
2 Identify when an MLMM is needed

3 Describe and execute an MLMM in a multilevel 
modelling framework

4 Describe and execute an MLMM in a structural 
equation modelling framework

1 Define a multilevel measurement model (MLMM)

Learning 
Objectives



Module Overview

• 5 sections of content
• Review of multilevel modelling

• Review of measurement modelling

• Multilevel measurement modelling (MLMM) overview

• MLMM in MLM framework

• MLMM in SEM framework

• Code and data for each module available to download



About the Authors
Mairead Shaw

• Ph.D. student in Quantitative Psychology at McGill University

• Research on effect sizes in multilevel modelling and measurement 
in replication studies

• Teaches multilevel modelling
• Co-author of open-source teaching materials at www.learn-mlms.com

Jessica K. Flake, Ph.D.

• Assistant Professor of Quantitative Psychology at McGill University

• Assistant Director for Methods at the Psychological Science 
Accelerator

• Research on measurement practices and the appropriate and 
transparent use of latent variable models in psychological research

• Teaches courses on introductory statistics, measurement theory, 
and multilevel modelling
• Co-author of open-source teaching materials at www.learn-mlms.com

http://www.learn-mlms.com/
http://www.learn-mlms.com/


Module Citation

Shaw, M. & Flake, J. K. (2023). Multilevel Measurement Models [Digital 
ITEMS Module 34]. Educational Measurement: Issues and Practice, 
34(4), 82. 



1

Multilevel Modelling Overview



Section 
Learning 

Objectives

Interpret output for fixed and random 
effects

Write and understand multilevel 
modelling equations

Recognize when the model is cross-
sectional or repeated measures

Understand when and why to use 
multilevel models

Multilevel Modelling Overview1



Clustered Data Structures

• Common in educational and psychological research

Students within classes

Patients within clinicians

Trials within people (repeated measures)



Why Care About Clustering?

• At least two levels of variance: within and between clusters
• Level 1 = students

• Level 2 = class

• What if we neglect clustering?
• Inflates sample size, deflates standard errors, increases likelihood of Type 1 

Error

• We miss out on interesting multilevel questions!



Example Equations

Outcome: student math achievement (math)

Level 1 predictor: hours spent studying (hours)

Level 2 predictor: teacher’s years of experience (texp)

• Random intercept and random slope



Outcome: student math achievement (math)

Level 1 predictor: hours spent studying (hours)

Level 2 predictor: teacher’s years of experience (texp)

Random Intercept and Random Slope

Random intercept, consistent slope Random slope, consistent intercept Random slope and intercept
Class 1

Class 2

Class 3



Example Equations

Outcome: student math achievement (math)

Level 1 predictor: hours spent studying (hours)

Level 2 predictor: teacher’s years of experience (texp)

• Random intercept and random slope

• Level 1 equation: 𝑚𝑎𝑡ℎ𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗ℎ𝑜𝑢𝑟𝑠𝑖𝑗 + 𝜖𝑖𝑗

• Level 2 equations: 𝛽0𝑗 = 𝛾00 + 𝛾01𝑡𝑒𝑥𝑝𝑗 + 𝑈0𝑗

• Total: 𝑚𝑎𝑡ℎ𝑖𝑗 = 𝛾00 + 𝛾01𝑡𝑒𝑥𝑝𝑗 + 𝛾10ℎ𝑜𝑢𝑟𝑠𝑖𝑗 + 𝑈0𝑗 + 𝑈1𝑗ℎ𝑜𝑢𝑟𝑠𝑖𝑗 + 𝜖𝑖𝑗

• Centering requires extra consideration in MLMs
• Without centering, effects are blends of within and 

between effects

Enders, C., & Tofighi, D. (2007). Centering Predictor Variables in Cross-Sectional 

Multilevel Models: A New Look at An Old Issue. Psychological Methods, 12, 121-138. 

