~ NA*x1 + x2 + X3 + x4 + X5 + xb6
engagement ~~ 1*engagement

regular_fit <- cfa(model = regular, data = data)
summary(regular_fit, fit.measures = TRUE, standardized = TRUE)

engagement




Model Test User Model:

Test statistic
Degrees of freedom
P-value (Chi-square)

Model Test Baseline Model:
Test statistic

Degrees of freedom
P-value

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

2226.990
9
0.000

12323.196
15
0.000

0.820
0.700

Conventional CFA

Loglikelihood and Information Criteria:

Loglikelihood user model (H@)
Loglikelihood unrestricted model (H1)

Akaike (AIC)
Bayesian (BIC)
Sample-size adjusted Bayesian (BIC)

Root Mean Square Error of Approximation:

RMSEA

90 Percent confidence interval - lower
90 Percent confidence interval - upper
P-value RMSEA <= 0.05

Standardized Root Mean Square Residual:

SRMR

-29138.
-28025.

58301.
58376.
58338.

OO0 .

673
178

346
552
421

.252
.243
.260
.000

.079



Conventional CFA

Latent Variables:
Estimate Std.Err z-value P(lzl) Std.lv Std.all

engagement =~
x1 0.736 0.012 ©62.120 0.000 0.736 0.840
x2 0.840 0.013 63.372 0.000 0.840 0.851
x3 0.700 0.018 39.239 0.000 0.700 0.599
x4 0.550 0.016 33.425 0.000 0.550 0.524
x5 0.804 0.016 50.571 0.000 0.804 0.728
x6 0.821 0.016 51.505 0.000 0.821 0.738
Variances:

Estimate Std.Err z-value P(lzl)  Std.lv Std.all
engagement 1.000 1.000 1.000
.x1 0.226 0.007 30.699 0.000 0.226 0.294
X2 0.268 0.009 29.443 0.000 0.268 0.275
.X3 0.876 0.021 41.111 0.000 0.876 0.641
X4 0.799 0.019 42.095 0.000 0.799 0.725
.X5 0.573 0.015 37.956 0.000 0.573 0.469
. X6 0.564 0.015 37.582 0.000 0.564 0.455



e [tis possible to run level-specific models

« To do so, you need to manually partition the total variance-
covariance matrix into within and between matrices

* Spyy (pooled within) is an unbiased estimate of population within
covariance matrix

* Sg is a biased estimator of the population between covariance
matrix, but can be adjusted with information about average cluster
Size and Sp,

Huang (2017)
Muthén (1994)



Spw and Sg: Equations

« We'll be using the function written by Huang (2017) to get our partitioned
covariance matrices

https://github.com/flh3/mcfa/blob/main/02_syntax/mcfa2.R

» Equations for your reference | |
* nis total sample size

G nNg

Sew = (1= 6)7 2,3 Via ~ ¥)(¥ie ~ V) * G is number of groups
) * Vig IS score of observation | nested
Sp = (G~ 1)) nylye — ¥)(vg — )’ In group g
~ * y, is cluster mean in group g
o= [ =Y (G — 1] » 7 is overall grand mean

e C is average cluster size

c Huang (2017)
Muthén (1994)


https://github.com/flh3/mcfa/blob/main/02_syntax/mcfa2.R

Within CFA

« What is it: Factor analysis of within-level using pooled within
covariance matrix, Spy

* Why do it: Evaluates the appropriateness of the within structure
* Yields fit information and factor loadings at the within-only level

e If fit is poor, may want to re-evaluate the within model (and
document that you did so)

» If you want an unbiased within-only model (i.e., you want to
account for clustering but aren't interested in the between model),
you can use the output from this model

* Can be used to inform starting values for the MLMM if there are
convergence issues (more on that later)



Step 4 Within CFA

B

e

<: engagement
W

within <-

engagement_w =~ NA*x1 + x2 + X3 + x4 + X5 + xb
engagement_w ~~ 1*engagement_w

within_fit <- cfa(within, sample.cov = x$pw.cov, sample.nobs = x$n)
summary(within_fit, fit.measures = TRUE, standardized = TRUE)



Model Test User Model:

Test statistic
Degrees of freedom
P-value (Chi-square)

Model Test Baseline Model:
Test statistic

Degrees of freedom
P-value

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

steps [RTER

2109.180
9
0.000

10000.088
15
0.000

0.790
0.049

Loglikelihood and Information Criteria:

Loglikelihood user model (H®)
Loglikelihood unrestricted model (H1)

Akaike (AIC)
Bayesian (BIC)
Sample-size adjusted Bayesian (BIC)

Root Mean Square Error of Approximation:

RMSEA
9@ Percent confidence interval - lower

9@ Percent confidence interval - upper
P-value RMSEA <= 0.05

Standardized Root Mean Square Residual:

SRMR

-27924.
-26869.

55872.
55947.
55909.

