

# An Overview of Generalizability Theory

1

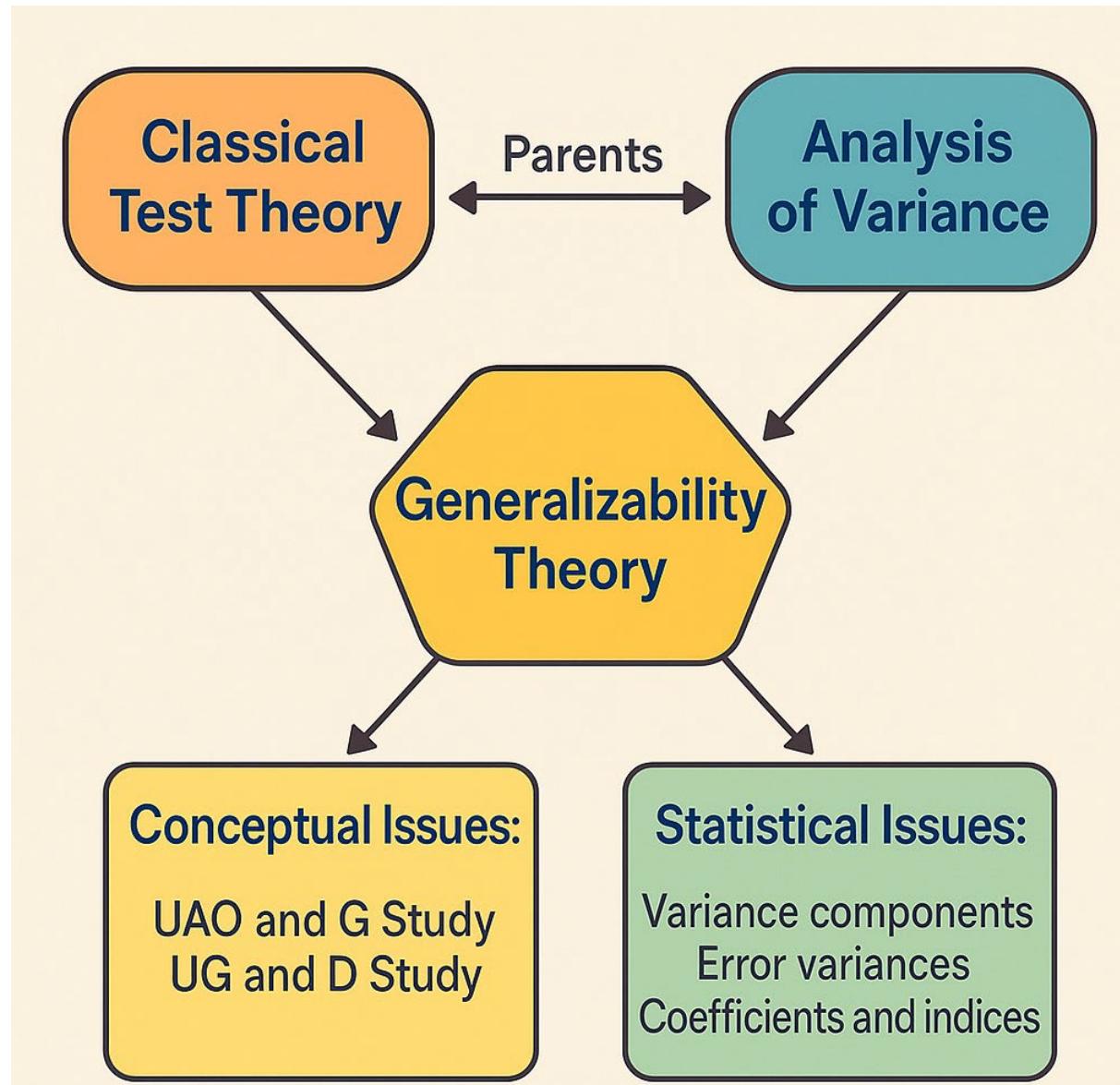
# Section Learning Objectives

1

## An Overview of Generalizability Theory

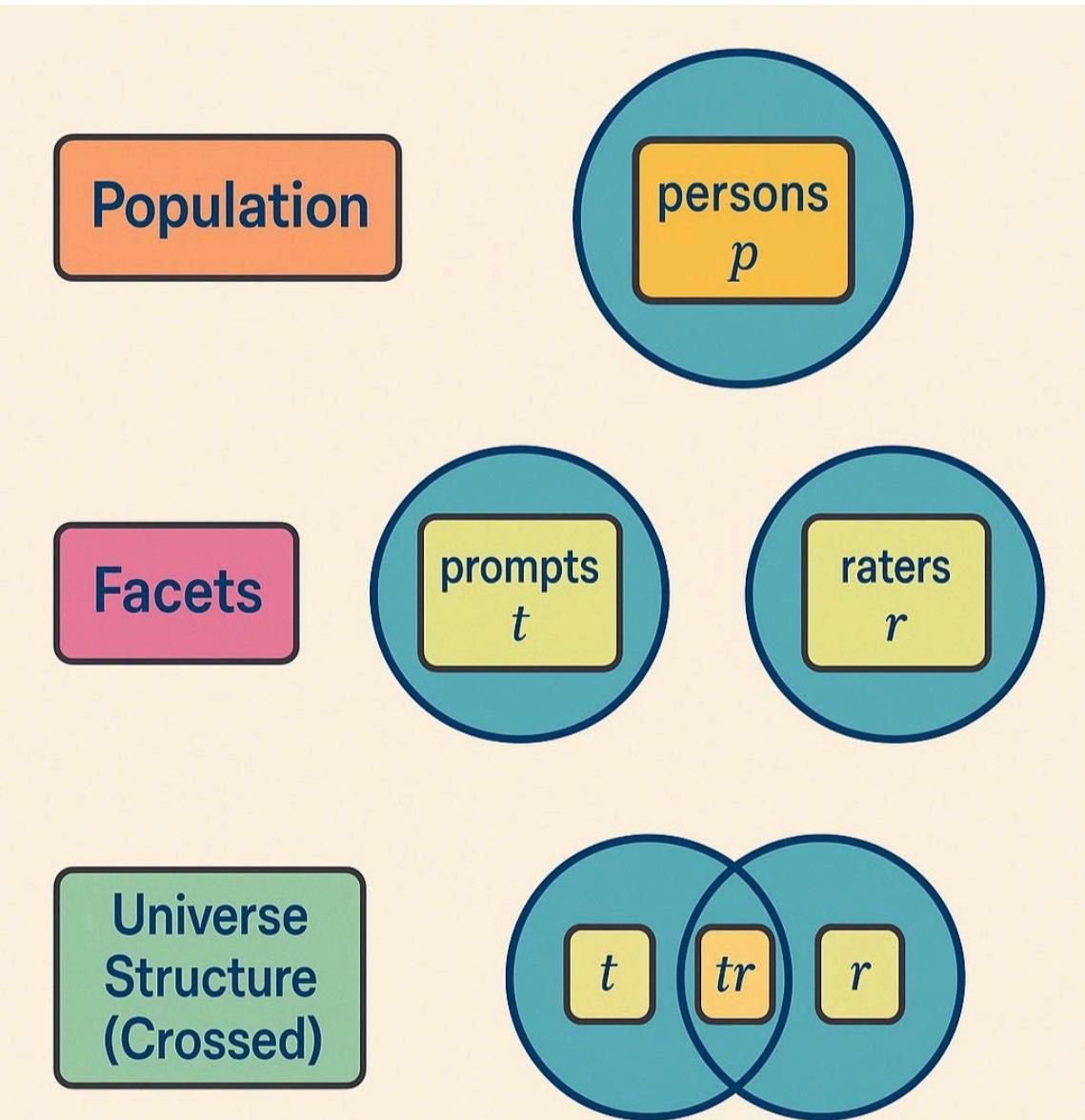
Describe the fundamental differences between classical test theory and generalizability theory