doi:10.1037/1082-989X.12.2.121



Generalized Equation

Level 1: 𝑦𝑖𝑗 = 𝛽0𝑗 + σ𝑝=1
𝑃 𝛽𝑝𝑗𝑋𝑝𝑖𝑗 + 𝜖𝑖𝑗

Level 2 intercept: 𝛽0𝑗 = 𝛾00 + σ𝑞=1
𝑄

𝛾0𝑞𝑍𝑞𝑗 + 𝑈0𝑗

Level 2 slopes: 𝛽𝑝𝑗 = 𝛾𝑝0 + σ𝑞=1
𝑄

𝛾𝑝𝑞𝑍𝑞𝑗 + 𝑈𝑝𝑗

• 𝜖 ~ 𝑁 0, 𝜎2

• 𝑈𝑗 ~ 𝑀𝑉𝑁(0, 𝛕)
𝜏00

𝜏01 𝜏11



Repeated Measures

• Our example thus far has been cross-sectional, but sometimes data 
are repeated measures, with multiple responses on the outcome 
per person

• For example, students in a driver's ed class are shown 51 pictures, 
and they change slightly while they’re looking
• Outcome variable is log reaction time to notice a change

• Here, trials/measures are nested within students

• Level 1 variables are characteristics of the pictures
• How big is the change? Is the picture related to driving? Etc.

• Level 2 variables are characteristics of the person
• Gender? Age? etc.

Example From: Hoffman, L., & Rovine, M.J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative 

examples. Behavior Research Methods, 39(1), 101-117. https://doi.org/10.3758/bf03192848



Coding an MLM in R

• Data and example from Hoffman and Rovine (2007)

• Outcome of interest is log of reaction time for participants to detect 
a change to a picture

• Pictures varied on how salient the change in the picture was 
(salience)

• One of the primary questions was how age related to reaction time, 
given picture characteristics

Example From: Hoffman, L., & Rovine, M.J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative 

examples. Behavior Research Methods, 39(1), 101-117. https://doi.org/10.3758/bf03192848



Example Equations: Repeated Measures

Outcome: log of reaction time to notice difference between pictures (logRT)
Level 1 predictor: salience of change, centered around a constant (c_sal)
Level 2 predictor: age
• Random intercept and random slope

• Random intercept = how a person’s average RT deviates from mean across people, 
controlling for predictors

• Random slope = how the relationship between salience and RT deviates from mean 
across people, controlling for age

Level 1 equation: logRTij = 𝛽0𝑗 + 𝛽1𝑗𝑐_𝑠𝑎𝑙𝑖𝑗 + 𝜖𝑖𝑗

Level 2 intercept equation: 𝛽0𝑗 = 𝛾00 + 𝛾01𝑎𝑔𝑒𝑗 + 𝑈0𝑗

Level 2 slope equation: 𝛽1𝑗 = 𝛾10 + 𝑈1𝑗

Total: logRTij = 𝛾00 + 𝛾01𝑎𝑔𝑒𝑗 + 𝛾10𝑐_𝑠𝑎𝑙𝑖𝑗 + 𝑈0𝑗 + 𝑈1𝑗𝑐_𝑠𝑎𝑙𝑖𝑗 + 𝜖𝑖𝑗



Coding an MLM in R

• Repeated measures data, with many pictures per participant



Coding an MLM in R

• Data and example from Hoffman and Rovine (2007)



Interpreting Output

Model input information

Fit information

Random effects

Fixed effects



Fixed Effects

• (Intercept) = 𝛾00 = average log reaction 
time across all people across all photos, 
controlling for predictors

• c_sal = 𝛾10 = average effect of photo 
salience on reaction time across all 
people, controlling for age

• age = 𝛾01 = effect of age on average log 
reaction time, controlling for c_sal



Random Effects

• (Intercept) = 𝜏0
2 = 𝑣𝑎𝑟(𝑈0𝑗) = variance 

describing how people’s mean RT 
vary around grand mean intercept

• c_sal = 𝜏1
2 = 𝑣𝑎𝑟(𝑈1𝑗) = variance 

describing how people’s relationship 
with salience and RT varies around 
grand mean slope

• Residual = 𝜎2 = 𝑣𝑎𝑟(𝜖𝑖𝑗) = residual 
describing how people’s responses 
vary around their own mean



Two-Level MLM

Person 1

Picture 1 Picture 2 Picture 3

Person 2

Picture 1 Picture 2 Picture 3



Three-Level MLM

Person 1

Picture 1 Picture 2 Picture 3

Person 2

Picture 1 Picture 2 Picture 3

Driver’s 
Education 

Class 1



Three-Level MLM: Equations

Outcome: log of reaction time to notice difference between pictures (logRT)