(S I B )

172
582

344
550
420

.245
.236
.254
.000

.081



Within CFA

Latent Variables:
Estimate Std.Err z-value P(1zl) Std.lv Std.all
engagement_w =~

x1 0.583 0.011 50.692 0.000 0.583 0.743
x2 0.642 0.013 51.300 0.000 0.042 0.749
x3 0.633 0.017 37.314 0.000 0.633 0.585
x4 0.450 0.016 27.759 0.000 0.450 0.454
x5 0.710 0.014 50.542 0.000 0.710 0.741
X6 0.800 0.015 53.102 0.000 0.800 0.7608
Variances:

Estimate Std.Err z-value P(lzl) Std.lv Std.all
engagement_w 1.000 1.000 1.000
.x1 0.276 0.008 34.740 0.000 0.276 0.448
X2 0.322 0.009 34.356 0.000 0.322 0.439
.X3 0.769 0.019 40.216 0.000 0.769 0.658
X4 0.780 0.018 42.190 0.000 0.780 0.794
.X5 0.414 0.012 34.833 0.000 0.414 0.451
.X6 0.444 0.013 33.110 0.000 0.444 0.410



steps  [RReR

- What is it: Factor analysis of between level using between-group
covariance matrix, 2

* Why do it: Evaluates appropriateness of between structure
» Yields model fit and loadings at between level

* Might consider changing structure if fit is poor (and, again,
documenting that you did so)

« EFA with between-group covariance matrix

e Like within-only model, can be used to inform starting values for
the MLMM if there are convergence issues



Between CFA

engagement
b

T

between <-

engagement_b =~ NA*x1 + x2 + X3 + x4 + x5 + x6
engagement_b ~~ 1*engagement_b

between_fit <- cfa(between, sample.cov = x$b.cov, sample.nobs = x$G)
summary(between_fit, fit.measures = T, standardized = T)



steps  [RReR

Model Test User Model:

Test statistic
Degrees of freedom
P-value (Chi-square)

Model Test Baseline Model:
Test statistic

Degrees of freedom
P-value

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

257.623
9
0.000

1706.279
15
0.000

@.853
@.755

Loglikelihood and Information Criteria:

Loglikelihood user model (H@)
Loglikelihood unrestricted model (H1)

Akaike (AIC)
Bayesian (BIC)
Sample-size adjusted Bayesian (BIC)

Root Mean Square Error of Approximation:

RMSEA

9@ Percent confidence interval - lower
90 Percent confidence interval - upper
P-value RMSEA <= 0.05

Standardized Root Mean Square Residual:

SRMR

-2450.
-2322.

4925.
4968.
4930.

S I I B O

816
005

632
089
038

.330
.296
.365
. 000

.071



Between CFA

Latent Variables:
Estimate Std.Err z-value P(>lzl) Std.lv Std.all
engagement_b =~

x1 1.643 0.080 20.553 0.000 1.643 0.956
x2 2.027 0.097 20.910 0.000 2.027 0.965
x3 1.564 0.109 14.318 0.000 1.564 0.704
x4 1.260 0.090 14.030 0.000 1.260 0.753
x5 1.901 0.122 15.568 0.000 1.901 0.809
X6 1.573 0.094 16.703 0.000 1.573 0.848
Variances:

Estimate Std.Err z-value P(>lzl) Std.lv Std.all
engagement_b 1.000 1.000 1.000
x1 0.253 0.037 6.846 0.000 0.253 0.086
X2 0.303 0.052 5.870 0.000 0.303 0.069
.X3 1.747 0.162 10.760 0.000 1.747 0.417
x4 1.212 0.112 10.793 0.000 1.212 0.433
.X5 1.913 ©.181 10.578 0.000 1.913 0.346
.X6 0.963 0.093 10.322 0.000 0.963 0.280



stepe (YR

« What is it: simultaneous factor analysis of both within- and
between-group covariance matrices

« Why do it: model building all in one place is easier, and allows for
ease of building on a structural model

« What will it tell you: loadings and fit information for within and
between models simultaneously



Multilevel CFA

engagement
)

multilevel <-

level: 1
engagement_w NA*x1 + x2 + X3 + x4 + X5 + X6
engagement_w ~~ l1*engagement_w

Il
?

level: 2
engagement_b NA*x1 + x2 + X3 + x4 + X5 + xb
engagement_b ~~ 1*engagement_b

C

Il
l

multilevel_fit <- cfa(model = multilevel, data = data, cluster = "schoolID™)
summary(multilevel_fit, fit.measures = TRUE, standardized = TRUE)

engagement_
w



stepe (YR

Model Test User Model:

Test statistic
Degrees of freedom
P-value (Chi-square)

Model Test Baseline Model:
Test statistic

Degrees of freedom
P-value

User Model versus Baseline Model:

Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

2207.215
18
0.000

10988 .837
30
0.000

0.800
@.667

Loglikelihood and Information Criteria:

Loglikelihood user model (H®)
Loglikelihood unrestricted model (H1)

Akaike (AIC)
Bayesian (BIC)
Sample-size adjusted Bayesian (BIC)

Root Mean Square Error of Approximation:

RMSEA
9@ Percent confidence interval - lower

9@ Percent confidence interval - upper
P-value RMSEA <= 0.05

-28526.
-27422.