Explain key concepts of generalizability theory, including universes of admissible observations and universes of generalization

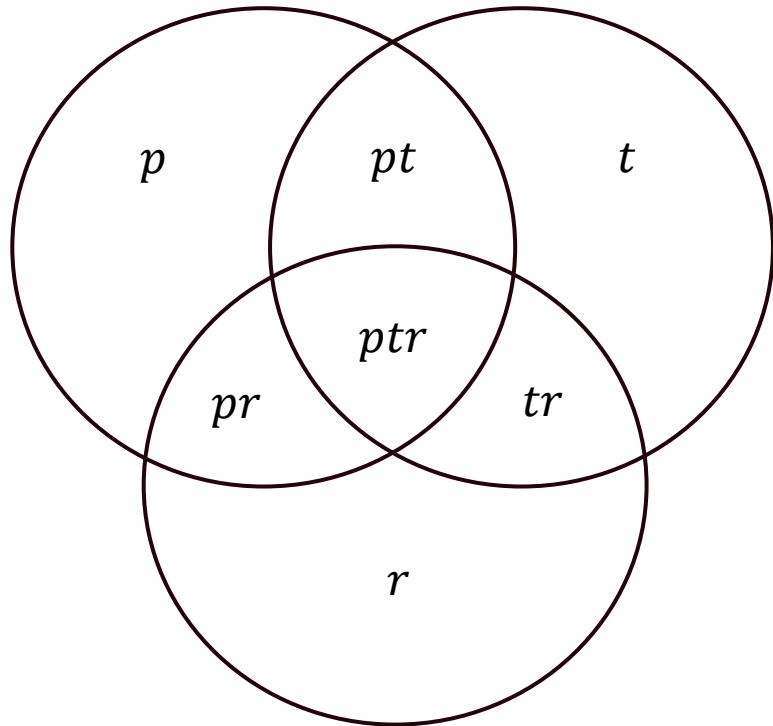

Demonstrate how to design and conduct a generalizability (G) study and interpret its variance components

Apply G study variance components in Decision (D) studies to obtain D-study outcomes

# Classical Test Theory and Generalizability Theory


- Classical Test Theory (CTT): 
$$X = T + E$$
  - ✓ Single undifferentiated error term
  - ✓ Classically parallel forms
- Generalizability Theory (GT): 
$$X = T + (E_1 + E_2 + \dots)$$
  - ✓ Differentiated error terms
  - ✓ Randomly parallel forms

# Framework of Generalizability Theory




# Universe of Admissible Observations (UAO)

- An investigator aims to develop a measurement procedure for a writing assessment targeting a population of persons ( $p$ ), the objects of measurement.
- The measurement facets may include writing prompts ( $t$ ) and raters ( $r$ ).
- In the universe of admissible observations (UAO), both facets are considered infinite.
- The two facets are crossed, denoted  $t \times r$ .

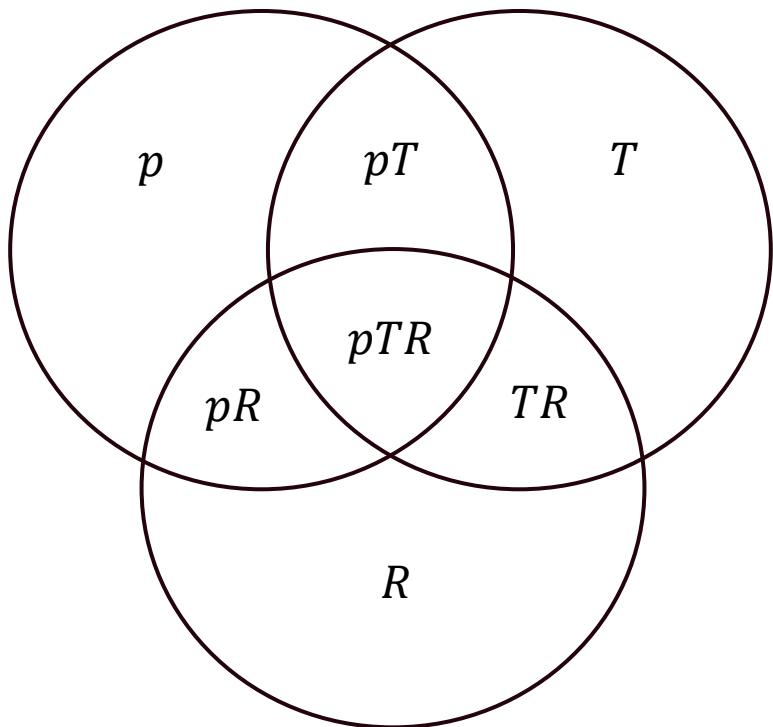


# Generalizability (G) Study $p \times t \times r$ Design



| Effect | Variance Component |
|--------|--------------------|
| $p$    | <b>.25</b>         |
| $t$    | <b>.06</b>         |
| $r$    | <b>.02</b>         |
| $pt$   | <b>.15</b>         |
| $pr$   | <b>.04</b>         |
| $tr$   | <b>.00</b>         |
| $ptr$  | <b>.12</b>         |

- G study sample sizes:  $n_p = 100$ ;  $n_t = 4$ ;  $n_r = 2$
- Linear model:  $X_{ptr} = \mu + \nu_p + \nu_t + \nu_r + \nu_{pt} + \nu_{pr} + \nu_{tr} + \nu_{ptr}$
- Variance components:  $\sigma^2(X_{ptr}) = \sigma^2(p) + \sigma^2(t) + \sigma^2(r) + \sigma^2(pt) + \sigma^2(pr) + \sigma^2(tr) + \sigma^2(ptr)$


# Universe of Generalization and D Studies

- The purpose of a Decision (D) study is to inform substantive decisions about measurement procedures for the objects of measurement.
- Decisions about the objects of measurement (e.g., persons) are based on their ***mean*** scores across the measurement conditions with  $n'_t$  and  $n'_r$ .
- Variance components for a D study with sample sizes  $n'_t$  and  $n'_r$  are obtained from the G study variance components.

# Universe of Generalization and D Studies

- A universe of generalization (UG) is the universe of *randomly parallel* measurement procedures to which an investigator wants to generalize based on the results of a particular D study.
- The design structure of a D study may differ from that of the corresponding G study.

# D Study $p \times T \times R$ Design



| $n'_t = 3, n'_r = 2$ |                    |
|----------------------|--------------------|
| Effect               | Variance Component |
| $p$                  | .25                |
| $T$                  | .02                |
| $R$                  | .01                |
| $pT$                 | .05                |
| $pR$                 | .02                |
| $TR$                 | .00                |
| $pTR$                | .02                |

- Linear model:  $\bar{X}_p = X_{pTR} = \mu + \nu_p + \nu_T + \nu_R + \nu_{pT} + \nu_{pR} + \nu_{TR} + \nu_{pTR}$
- $\sigma^2(T) = \frac{\sigma^2(t)}{n'_t}; \sigma^2(R) = \frac{\sigma^2(r)}{n'_r}; \sigma^2(pT) = \frac{\sigma^2(pt)}{n'_t}; \sigma^2(pR) = \frac{\sigma^2(pr)}{n'_r}; \sigma^2(TR) = \frac{\sigma^2(tr)}{n'_t n'_r}; \sigma^2(pTR) = \frac{\sigma^2(ptr)}{n'_t n'_r}$