Intercept-only model: no predictors yet

Level 1 equation: logRTijk = 𝜋0𝑗𝑘 + 𝜖𝑖𝑗𝑘

Level 2 intercept equation: 𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝑟0𝑗𝑘

Level 3 intercept equation: 𝛽00𝑘 = 𝛾000 + 𝑈00𝑘

Total: logRTijk = 𝛾000 + 𝑈00𝑘 + 𝑟0𝑗𝑘 + 𝜖𝑖𝑗𝑘

• logRTijk is log reaction time for picture i, person j, in class k

• 𝛾000 is grand mean RT across all pictures, all people, all classes

• 𝑈00𝑘 is residual term describing how class k’s average deviates from grand 
mean

• 𝑟0𝑗𝑘 is residual term describing how person j deviates from class mean

• 𝜖𝑖𝑗𝑘 is residual term describing how logRT to picture i deviates from person’s       
mean



Three-Level MLM: Code

Person 1

Picture 1 Picture 2 Picture 3

Person 2

Picture 1 Picture 2 Picture 3

Driver’s 
Education 

Class 1



Three-Level MLM: Output



Long vs Wide Data

• We often work with “wide” data: one row per person

• To run a repeated measures model, we need “long” data: one row 
per measurement

• In many cases, this will require transposing data



Summary

• Multilevel modelling is used in data structures where responses are 
clustered (e.g., students in classes, responses within person)

• It involves partitioning total variance to variance within and 
between clusters

• We reviewed formulae for cross-sectional, repeated measures, and 
three-level MLMs

• We implemented and interpreted a repeated measures and three-
level MLM in R



2

Measurement Modelling Overview



Section 
Learning 

Objectives

Interpret loadings, variances, and fit 
indices for CFA

Code a confirmatory factor analysis 
using lavaan in R

List the two elements of a structural 
equation model

Define measurement modelling

Measurement Modelling 
Overview

2



What are Measurement Models?

• In educational and psychological research, we often work with latent 
constructs
• Theoretical entities that account for characteristics or behaviors (Bandalos, 2018)
• e.g., motivation, depression, anxiety

• We create items (prompts, questions) to capture elements of these 
constructs so we can theorize about them

• Measurement modelling is the process of relating these items to the 
latent variables they (supposedly) capture

• Any kind of relationship between an item and a latent variable is a 
measurement model
• Sum scores
• Single items
• Factor analysis

Bandalos, D. L. (2018). Measurement theory and applications for the social sciences. New 

York, NY, US: The Guilford Press.



Structural Equation Modelling

• Combination of a type of measurement modelling (e.g., CFA) and 
analyzing relationships between variables of interest (path analysis)

• Three inputs, three outputs

In:
1. Theory of causal relationships between variables

2. Specification of relationships between variables of interest

3. Data

Out:
1. Numeric estimates of model parameters for hypothesized relationships 

between variables

2. Implications of the model not directly specified (e.g., W and Y unrelated, 
controlling for Z)

3. Fit indices reflecting degree to which testable implications are supported by data

Kline, R. B. (2015). Principles and practice of structural equation modeling, Fourth Edition: Guilford Publications.



Example CFA

• We'll now look at an example of a confirmatory factor analysis, a 
very common and useful measurement model

• First, we'll look at the data structure and discuss the models we'll 
run

• Then, we'll look at two different (equivalent) ways to identify the 
model and code it

• Finally, we'll look at output and interpret loadings, variances, and fit 
indices



Example CFA: Data Structure

• Simulated data

• Responses range from 1 to 5 for questions about anxiety and 
depression symptoms



Example CFA: Model Specification 

• Two-factor model: anxiety and depression

• Four items assessing anxiety: a1 - a4

• Three items assessing depression: d1 - d3

a1 a2 a3 a4

anxiety

d1 d2 d3

depression



Example CFA: Code



Example CFA: Loadings and Variances

-0.2-0.03-0.07
-0.47 0.37

0.20
0.27

-0.32



Example CFA: Fit Indices

https://dynamicfit.app/__landing__/

McNeish & Wolf (2021)



Example CFA: Code



Example CFA: Loadings and Variances

0.43
0.060.16

1.00 1.00 0.53 0.74

0.06



From CFA to SEM

• Once you have your measurement model sorted (in our case, the 
CFA), you can move on to SEM