57112.
57301.
57205.

n I O O

495
888

9291
007
680

177
171
.183
. 000

Standardized Root Mean Square Residual (corr metric):

SRMR (within covariance matrix)
SRMR (between covariance matrix)

Q.
Q.

082
083



Multilevel CFA

Level 1 [within]:

Latent Variables:
Estimate Std.Err z-value P(1zl)  Std.1lv Std.all
engagement_w =~

x1 0.554 0.015 37.942 0.000 @.554 0.709
x2 0.618 0.016 39.443 0.000 0.618 0.721
x3 0.6064 @.019 35.735 0.000 0.664 0.609
x4 0.437 0.017 25.388 0.000 0.437 0.440
x5 0.744 0.016 45.134 0.000 0.744 0.770
x6 0.837 0.018 46.600 0.000 0.837 0.797
Intercepts:

Estimate Std.Err z-value P(l1zl)  Std.lv Std.all
.x1 0.000 0.000 0.000
X2 0.000 0.000 0.000
.x3 0.000 0.000 0.000
x4 0.000 0.000 0.000
.x5 0.000 0.000 0.000
. X6 0.000 0.000 0.000
engagement_w 0.000 0.000 0.000

Variances:

Estimate Std.Err z-value P(lzl)  Std.lv Std.all
engagement_w 1.000 1.000 1.000
.x1 0.303 0.012 24.479 0.000 0.303 0.497
X2 0.353 0.015 24.274 0.000 @.353 0.480
.x3 0.746 0.020 36.689 0.000 0.746 0.629
x4 0.799 0.020 40.303 0.000 @.799 0.807
.X5 0.381 0.015 24.598 0.000 0.381 0.407
.X6 0.403 0.019 21.618 0.000 0.403 0.365



Multilevel CFA

Level 2 [schoollD]:

Latent Variables:
Estimate Std.Err z-value P(1zl) Std.lv Std.all
engagement_b =~

x1 0.410 0.023 17.766 0.000 0.410 1.006

x2 0.503 0.028 18.274 0.000 0.503 1.006

x3 0.326 0.031 10.528 0.000 0.326 0.802

x4 0.308 0.025 12.268 0.000 0.308 0.911

x5 0.395 0.034 11.783 0.000 @.395 0.799

x6 0.339 0.027 12.377 0.000 @.339 0.922
Intercepts:

Estimate Std.Err z-value P(lzl)  Std.lv Std.all

.x1 4.743 0.929 163.740 9.000 4.743 11.636
.x2 4.562 0.035 130.713 0.000 4.562 9.117
.x3 3.518 0.032 110.771 0.000 3.518 8.672
x4 4.348 0.027 160.013 0.000 4,348 12.877
.x5 4.202 0.035 118.453 0.000 4.202 8.504
.X6 3.917 0.029 133.737 0.000 3.917 10.655
engagement_b 0.000 0.000 0.000

Variances:
Estimate Std.Err z-value P(l1zl)  Std.lv Std.all
engagement_b 1.000 1.000 1.000

X1 -0.002 0.002 -1.006 9.280 -0.002 -0.012
X2 -0.003 0.003 -1.033 0.302 -0.003 -0.012
.X3 0.059 0.011 5.459 0.000 0.059 @.356
X4 0.019 0.008 2.540 0.011 0.9019 0.170
.X5 0.088 0.011 7.771 0.000 0.088 0.361
.Xb 0.020 0.0006 3.497 0.000 0.020 0.150



Comparing CFA Results

Models 22 df CFI RMSEA SRMR
Regular 2226.990 9 0.820 0.700 0.079

Within 2109.180 9 0.790 0.245 0.081
Between 257.623 9 0.853 0.330 0.071
Multilevel 2207.215 18 0.800 0.177 W=0.082

B =0.083



Comparing Regular and Multilevel CFA Results

engagement




Setting Starting Values

« As mentioned, you might want to run the individual-level models if
your initial MLMM doesn’t converge to set starting values

» To set starting values, you use the special start() function in your
model specification

multilevel <- '

level: 1
engagement_w =~ NA*x1 + start(0.642)*x2 + start(0.633)*x3 +
start(0.450)*x4 + start(0.710)*x5 + start(0.800)*x6
engagement_w ~~ 1*engagement_w

level: 2
engagement_b =~ NA*x1 + start(2.027)*x2 + start(1.564)*x3 +
start(1.260)*x4 + start(1.901)*x5 + start(1.573)*x6
engagement_b ~~ 1*engagement_b

* The values input to start() are those from the individual-level models



* Multilevel measurement modelling in an SEM framework is more
flexible than in an MLM framework

« A multi-step process is recommended for understanding your
modelling: check clustering, regular CFA, within-only, between-only,
multilevel

« To conduct a multilevel CFA, the total covariance matrix is
partitioned into within and between covariance matrices, either
manually or automatically with software

* There is a lot of room for decision-making, so documenting your
process is important



You have reached the end of this section...

Shaw, M. & Flake, J. K. (2023). Multilevel Measurement Models [Digital
ITEMS Module 34]. Educational Measurement: Issues and Practice,
34(4), 82.
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