## D Study $p \times T \times R$ Design: Error Variances and Coefficients

- Universe score variance:  $\sigma^2(\tau) = \sigma^2(p)$
- Absolute error variance:  $\sigma^2(\Delta) = \sigma^2(T) + \sigma^2(R) + \sigma^2(pT) + \sigma^2(pR) + \sigma^2(TR) + \sigma^2(pTR)$
- Relative error variance:  $\sigma^2(\delta) = \sigma^2(pT) + \sigma^2(pR) + \sigma^2(pTR)$
- Generalizability coefficient:

$$E\rho^2 = \frac{\sigma^2(\tau)}{\sigma^2(\tau) + \sigma^2(\delta)}$$

- Index of dependability:

$$\Phi = \frac{\sigma^2(\tau)}{\sigma^2(\tau) + \sigma^2(\Delta)}$$

# D Study $p \times T \times R$ Design: Computational Example

| $n'_t = 3, n'_r = 2$ |                    |
|----------------------|--------------------|
| Effect               | Variance Component |
| $p$                  | <b>.25</b>         |
| $T$                  | <b>.02</b>         |
| $R$                  | <b>.01</b>         |
| $pT$                 | <b>.05</b>         |
| $pR$                 | <b>.02</b>         |
| $TR$                 | <b>.00</b>         |
| $pTR$                | <b>.02</b>         |

- Universe score variance:  $\sigma^2(\tau) = \sigma^2(p) = .25$
- Absolute error variance:  $\sigma^2(\Delta) = .02 + .01 + .05 + .02 + .00 + .02 = .12$
- Relative error variance:  $\sigma^2(\delta) = .05 + .02 + .02 = .09$
- Generalizability coefficient:

$$E\rho^2 = \frac{.25}{.25 + .09} = .74$$

- Index of dependability:

$$\Phi = \frac{.25}{.25 + .12} = .68$$

# Summary

- GT explicitly models multiple sources of random error.
- GT involves two main steps:
  - ✓ UAO and G studies
  - ✓ UG and D studies
- Primary outcomes from G studies:
  - ✓ Variance components
- Primary outcomes from D studies:
  - ✓ D study variance components
  - ✓ Universe score variance
  - ✓ Error variances (absolute vs. relative)
  - ✓ Reliability-like coefficients (generalizability coefficient vs. index of dependability)

# Single-Facet Designs

2

# Section Learning Objectives

2

## Single-Facet Designs

Differentiate between crossed and nested designs

Describe the major purposes of G and D studies

Explain the difference between relative and absolute errors

Identify two reliability-like coefficients within Generalizability theory

# $p \times i$ Design

- $p \times i$  design (p crossed i)

- ✓ A random sample of  $n_p$  persons is selected from the population
- ✓ An independent random sample of  $n_i$  items is selected from the universe
- ✓ Each of the  $n_p$  persons took each of the  $n_i$  items, and the responses ( $X_{pi}$ ) are obtained

- Some terminology

- ✓ Population: the object of measurement
- ✓ Universe: measurement conditions

# $p \times i$ Design

- Universe of admissible observations
  - ✓ The complete set of all possible observations or measurement conditions that a researcher considers conceptually acceptable or relevant for measuring a particular construct
  - ✓ Under the  $p \times i$  design, the universe of admissible observations includes an item facet which consists of all possible items that could have been administered

# $p \times i$ Design

|          | Item1 | item2 | ... | Item k | Mean ( $\mu_p$ ) |
|----------|-------|-------|-----|--------|------------------|
| Person1  | 5     | 3     |     | 7      | 4.5              |
| Person2  | 1     | 2     |     | 1      | 2.1              |
| Person3  | 9     | 9     |     | 8      | 8.7              |
| Person4  | 4     | 6     |     | 7      | 5.8              |
| Person5  | 2     | 3     |     | 2      | 2.1              |
| ...      |       |       |     |        |                  |
| Person g | 2     | 3     |     | 5      | 3.7              |

Mean  $\mu_i$

4.4

4.6

5.0

Mean  $\mu = 4.6$

$$X_{p=4,i=1} = \mu + (\mu_p - \mu) + (\mu_i - \mu) + (X_{pi} - \mu_p - \mu_i + \mu)$$



Person effect,  $\nu_p$  Item effect,  $\nu_i$  Residual effect,  $\nu_{pi}$

Note. k often approaches  $\infty$  unless specified otherwise (e.g., mixed models)

# G Study Variance Components for $p \times i$ Design

- The variance component for persons is

$$\begin{aligned}\sigma^2(p) &= E_p (\mu_p - E_p \mu_p)^2 \\ &= E \nu_p^2\end{aligned}$$

- The total score variance is decomposed as

$$\sigma^2(X_{pi}) = \sigma^2(p) + \sigma^2(i) + \sigma^2(pi)$$

# Estimating Variance Components

- Several estimation methods have been developed including the Expected Mean Squares (EMS) approach, Bayesian estimation, and Maximum Likelihood (ML) estimation
- Those approaches usually provide very comparable results unless negative variance components are present
- By definition, variance components are nonnegative
- However, estimated variance components are subject to sampling variability.
- Increasing sample size may resolve the issue
- Often set to zero in subsequent D studies

# Estimating Variance Components (EMS)

- The ANOVA procedures for estimating variance components

$$\begin{aligned} & \sum_p \sum_i (X_{pi} - \bar{X})^2 \\ &= n_i \sum_p (X_p - \bar{X})^2 + n_p \sum_i (X_i - \bar{X})^2 + \sum_p \sum_i (X_{pi} - X_p - X_i + \bar{X})^2 \\ &= SS(p) + SS(i) + SS(pi) \end{aligned}$$

- Mean squares are:

$$MS(p) = \frac{SS(p)}{n_p - 1}; MS(i) = \frac{SS(i)}{n_i - 1}$$

$$MS(pi) = \frac{SS(pi)}{(n_p - 1)(n_i - 1)}$$

# Estimating Variance Components (EMS)

- Expected values of mean squares are

$$EMS(p) = \sigma^2(pi) + n_i \sigma^2(p)$$

$$EMS(i) = \sigma^2(pi) + n_p \sigma^2(i)$$

$$EMS(pi) = \sigma^2(pi)$$

- Solving these questions with mean squares in place of EMS,

$$\hat{\sigma}^2(p) = \frac{MS(p) - MS(pi)}{n_i}$$

$$\hat{\sigma}^2(i) = \frac{MS(i) - MS(pi)}{n_p}$$

$$\hat{\sigma}^2(pi) = MS(pi)$$

# D Studies for $p \times I$ Design

- Decisions based on  $n'_i$  items
- Universe of generalization
  - Over all items in the infinite universe
  - Replications of a measurement procedure
- Uppercase letters ( $I$ ) to highlight that decisions are made for average scores (not a single score)

# D Studies for $p \times I$ Design

- Linear model for  $X_{pI}$ , an examinee's average score over  $n'_i$  items

$$X_{pI} = \bar{X} = \mu + \nu_p + \nu_I + \nu_{pI}$$

- Universe score (true score analogue under CTT)

$$\mu_p \equiv E_I X_{pI}$$

- Universe score variance

$$\sigma^2(\tau) = \sigma^2(p) = E_p(\mu_p - \mu)^2$$

# D Studies for $p \times I$ Design

- The sample size for the object of measurement,  $n_p$ , does not apply
- Other D study variance components are calculated as:

$$\sigma^2(I) = \frac{\sigma^2(i)}{n'_i}$$

$$\sigma^2(pi) = \frac{\sigma^2(pi)}{n'_i}$$

# Error Variances

- **Absolute error** reflects all sources of measurement errors (defined by the D study design) that affect the absolute level of a score, often used when making criterion-referenced interpretations of scores

$$\Delta_{pI} = X_{pI} - \mu_p = \nu_I + \nu_{pI}$$
$$\sigma^2(\Delta) = \sigma^2(I) + \sigma^2(pI) = \frac{\sigma^2(i)}{n'_i} + \frac{\sigma^2(pi)}{n'_i}$$