• You can add more variables and use the latent variables from the 
measurement model as predictors or outcomes for other latent 
variables or observed variables

• Our focus is on the measurement model, so we won't cover SEM 
further



Summary

• Measurement modelling is the process of relating items to latent 
constructs

• Confirmatory factor analysis is one kind of measurement model

• Structural equation modelling combines measurement modelling 
(e.g., CFA) with structural modelling of relationships between 
latent variables

• We implemented a confirmatory factor analysis using lavaan in R



3

Multilevel Measurement Modelling



Section 
Learning 

Objectives

State two issues that arise from not 
using an MLMM

Understand when to use an MLMM
Define a multilevel measurement 

model (MLMM)

Multilevel Measurement 
Modelling

3

Describe two different approaches to 
multilevel measurement modelling



What is a Multilevel Measurement Model?

So far, we’ve introduced and reviewed two modelling frameworks

1. Multilevel modelling for clustered data

2. Measurement modelling in single-level data

We use multilevel measurement models (MLMMs) when these 
circumstances collide, i.e. when:

• We want to conduct measurement modelling (linking items to factors)

• In clustered data structures



Why use an MLMM?

MLMMs are a mix of measurement modelling and clustered data 
modelling

If you don’t use one, you run into two main issues:

no accounting for measurement error

no accounting for clustered data

Dyer, N., Hanges, P., & Hall, R. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership 

Quarterly, 16, 149-167. doi:10.1016/j.leaqua.2004.09.009

Huang, F. (2017). Conducting Multilevel Confirmatory Factor Analysis Using R.

Muthén, B. O. (1994). Multilevel Covariance Structure Analysis. Sociological Methods & Research, 22(3), 376-398. 

doi:10.1177/0049124194022003006

No Measurement Modelling

No Multilevel Modelling



• Assumes perfect measurement

• In our MLM example, we used hours studied and teacher salary, 
which could plausibly have no measurement error

• In our SEM example, we talked about anxiety and depression which 
are more clearly latent constructs

No Measurement Modelling



Why use an MLMM?

MLMMs are a mix of measurement modelling and clustered data 
modelling

If you don’t use one, you run into two main issues:

no accounting for measurement error

no accounting for clustered data

Dyer, N., Hanges, P., & Hall, R. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership 

Quarterly, 16, 149-167. doi:10.1016/j.leaqua.2004.09.009

Huang, F. (2017). Conducting Multilevel Confirmatory Factor Analysis Using R.

Muthén, B. O. (1994). Multilevel Covariance Structure Analysis. Sociological Methods & Research, 22(3), 376-398. 

doi:10.1177/0049124194022003006

No Measurement Modelling

No Multilevel Modelling



• Without MLM, we don't account for clustered data

• Violates assumption of independence

• Can bias parameter estimates, standard errors, and model fit

• Denies ability to ask multilevel questions

• Some constructs have different factor structures across levels

• Some constructs only exist at the group level, e.g., 
“classroom environment”

No Multilevel Modelling



MLM and SEM: Analogous Frameworks

MLM
𝑌𝑖𝑗 = 𝛽 + 𝑈𝑗 + 𝜖𝑖𝑗

SEM
𝑌𝑝𝑖 = 𝑣𝑝 + 𝜆𝑝𝑞𝜂𝑞𝑖 + 𝜖𝑝𝑖

Mehta & Neale (2005)

Y1j Y2j Yij

𝜋j

1
1

1

𝜎𝑏
2

𝜎𝑤
2 𝜎𝑤

2 𝜎𝑤
2

Between variance

Within variance

Y1i Y2i Ypi

ηi
𝜓

𝜃𝜃𝜃

Common variance

Unique variance

1 11



Two Frameworks: MLM or SEM

We can adapt each of the two frameworks reviewed to MLMM

MLM: Use multilevel modelling for measurement modelling



Two Frameworks: MLM or SEM

We can adapt each of the two frameworks reviewed to MLMM

SEM: Add multilevel modelling to measurement modelling

a1 a2 a3 a4

anxiety

d1 d2 d3

depression



Unclustered Factor Model: MLM vs SEM

• Let’s run a factor model in each framework assuming no clustering, 
to compare and set the stage for adding another level

• We’re not getting into data preparation (that’s in the next section) or 
model details, just looking at code and output

Example: Teacher perception of student engagement

• One factor

• Six items
• e.g., “Students generally like this school.”

• Data from: Huang F.L. & Cornell D.G. (2015). Factor structure of the high school teacher version of the
authoritative school climate survey. Journal of Psychoeducational Assessment, 1557-5144. 

doi:10.1177/0734282915621439.



Unclustered Factor Model: MLM vs SEM

MLM data structure SEM data structure



Unclustered Factor Model: MLM vs SEM

MLM code: lme4 SEM code



Unclustered Factor Model: MLM vs SEM

MLM results: lme4 SEM results



MLM: nlme approach

MLM code: nlme

SEM code



Unclustered Factor Model: MLM vs SEM

MLM Results: nlme SEM results

Level 1 error variances rescaled:



MLM: nlme approach

MLM code: nlme

SEM code



Latent Variable Variance 

MLM Results: nlme SEM results

Level 2 error variance:



Summary

• A multilevel measurement model (MLMM) is used to do 
measurement modelling in clustered data

• We outlined two approaches: (1) using an MLM framework and (2) 
using an SEM framework

• We ran an unclustered (i.e., single-level) measurement model in 
each framework to demonstrate the analogy and preview the 
similarities and differences



4

Multilevel Measurement Models in a 
Multilevel Modelling Framework



Section 
Learning 

Objectives

Execute multilevel 
measurement model in R 

package nlme and interpret output

List and interpret equations for 
multilevel measurement models in 

MLM framework

Restructure data to be used with MLM 
framework

State the 5-step process for conducting 
an MLMM in MLM framework

MLMMs in MLM Framework4



Our Example

• Data structure: teachers within schools
• Between 5 and 50 teachers per school
• 254 schools

• Outcome: perception of student engagement

• Outcome variance can be decomposed into three parts
• Within teachers: variance across item responses
• Between teachers: variance across teachers within schools
• Between schools: variance across schools

• 6 items assessing student engagement
• 1 = strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 = 

somewhat agree, 5 = agree, 6 = strongly agree

• Random subset of data from Huang and Cornell (2015)
• https://github.com/flh3/pubdata/blob/main/MLCFA/raw.csv

https://github.com/flh3/pubdata/blob/main/MLCFA/raw.csv


Our Example

• x1: Students generally like this school.

• x2: Students are proud to be at this school.

• x3: Students finish their homework at this school.

• x4: Students hate going to school. (reverse-coded)

• x5: Getting good grades is very important to most students here.

• x6: Most students want to learn as much as they can at this school.

Teacher 
1

x1 x2 x3

School 1

x4 x5 x6

Teacher 
2

x1 x2 x3 x4 x5 x6



MLMM: Equations

• Outcome: response to item

• Level 1 equation: Yijk = 𝜋0𝑗𝑘 + 𝜋1𝑗𝑘𝑋1𝑖𝑗𝑘 + ⋯ + 𝜋5𝑗𝑘𝑋6𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘

• Level 2 equations: 𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝑟0𝑗𝑘

• Level 3 equation: 𝛽00𝑘 = 𝛾000 + 𝑈00𝑘

• Total: Yijk = 𝛾100𝑋1𝑖𝑗𝑘 + ⋯ + 𝛾500𝑋6𝑖𝑗𝑘 + 𝑈00𝑘 + 𝑟0𝑗𝑘 + 𝜖𝑖𝑗𝑘 
• 𝛾000 set to zero

𝜋1𝑗𝑘 = 𝛽10𝑘

…
𝜋5𝑗𝑘 = 𝛽50𝑘

𝛽10𝑘 = 𝛾100

…
𝛽50𝑘 = 𝛾500



MLMM: What the Model Means

• We are specifying a measurement model for the items, providing a 
student engagement factor score for each teacher and for each 
school

• Model results:
• Intercept for each item that we assume holds across all teachers and 

schools (testable assumption)

• Variance across teachers in student engagement factor scores

• Variance across schools in student engagement factor scores

• Factor loadings for each item are assumed to be 1 across teachers and 
schools

Bauer, D.J. (2003). Estimating multilevel linear models as structural equation models. Journal of Educational and 
Behavioral Statistics, 28, 135-167. doi:10.3102/10769986028002135