- **Relative error** is concerned with sources of measurement errors that impact the ranking or relative standing of individuals, used when making norm-referenced interpretations

$$\delta_{pI} = (X_{pI} - \mu_I) - (\mu_p - \mu) = \nu_{pI}$$
$$\sigma^2(\delta) = \sigma^2(pI) = \frac{\sigma^2(pi)}{n'_i}$$

# Error Variances

- $\sigma^2(\Delta) \geq \sigma^2(\delta)$
- Under the classically parallel form assumption, no formal distinction between  $\sigma^2(\Delta)$  and  $\sigma^2(\delta)$

# Reliability-like Coefficients

- Generalizability coefficient

$$E\rho^2 = \frac{\sigma^2(p)}{\sigma^2(p) + \sigma^2(\delta)}$$

- Expected squared correlation between observed and universe scores
- Expected squared correlation between pairs of randomly parallel forms
- $E\rho^2$  for a  $p \times I$  design is identical to Cronbach's (1951) alpha, KR-20

- Phi coefficient or index of dependability

$$\Phi = \frac{\sigma^2(p)}{\sigma^2(p) + \sigma^2(\Delta)}$$

- $E\rho^2 \geq \Phi$

# *i:p* Design

- *i:p* design
  - ✓ A random sample of  $n_p$  persons is selected from the population
  - ✓ Each of the  $n_p$  persons is administered a different sample of the  $n_i$  items, with all items sampled from the same universe
- Linear model is

$$X_{pi} = \mu + \nu_p + \nu_{i:p}$$

# $I:p$ Design

- Linear model is

$$X_{pI} = \mu + \nu_p + \nu_{I:p}$$

- The variance component for the  $\nu_{I:p}$  effect is

$$\sigma^2(I:p) = \frac{\sigma^2(i:p)}{n'_i}$$

- Absolute and relative errors:

$$\begin{aligned}\Delta &= \delta = \nu_{I:p} \\ \sigma^2(\Delta) &= \sigma^2(\delta) = \frac{\sigma^2(i:p)}{n'_i} \\ &= \frac{\sigma^2(i) + \sigma^2(pi)}{n'_i}\end{aligned}$$

## $p \times I$ and $I:p$ Designs

- The crossed design,  $p \times I$ , produces a relative error variance less than or equal to the one under the nested design,  $I:p$
- The two designs yield the same absolute error variance
- If the universe of generalization has a crossed design, but data are collected under the nested design, this may lead to biased estimates of relative error variance and the generalizability coefficient
- Sections 3 and 4 will provide more detailed information for multi-facet designs (with more than one facet) in terms of G studies and D studies, respectively

# References

- Brennan, R. L. (2001). *Generalizability theory*. New York: Springer-Verlag.
- Lord, F. M., and Novick, M. R. (1968). *Statistical theories of mental test scores*. Reading, MA: Addison-Wesley.

# Generalizability (G) Studies for Multi-Facet Designs

3

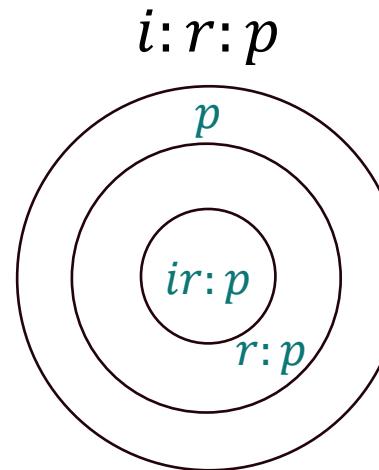
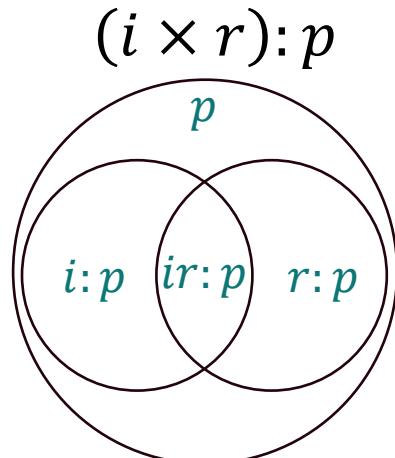
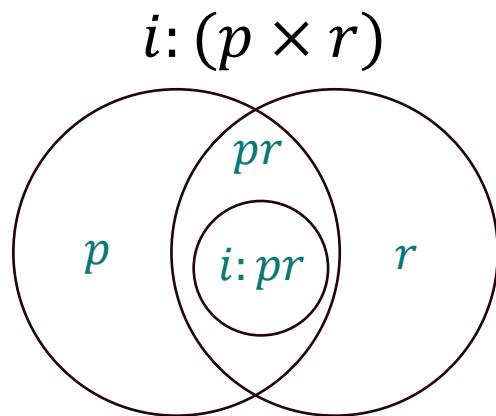
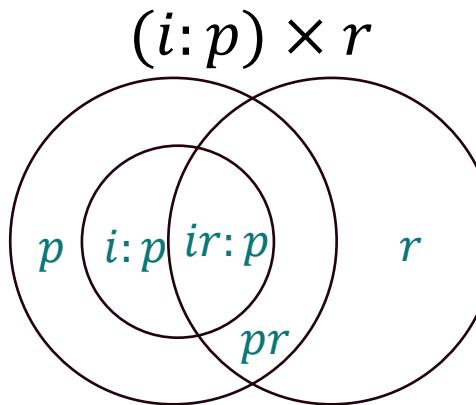
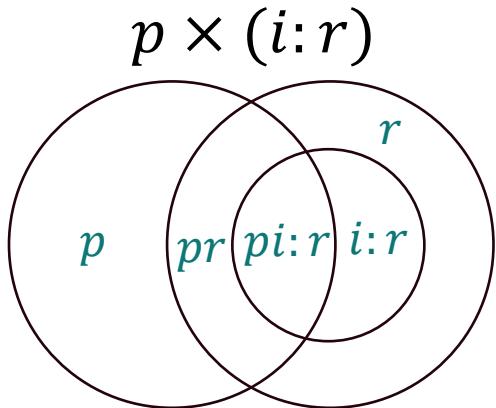
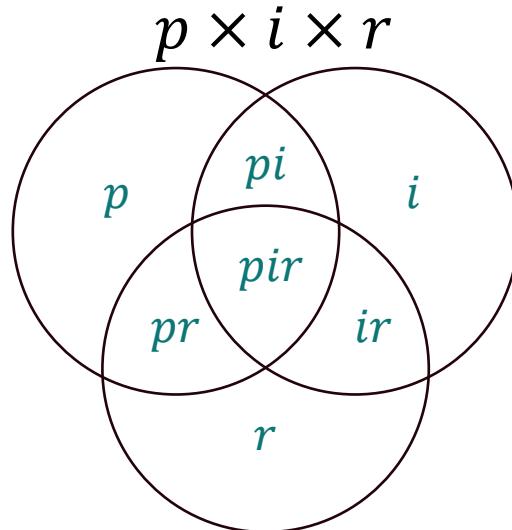
# Section Learning Objectives