Steps for Running MLMM

Step 1

Step 2

Step 3

Step 4

Step 5

Load data

Prepare data for MLMM

Check extent of clustering

MLMM

Interpret output



Step 1 Load dataStep 1 Load data



• Our structure is responses to items, clustered within teachers, 
clustered within schools

• We need long data when working with repeated measures

• That means transposing our dataset

• Our model outcome will be the response to a given item

• Each row is one item, with dummy coded variables

Step 2 Prepare data for MLMM



Step 2 Prepare data for MLMM

Before

After



Step 2 Prepare data for MLMM

Code



• We check the extent of clustering to ascertain whether we need to go through 
this multi-step process

• We do this with the intraclass correlation coefficient (ICC), a ratio of variance 
between clusters to total variance

• With three levels, you can consider variance explained by clustering at level 2:

𝐼𝐶𝐶𝐿2 =
𝜏0

2

𝜙0
2 + 𝜏0

2 + 𝜎2

• Or variance explained by clustering at level 3:

𝐼𝐶𝐶𝐿3 =
𝜙0

2

𝜙0
2 + 𝜏0

2 + 𝜎2

• Ranges from 0 to 1, with higher numbers indicating that a larger proportion of 
item response variance is between clusters

• If the data aren't very clustered (ICC below .05), may not be necessary to 
take the extra steps accounting for clustering

Step 3 Check extent of clustering



Step 3 Check degree of clustering

nlme: Unconditional ICCs nlme: Conditional ICCs



Step 3 Check degree of clustering

• nlme outputs standard deviations, so we need to square them to 
get variances

• item %in% teacherID %in% school ID indicates level-1 variance, 𝜎2

• teacherID %in% schoolID indicates level-2 variance, 𝜏0
2

• schoolID indicates level-3 variance, 𝜙0
2

ConditionalUnconditional



Step 3 Check degree of clustering

• 𝐼𝐶𝐶𝐿2 =
𝜏0

2

𝜙0
2+ 𝜏0

2+𝜎2

• 𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =
0.602

0.602+0.412+0.802 = 0.30

• 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =
0.642

0.642+0.422+0.362 = 0.57

ConditionalUnconditional

• 𝐼𝐶𝐶𝐿3 =
𝜙0

2

𝜙0
2+ 𝜏0

2+𝜎2

• 𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =
0.412

0.602+0.412+0.802 = 0.14

• 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 =
0.422

0.642+0.422+0.362 = 0.25



• The MLM framework allows us to model the relationships between 
items and latent student engagement factor, and obtain standing of 
teachers and schools on this factor

• Partitions total variance into 3 levels: within-teacher, between-
teacher, and between-schools

• Yields fixed effects for items (average responses to items across all 
teachers and schools) and random effects for U00k (how school 
mean varies from grand mean), r0jk (how teacher's mean response 
varies from school mean), and eijk (how teacher’s response to item 
deviates from their own mean response across items controlling for 
L1 predictors)

Total: Yijk = 𝛾100𝑋1𝑖𝑗𝑘 + ⋯ + 𝛾500𝑋6𝑖𝑗𝑘 + 𝑈00𝑘 + 𝑟0𝑗𝑘 + 𝜖𝑖𝑗𝑘

Step 4 MLMM



Step 4 MLMM

Total: Yijk = 𝛾100𝑋1𝑖𝑗𝑘 + ⋯ + 𝛾500𝑋6𝑖𝑗𝑘 + 𝑈00𝑘 + 𝑟0𝑗𝑘 + 𝜖𝑖𝑗𝑘



Total: Yijk = 𝛾100𝑋1𝑖𝑗𝑘 + ⋯ + 𝛾500𝑋6𝑖𝑗𝑘 + 𝑈00𝑘 + 𝑟0𝑗𝑘 + 𝜖𝑖𝑗𝑘

Step 5 Interpret output



Total: Yijk = 𝛾100𝑋1𝑖𝑗𝑘 + ⋯ + 𝛾500𝑋6𝑖𝑗𝑘 + 𝑈00𝑘 + 𝑟0𝑗𝑘 + 𝜖𝑖𝑗𝑘

Step 5 Interpret output



Summary

• We ran a multilevel measurement model in an MLM framework, 
allowing us to recover item means and factor variances 
simultaneously

• The MLM framework is useful for obtaining latent trait values at 
multiple levels, conducting uniform differential item functioning 
analyses, investigating whether item-level predictors vary across 
clusters and explain response patterns, etc.



5

Multilevel Measurement Models in an 
SEM Framework



Section 
Learning 

Objectives

Execute a MLMM in an SEM framework 
using R package lavaan and interpret 

the output

Specify a multilevel CFA
State the six-step process for 

conducting an MLMM in an SEM 
framework

Compare a single-level CFA to a 
multilevel CFA

MLMMs in SEM Framework5



Our Example

• Data structure: teachers within schools

• Between 5 and 50 teachers per school

• 254 schools

• Outcome: perception of student engagement

• Within: teacher's perception of engagement

• Between: school-level factor of general engagement

• 6 items assessing student engagement
• 1 = strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 

= somewhat agree, 5 = agree, 6 = strongly agree

• Random subset of data from Huang and Cornell (2015)
• https://github.com/flh3/pubdata/blob/main/MLCFA/raw.csv

https://github.com/flh3/pubdata/blob/main/MLCFA/raw.csv


MLMM in SEM Framework

• A regular CFA (pictured) would tell us how our items relate to perceptions of student 
engagement via the loadings, accounting for measurement variance and factor variance

• This model assumes overall item variances and covariances, doesn’t account for potential 
clustering

• What if our data are clustered?
• Parameter estimates, standard errors, and model fit might be biased
• Student engagement might have different meanings at individual and cluster level

x1 x2 x3 x4 x5 x6

engagement



MLMM in SEM Framework

• In an MLMM in the SEM framework, the “within” portion of the model looks just 
like a single-level CFA: items load directly to a within latent variable

• This "within" measurement model captures how the items reflect teacher 
perceptions of student engagement

• Higher loading = item related to perception of higher student engagement

x1 x2 x3 x4 x5 x6

engagement
_w



MLMM in SEM Framework

• Then we add the “between” level, 
calculating group means that load 
onto a between latent variable

• The "between" measurement 
model captures how item means 
reflect school-level perception of 
student engagement

• Higher loading = item related to 
higher levels of school-level 
perception of engagement

• Within and between covariance 
matrices estimated simultaneously, 
partitions mixed total variance into 
within and between

M6M1 M2 M3 M4 M5

engagement
_b

x1 x2 x3 x4 x5 x6

engagement_
w



Steps for Running

• Steps 4 and 5 are helpful if you’re 
having convergence issues, generate 
suggested starting points

• Full data required

• i.e., not just variance-covariance matrix

Dyer (2005)
Kaplan (2017)
Muthén (1994)

Step 1

Step 2

Step 3

Step 4

Step 5

Prepare Data

Check degree of clustering

Conventional CFA

Within CFA

Between CFA

Step 6 Multilevel CFA



Step 1 Prepare DataStep 1 Prepare Data



• We check the extent of clustering to ascertain whether we need to go 
through this multi-step process

• If the data aren't very clustered, it might be unnecessary to take the extra 
steps accounting for clustering

• The intraclass correlation coefficient (ICC) from the multilevel modelling 
framework is useful here

𝐼𝐶𝐶 =
𝜙0

2

𝜙0
2 + 𝜏0

2

• With our items as the outcome, the ICC reflects how much variance in 
item responses is between cluster

• Ranges from 0 to 1, with higher numbers indicating that a larger 
proportion of item response variance is between clusters

• With ICC < .05, multilevel approach may not be needed

Dyer (2005)

Step 2 Check degree of clustering



Step 2 Check degree of clustering

Output

• x1: 0.203

• x2: 0.258

• x3: 0.143

• x4: 0.109

• x5: 0.240

• x6: 0.127



• What is it: factor analysis of the total covariance matrix, which 
results in biased model fit and loading estimates because the total 
covariance matrix is an uninterpretable blend of within and 
between effects

• If the results are biased, why conduct this step?