3

## G Studies

Define a G study design for a given data collection design

Draw a Venn diagram for a given G study design

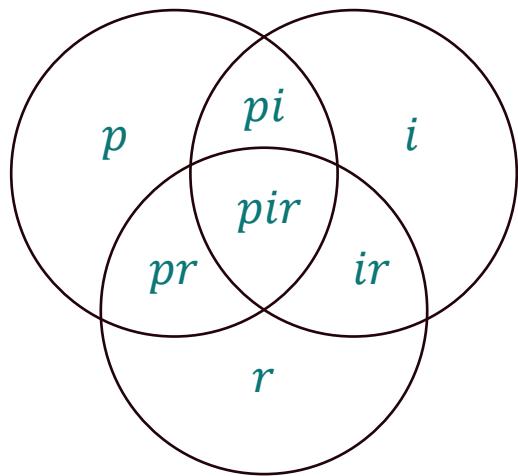






Explain the difference between main and interaction effects

Explain the issue of confounding effects

# Two-Facet Universes and Designs

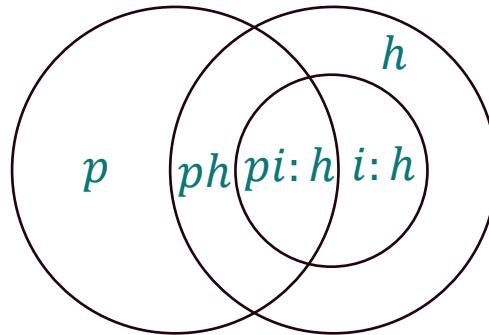
- G study: to obtain estimated variance components for a G study design
- Balanced vs. unbalanced
  - Balanced design: no missing data, or equal sample size for nested facet(s)
- Random effects models vs. mixed models
  - $n$  = sample size,  $N$  = the universe (population) size
  - If  $n = N < \infty$  for some facets and  $N \rightarrow \infty$  for all other facets, the model is the mixed model
  - If  $N \rightarrow \infty$  for all facets, the model is the random model
  - Multivariate generalizability theory may be preferred (see Brennan, 2001)

# Venn Diagrams



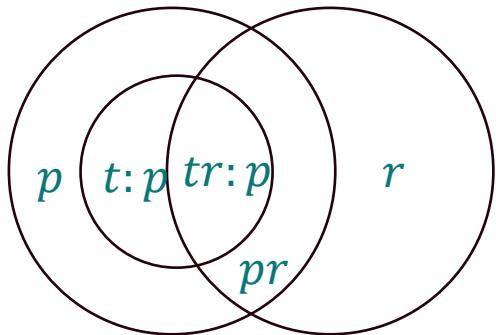

# Two-Facet Universes and Designs

- Main effects: represented by a circle
- Interaction effects: combinations for main effects
- Residual error


| Design                | Main Effects    | Interaction Effects |
|-----------------------|-----------------|---------------------|
| $p \times i \times r$ | $p, i, r$       | $pi, pr, ir, pir$   |
| $p \times (i:r)$      | $p, r, i:r$     | $pr, pi:r$          |
| $(i:p) \times r$      | $p, r, i:p$     | $pr, ir:p$          |
| $i:(p \times r)$      | $p, r, i:pr$    | $pr$                |
| $(i \times r):p$      | $p, i:p, r:p$   | $ir:p$              |
| $i:r:p$               | $p, r:p, i:r:p$ |                     |

# *p* × *i* × *r* Design

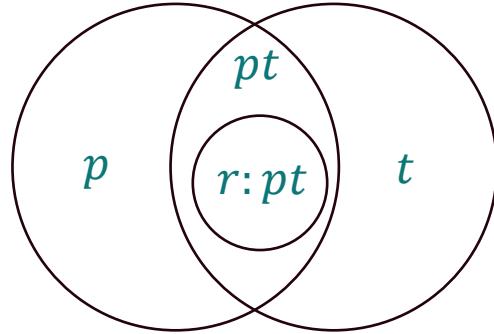



An Objective Structured Clinical Examination (OSCE) is designed to assess students' clinical skills. In Kreiter et al. (2019), the same two expert raters ( $r$ ) rated every person ( $p$ )'s performance on each of the five stations ( $i$ ). The station is a specific, timed, and focused assessment point within a structured clinical exam.

# $p \times (i:h)$ Design



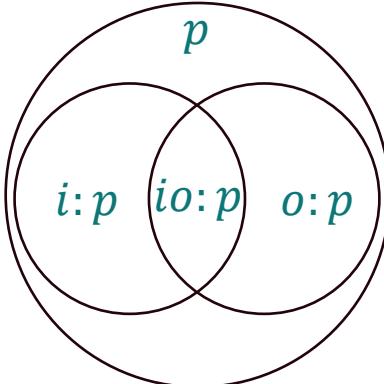
The Iowa Tests of Basic Skills (ITBS) of Maps and Diagrams test for 4<sup>th</sup> graders (*p*) had four passages (*h*), each including 6, 6, 7, and 7 items (*i*) (Lee & Frisbie, 1999).


# $(t:p) \times r$ Design



A team of raters ( $r$ ) evaluated teachers ( $p$ ) on a series of tasks ( $t$ ) that were unique to each teacher (McGaw et al., 1971).

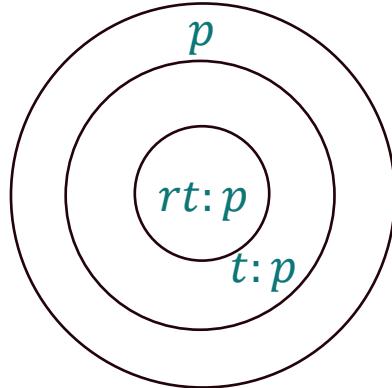
|    |       | Rater1 | Rater2 | Rater3 |
|----|-------|--------|--------|--------|
| P1 | Task1 |        |        |        |
|    | Task2 |        |        |        |
| P2 | Task3 |        |        |        |
|    | Task4 |        |        |        |
| P3 | Task5 |        |        |        |
|    | Task6 |        |        |        |
| P4 | Task7 |        |        |        |
|    | Task8 |        |        |        |


# $r: (p \times t)$ Design



For TOEFL, each examinee ( $p$ ) completed the same set of writing tasks ( $t$ ), but each “examinee-by-task pair” was rated by different raters ( $r$ ) (Lee & Kantor, 2005).

|    | Task1  | Task2   | Task3   | Task4   |
|----|--------|---------|---------|---------|
| P1 | Rater1 | Rater2  | Rater3  | Rater4  |
| P2 | Rater5 | Rater6  | Rater7  | Rater8  |
| P3 | Rater9 | Rater10 | Rater11 | Rater12 |


# $(i \times o):p$ Design



Each examinee ( $p$ ) was administered a set of items ( $i$ ) on two occasions ( $o$ ). For an individual person, the same items were administered on each occasion but for different persons, the items were different, and the occasions were different (Brennan, 2002).

|    | Occasion1 |       | Occasion2 |       | Occasion3 |       | Occasion4 |       | Occasion5 |       | Occasion6 |       |
|----|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|
| P1 | Item1     | Item2 | Item1     | Item2 |           |       |           |       |           |       |           |       |
| P2 |           |       |           |       | Item3     | Item4 | Item3     | Item4 |           |       |           |       |
| P3 |           |       |           |       |           |       |           |       | Item5     | Item6 | Item5     | Item6 |

# *r: t: p* Design



Students ( $p$ ) completed two different writing tasks ( $t$ ), and each task was scored by an independent group of two raters ( $t$ ) (Hathcoat & Penn, 2012).

|    | Task1  |        | Task2  |        | Task3  |        | Task4  |        | Task5  |         | Task6   |         |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| P1 | Rater1 | Rater2 | Rater3 | Rater4 |        |        |        |        |        |         |         |         |
| P2 |        |        |        |        | Rater5 | Rater6 | Rater7 | Rater8 |        |         |         |         |
| P3 |        |        |        |        |        |        |        |        | Rater9 | Rater10 | Rater11 | Rater12 |

# The Problem of One

- The problem of one (Brennan, 2017): The data collection design has a single condition for a facet. Effects for at least two facets are confounded.
- It is impossible to estimate variance components for the facet; therefore, subsequent D studies are conducted without including the facet.
- Resulting reliability or error variance statistics will be biased.