• If your ICC is greater than .05, you don't need to conduct the 
conventional CFA, this model is more to illustrate the effect of 
accounting for the clustered structure

• If your ICC is less than .05, you might run a conventional CFA as 
normal in lieu of using the multilevel approach
• With insufficient clustering, there is not a lot of mean level variance across 

clusters, so estimation might be difficult/impossible

Dyer (2005)

Step 3 Conventional CFA



Step 3 Conventional CFA

x1 x2 x3 x4 x5 x6

engagement



Step 3 Conventional CFA



Step 3 Conventional CFA



SPW and SB

• It is possible to run level-specific models

• To do so, you need to manually partition the total variance-
covariance matrix into within and between matrices

• SPW (pooled within) is an unbiased estimate of population within 
covariance matrix

• SB is a biased estimator of the population between covariance 
matrix, but can be adjusted with information about average cluster 
size and SPW

Huang (2017)
Muthén (1994)



SPW and SB: Equations

• We’ll be using the function written by Huang (2017) to get our partitioned 
covariance matrices

https://github.com/flh3/mcfa/blob/main/02_syntax/mcfa2.R

• Equations for your reference

• Σ𝐵 =
𝑆𝐵−𝑆𝑃𝑊

𝑐 Huang (2017)
Muthén (1994)

• n is total sample size

• G is number of groups

• yig is score of observation I nested 
in group g

• ത𝑦𝑔 is cluster mean in group g

• ത𝑦 is overall grand mean

• c is average cluster size

https://github.com/flh3/mcfa/blob/main/02_syntax/mcfa2.R


• What is it: Factor analysis of within-level using pooled within 
covariance matrix, SPW

• Why do it: Evaluates the appropriateness of the within structure

• Yields fit information and factor loadings at the within-only level

• If fit is poor, may want to re-evaluate the within model (and 
document that you did so)

• If you want an unbiased within-only model (i.e., you want to 
account for clustering but aren't interested in the between model), 
you can use the output from this model

• Can be used to inform starting values for the MLMM if there are 
convergence issues (more on that later)

Step 4 Within CFA



Step 4 Within CFA

x1 x2 x3 x4 x5 x6

engagement
_w



Step 4 Within CFA



Step 4 Within CFA



• What is it: Factor analysis of between level using between-group 
covariance matrix, ΣB

• Why do it: Evaluates appropriateness of between structure

• Yields model fit and loadings at between level

• Might consider changing structure if fit is poor (and, again, 
documenting that you did so)
• EFA with between-group covariance matrix

• Like within-only model, can be used to inform starting values for 
the MLMM if there are convergence issues

Step 5 Between CFA



Step 5 Between CFA

M6M1 M2 M3 M4 M5

engagement
_b



Step 5 Between CFA



Step 5 Between CFA



• What is it: simultaneous factor analysis of both within- and 
between-group covariance matrices

• Why do it: model building all in one place is easier, and allows for 
ease of building on a structural model

• What will it tell you: loadings and fit information for within and 
between models simultaneously

Step 6 Multilevel CFA



Step 6 Multilevel CFA



Step 6 Multilevel CFA



Step 6 Multilevel CFA



Step 6 Multilevel CFA

Variances can’t be negative, these 
are likely near-zero



Comparing CFA Results

Models 𝜒2 df CFI RMSEA SRMR

Regular 2226.990 9 0.820 0.700 0.079

Within 2109.180 9 0.790 0.245 0.081

Between 257.623 9 0.853 0.330 0.071

Multilevel 2207.215 18 0.800 0.177
W = 0.082
B = 0.083



Comparing Regular and Multilevel CFA Results

0.736
0.840 0.700 0.550 0.804

0.821

0.410
0.503 0.326 0.308 0.395

0.339

4.743 4.562 3.518 4.348 4.202 3.917

0.554
0.618 0.664 0.437 0.744 0.837



Setting Starting Values

• As mentioned, you might want to run the individual-level models if 
your initial MLMM doesn’t converge to set starting values

• To set starting values, you use the special start() function in your 
model specification

• The values input to start() are those from the individual-level models



Summary

• Multilevel measurement modelling in an SEM framework is more 
flexible than in an MLM framework

• A multi-step process is recommended for understanding your 
modelling: check clustering, regular CFA, within-only, between-only, 
multilevel

• To conduct a multilevel CFA, the total covariance matrix is 
partitioned into within and between covariance matrices, either 
manually or automatically with software

• There is a lot of room for decision-making, so documenting your 
process is important



You have reached the end of this section…

Shaw, M. & Flake, J. K. (2023). Multilevel Measurement Models [Digital 
ITEMS Module 34]. Educational Measurement: Issues and Practice, 
34(4), 82. 
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