# References

- Brennan, R. L. (2017). Using G theory to examine confounded effects: "The problem of one". *Center for Advanced Studies in Measurement and Assessment*.
- Hathcoat, J. D., & Penn, J. D. (2012). Generalizability of Student Writing across Multiple Tasks: A Challenge for Authentic Assessment. *Research & Practice in Assessment*, 7, 16-28.
- Kreiter, C. D., Zaidi, N. L., & Park, Y. S. (2019). Generalizability theory. In *Assessment in health professions education* (pp. 51-69). Routledge.
- Lee, G., & Frisbie, D. A. (1999). Estimating reliability under a Generalizability theory model for test scores composed of testlets, *Applied Measurement in Education*, 12(3), 237-255, DOI: 10.1207/S15324818AME1203\_2
- Lee, Y. W., & Kantor, R. (2007). Evaluating prototype tasks and alternative rating schemes for a new ESL writing test through G-theory. *International Journal of Testing*, 7(4), 353-385.
- McGaw, B., Wardrop, J. L., & Bunda, M. A. (1972). Classroom observation schemes: Where are the errors?. *American Educational Research Journal*, 9(1), 13-27.
- Peeters, M. J., Cor, M. K., Petite, S. E., & Schroeder, M. N. (2021). Validation evidence using generalizability theory for an objective structured clinical examination. *Innovations in pharmacy*, 12(1), 10-24926.

# Decision (D) Studies for Multi-facet Designs

4

# Section Learning Objectives

4

## D Studies

Identify three primary factors influencing D study results

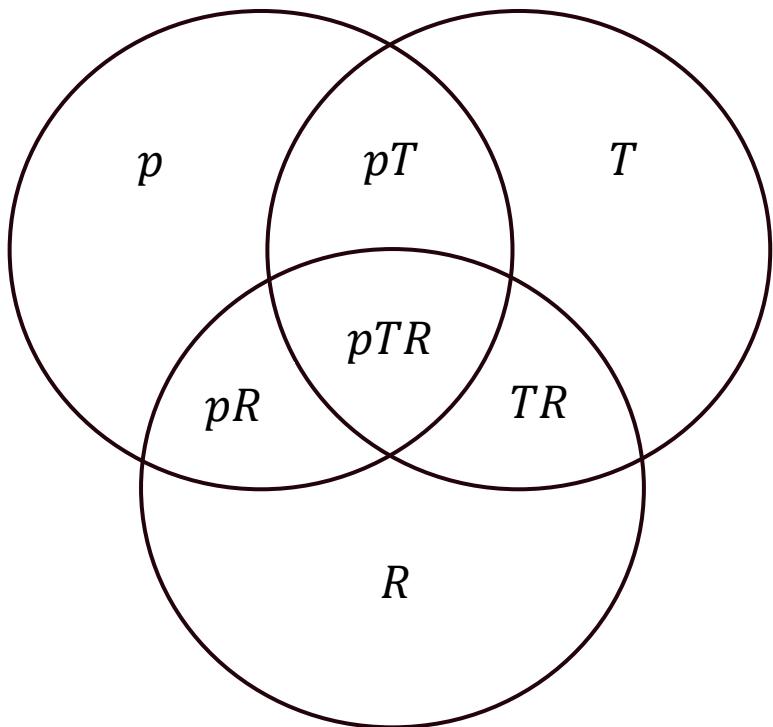
Explain the impact of using a fixed facet in a D study compared to using all random facets

Compute D study results for a nested design using crossed-design variance components

Describe traditional reliability coefficients from the perspective of generalizability theory

# Introductory Notes

- It is assumed that all facets in the UAO are infinite in size, meaning that they are treated as ***random*** facets and that the G study variance components have been estimated using a random effects model.
- D studies are characterized by:
  - ✓ D study sample sizes
  - ✓ D study design structure
  - ✓ Universe of generalization (i.e., random vs. fixed facets)


# Introductory Notes

- The example introduced in Section 1 is extended in this section:
  - ✓ A writing assessment involving writing prompts ( $t$ ) and raters ( $r$ )
  - ✓ G-study variance components estimated from the  $p \times t \times r$  design
- The D study design ( $p \times T \times R$ ) with the same structure as the G study, assuming infinite universe sizes for both  $T$  and  $R$  (i.e., random), was discussed in Section 1.
- Two additional D study scenarios are considered in this section:
  - ✓ A restricted UG, in which facet  $T$  is treated as fixed
  - ✓ A D study design structure that differs from the G study design

## D Study $p \times T \times R$ Design with $T$ Fixed

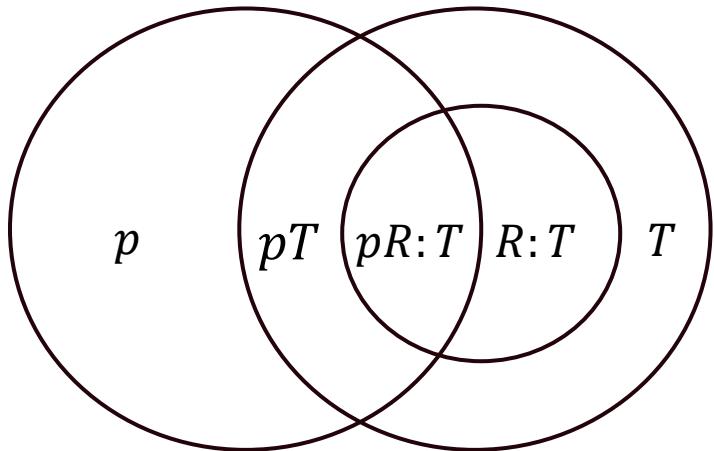
- The investigator is **not** interested in generalizing over writing prompts ( $T$ ), meaning that all parallel measurement procedures will involve the same set of prompts.
- This represents a restricted UG, which differs from the UAO.
- The D study design structure remains the same as that of the G study.
- Under the restricted UG, the universe score variance and error variances are based on different variance components compared to the random  $p \times T \times R$  design.

# D Study $p \times T \times R$ Design with $T$ Fixed



$$n'_t = 3, n'_r = 2$$

| Effect | Variance Component | $T$ Random      | $T$ Fixed       |
|--------|--------------------|-----------------|-----------------|
|        |                    | $R$ Random      | $R$ Random      |
| $p$    | .25                | $\tau$          | $\tau$          |
| $T$    | .02                | $\Delta$        |                 |
| $R$    | .01                | $\Delta$        | $\Delta$        |
| $pT$   | .05                | $\Delta \delta$ | $\tau$          |
| $pR$   | .02                | $\Delta \delta$ | $\Delta \delta$ |
| $TR$   | .00                | $\Delta$        | $\Delta$        |
| $pTR$  | .02                | $\Delta \delta$ | $\Delta \delta$ |


- $\sigma^2(\tau) = \sigma^2(p) + \sigma^2(pT) = .30$
- $\sigma^2(\Delta) = \sigma^2(R) + \sigma^2(pR) + \sigma^2(TR) + \sigma^2(pTR) = .05$
- $\sigma^2(\delta) = \sigma^2(pR) + \sigma^2(pTR) = .04$

- $E\rho^2 = \frac{\sigma^2(\tau)}{\sigma^2(\tau)+\sigma^2(\delta)} = .88$
- $\Phi = \frac{\sigma^2(\tau)}{\sigma^2(\tau)+\sigma^2(\Delta)} = .86$

## D Study $p \times (R:T)$ Design with $T$ and $R$ Random

- Suppose the investigator wants to use a different set of raters to evaluate each writing prompt. → This is a  $p \times (R:T)$  design.
- D study variance components for this design are computed from the G study variance components for the  $p \times t \times r$  design using a two-step process:
  1. Apply the confounding rules (Brennan, 2001, pp. 62-63) to convert the G study variance components from the  $p \times t \times r$  design into those appropriate for a  $p \times (r:t)$  design.
    - ✓  $\sigma^2(r:t) = \sigma^2(r) + \sigma^2(tr)$
    - ✓  $\sigma^2(pr:t) = \sigma^2(pr) + \sigma^2(ptr)$
  2. Use the transformed G study variance components from Step 1 to calculate the D study variance components for the  $p \times (R:T)$  design.

# D Study $p \times (R:T)$ Design with $T$ and $R$ Random



- $\sigma^2(\tau) = \sigma^2(p) = .25$
- $\sigma^2(\Delta) = \sigma^2(T) + \sigma^2(pT) + \sigma^2(R:T) + \sigma^2(pR:T) = .1$
- $\sigma^2(\delta) = \sigma^2(pT) + \sigma^2(pR:T) = .077$
- $E\rho^2 = \frac{\sigma^2(\tau)}{\sigma^2(\tau) + \sigma^2(\delta)} = .76$
- $\Phi = \frac{\sigma^2(\tau)}{\sigma^2(\tau) + \sigma^2(\Delta)} = .71$

| $p \times t \times r$ |            |
|-----------------------|------------|
| Effect                | Var Comp   |
| $p$                   | <b>.25</b> |
| $t$                   | <b>.06</b> |
| $r$                   | <b>.02</b> |
| $pt$                  | <b>.15</b> |
| $pr$                  | <b>.04</b> |
| $tr$                  | <b>.00</b> |
| $ptr$                 | <b>.12</b> |

| $p \times (r:t)$ |            |
|------------------|------------|
| Effect           | Var Comp   |
| $p$              | <b>.25</b> |
| $t$              | <b>.06</b> |
| $r:t$            | <b>.02</b> |
| $pt$             | <b>.15</b> |
| $pr:t$           | <b>.16</b> |

| $p \times (R:T)$ |             |
|------------------|-------------|
| Effect           | Var Comp    |
| $p$              | <b>.250</b> |
| $T$              | <b>.020</b> |
| $R:T$            | <b>.003</b> |
| $pT$             | <b>.050</b> |
| $pR:T$           | <b>.027</b> |

$$\begin{aligned} n'_t &= 3 \\ n'_r &= 2 \end{aligned}$$

# Comparison of Three D Studies

| $n'_t = 3, n'_r = 2$  |                       |                   |            |
|-----------------------|-----------------------|-------------------|------------|
| $p \times T \times R$ | $p \times T \times R$ | $p \times (R: T)$ |            |
| $T$ Random            | $T$ Fixed             | $T$ Random        |            |
| $R$ Random            | $R$ Random            | $R$ Random        |            |
| $\sigma^2(\tau)$      | <b>.25</b>            | <b>.30</b>        | <b>.25</b> |
| $\sigma^2(\Delta)$    | <b>.12</b>            | <b>.05</b>        | <b>.10</b> |
| $\sigma^2(\delta)$    | <b>.09</b>            | <b>.04</b>        | <b>.08</b> |
| $E\rho^2$             | <b>.74</b>            | <b>.88</b>        | <b>.76</b> |
| $\Phi$                | <b>.68</b>            | <b>.86</b>        | <b>.71</b> |

# Traditional Reliability Coefficients

- Test-retest (TR)
  - ✓ Correlation of scores from the same test form administered on different occasions
  - ✓ Items do not contribute to the error, but occasions do
- Parallel-forms (PF)
  - ✓ Correlation of scores from different test forms administered on different occasions
  - ✓ Both items and occasions contribute to the measurement error
- Internal consistency (IC)
  - ✓ Single administration of a test form

# Traditional Reliability Coefficients

- Test-retest reliability (TR)

- ✓ G study:  $p \times i \times o$  with  $n_o = 2$

- ✓ D study:  $p \times I \times O$  with  $n'_o = 1$ ;  $O$  random and  $I$  fixed

$$\checkmark E\rho^2 = \frac{\sigma^2(p) + \sigma^2(pI)}{\sigma^2(p) + \sigma^2(pI) + [\sigma^2(pO) + \sigma^2(pIO)]}$$

- Parallel-forms reliability (PF)

- ✓ G study:  $p \times (i: o)$  with  $n_o = 2$

- ✓ D study:  $p \times (I: O)$  with  $n'_o = 1$ ; both  $I$  and  $O$  random

$$\checkmark E\rho^2 = \frac{\sigma^2(p)}{\sigma^2(p) + [\sigma^2(pO) + \sigma^2(pI:O)]} = \frac{\sigma^2(p)}{\sigma^2(p) + [\sigma^2(pO) + \sigma^2(pI) + \sigma^2(pIO)]}$$

# Traditional Reliability Coefficients

- Internal consistency (IC)
  - ✓ G study:  $p \times i \times o$  or  $p \times (i:o)$  with  $n_o \geq 2$
  - ✓ D study:  $p \times I \times O$  or  $p \times (I:O)$  with  $n'_o = 1$ ;  $O$  fixed and  $I$  random
  - ✓  $E\rho^2 = \frac{\sigma^2(p) + \sigma^2(po)}{\sigma^2(p) + \sigma^2(po) + [\sigma^2(pi) + \sigma^2(pio)]}$
- It is almost always the case that

$$PF \leq TR \leq IC$$

# Other Issues

- Large sample sizes (e.g.,  $n_t$ ,  $n_r$ ) are highly desirable for a G study.
- A fully crossed G-study design is generally preferable.
- Not discussed in this module:
  - ✓ Unbalanced designs
  - ✓ Multivariate GT

# References

- Brennan, R. L. (2001). *Generalizability theory*. New York: Springer-Verlag.

# Conducting G and D Studies in R

5

# Section Learning Objectives

5

## R Demonstration

Prepare data for G study analysis in R for both crossed  $p \times i$  and  $p \times (r: i)$  nested designs.

Use *lmer()* function to estimate variance components in G study.

Compute D study statistics for various test conditions using R.

Interpret G study and D study results.

# Computing Variance Components Using *lmer()* Function

- *lmer()* is a function from the *lme4* package in R (Bates et al., 2015).
- *lmer()* function fits linear mixed-effects models using restricted maximum likelihood (REML) estimation.
- It allows for the decomposition of variance into components attributable to different random factors.
- In the  $p \times i$  design, person and items are specified as random effects to estimate variances due to individual difference, item variability, and person-by-item interaction.

$$X_{pi} = \mu + \nu_p + \nu_i + \nu_{pi}$$

# Sample Dataset for G Study $p \times i$ Design

## DATA STRUCTURE:

- 36 persons (rows)
- 30 dichotomous items (columns)
- Crossed design: every person answered every item
- Total observations:  $36 \times 30 = 1,080$

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

# Prepare the Data for G Study $p \times i$ Design in R

**Data Preparation:** Convert the wide format (person x item) into long format with one row per response.

```
install.packages("tidyverse")
library(tidyverse)
data <- read.table("C:/Users/data/data1", header = FALSE, sep = "", fill = TRUE)
colnames(data) <- paste0("item", 1:30)
data$person <- 1:nrow(data)
data_long <- pivot_longer(data,
                           cols = starts_with("item"),
                           names_to = "item",
                           values_to = "score")
```

|    | item1 | item2 | item3 | item4 | item5 | item6 | item7 | item8 | item9 | item10 |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| 1  | 1     | 1     | 1     | 0     | 0     | 1     | 1     | 1     | 1     | 0      |
| 2  | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0      |
| 3  | 1     | 1     | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1      |
| 4  | 1     | 1     | 1     | 0     | 1     | 1     | 1     | 0     | 1     | 0      |
| 5  | 1     | 0     | 0     | 0     | 1     | 1     | 1     | 0     | 1     | 0      |
| 6  | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1      |
| 7  | 1     | 1     | 0     | 1     | 1     | 1     | 1     | 0     | 1     | 0      |
| 8  | 1     | 1     | 1     | 0     | 0     | 0     | 0     | 1     | 1     | 1      |
| 9  | 0     | 1     | 1     | 0     | 0     | 1     | 0     | 1     | 0     | 0      |
| 10 | 1     | 0     | 0     | 1     | 0     | 1     | 1     | 1     | 1     | 1      |



|      | person | item   | score |
|------|--------|--------|-------|
| 1    | 1      | item1  | 1     |
| 2    | 1      | item2  | 1     |
| 3    | 1      | item3  | 1     |
| 4    | 1      | item4  | 0     |
| 5    | 1      | item5  | 0     |
| 6    | 1      | item6  | 1     |
| 7    | 1      | item7  | 1     |
| 8    | 1      | item8  | 1     |
| 9    | 1      | item9  | 1     |
| 10   | 1      | item10 | 0     |
| 11   | 1      | item11 | 0     |
| 12   | 1      | item12 | 0     |
| 13   | 1      | item13 | 1     |
| 14   | 1      | item14 | 1     |
| 15   | 1      | item15 | 1     |
| 16   | 1      | item16 | 1     |
| 17   | 1      | item17 | 1     |
| 18   | 1      | item18 | 1     |
| 19   | 1      | item19 | 1     |
| 1062 | 36     | item12 | 0     |
| 1063 | 36     | item13 | 1     |
| 1064 | 36     | item14 | 1     |
| 1065 | 36     | item15 | 1     |
| 1066 | 36     | item16 | 1     |
| 1067 | 36     | item17 | 1     |
| 1068 | 36     | item18 | 0     |
| 1069 | 36     | item19 | 0     |
| 1070 | 36     | item20 | 1     |
| 1071 | 36     | item21 | 1     |
| 1072 | 36     | item22 | 1     |
| 1073 | 36     | item23 | 0     |
| 1074 | 36     | item24 | 1     |
| 1075 | 36     | item25 | 1     |
| 1076 | 36     | item26 | 0     |
| 1077 | 36     | item27 | 1     |
| 1078 | 36     | item28 | 0     |
| 1079 | 36     | item29 | 1     |
| 1080 | 36     | item30 | 1     |

# Using *lmer* Function for G Study Analysis

```
##Install Package##  
install.packages("lme4")  
library(lme4)  
##Linear mixed-effects model##  
model1 <- lmer(score ~ 1 + (1|person) + (1|item), data = data_long)  
summary(model1)
```

- Mixed-model formula used to model the two crossing factors:
  - ✓  $1 + (1 | g1) + (1 | g2)$  where  $g1$  and  $g2$  represent person and item factors.
- Output: Variance components for person, item, and interaction.

# G Study Output from R

```
> model1 <- lmer(score ~ 1 + (1|person) + (1|item), data = data_long)
> summary(model1)
Linear mixed model fit by REML ['lmerMod']
Formula: score ~ 1 + (1 | person) + (1 | item)
Data: data_long

REML criterion at convergence: 1388.6

scaled residuals:
    Min     1Q Median     3Q    Max
-2.1767 -0.9894  0.3699  0.7466  2.0325

Random effects:
 Groups   Name        Variance Std. Dev.
 person   (Intercept) 0.01462  0.1209
 item     (Intercept) 0.03185  0.1785
 Residual           0.19242  0.4387
Number of obs: 1080, groups: person, 36; item, 30

Fixed effects:
            Estimate Std. Error t value
(Intercept)  0.61296   0.04057 15.11
```

# D Study for the $p \times I$ Design

- Define the test lengths.
- Compute the following values for each test lengths using the estimated variance components from the G study:

✓ Relative error variance:  $\sigma^2(\delta) = \frac{\sigma^2(pi)}{n'_i}$

✓ Absolute error variance:

$$\sigma^2(\Delta) = \frac{\sigma^2(i)}{n'_i} + \frac{\sigma^2(pi)}{n'_i}$$

✓ G Coefficients:  $E\rho^2 = \frac{\sigma^2(p)}{\sigma^2(p) + \sigma^2(\delta)}$

✓ Phi Coefficients:  $\Phi = \frac{\sigma^2(p)}{\sigma^2(p) + \sigma^2(\Delta)}$

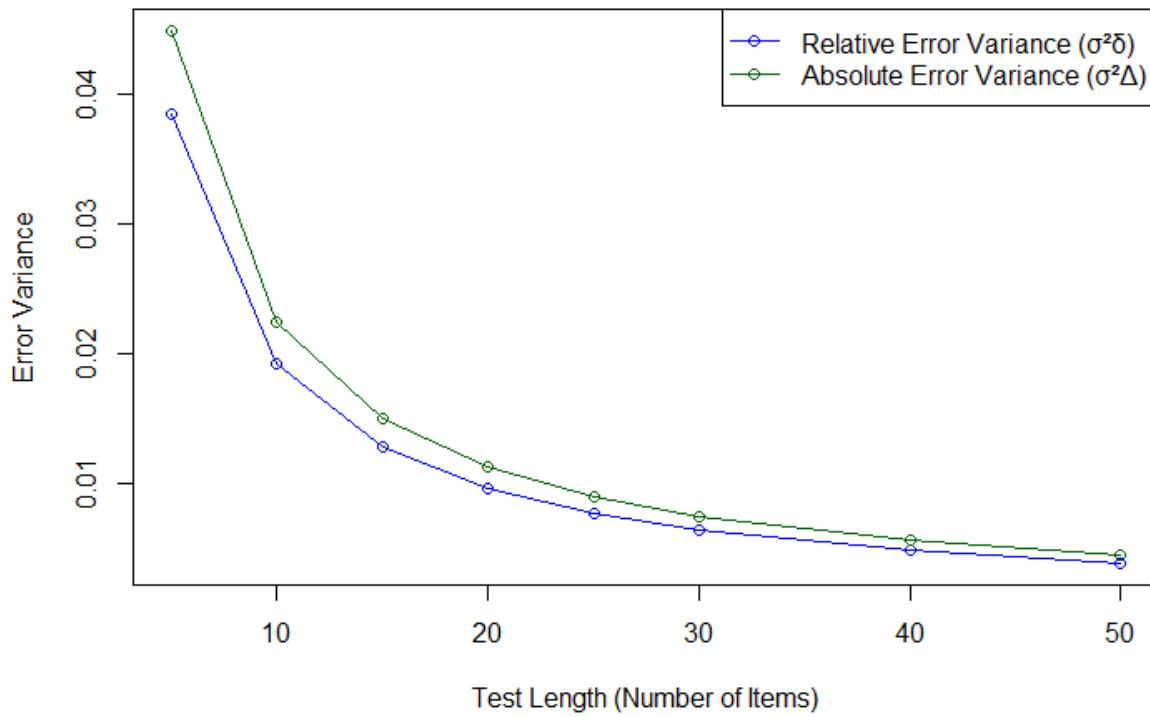
```
## G study results
sigma2_p <- 0.0146
sigma2_i <- 0.0318
sigma2_pi <- 0.1924
n_p <- 36
## Define test lengths
n_items_list <- c(5, 10, 15, 20, 25, 30, 40, 50)
## Vectors for storing results
sigma2_delta <- numeric(length(n_items_list))
sigma2_Delta <- numeric(length(n_items_list))
Ep2 <- numeric(length(n_items_list))
phi <- numeric(length(n_items_list))
## Loop
for (i in seq_along(n_items_list)) {
  n_i <- n_items_list[i]

  sigma2_delta[i] <- sigma2_pi / n_i
  sigma2_Delta[i] <- sigma2_i / n_i + sigma2_pi / n_i
  Ep2[i] <- sigma2_p / (sigma2_p + sigma2_delta[i])
  phi[i] <- sigma2_p / (sigma2_p + sigma2_Delta[i])
}

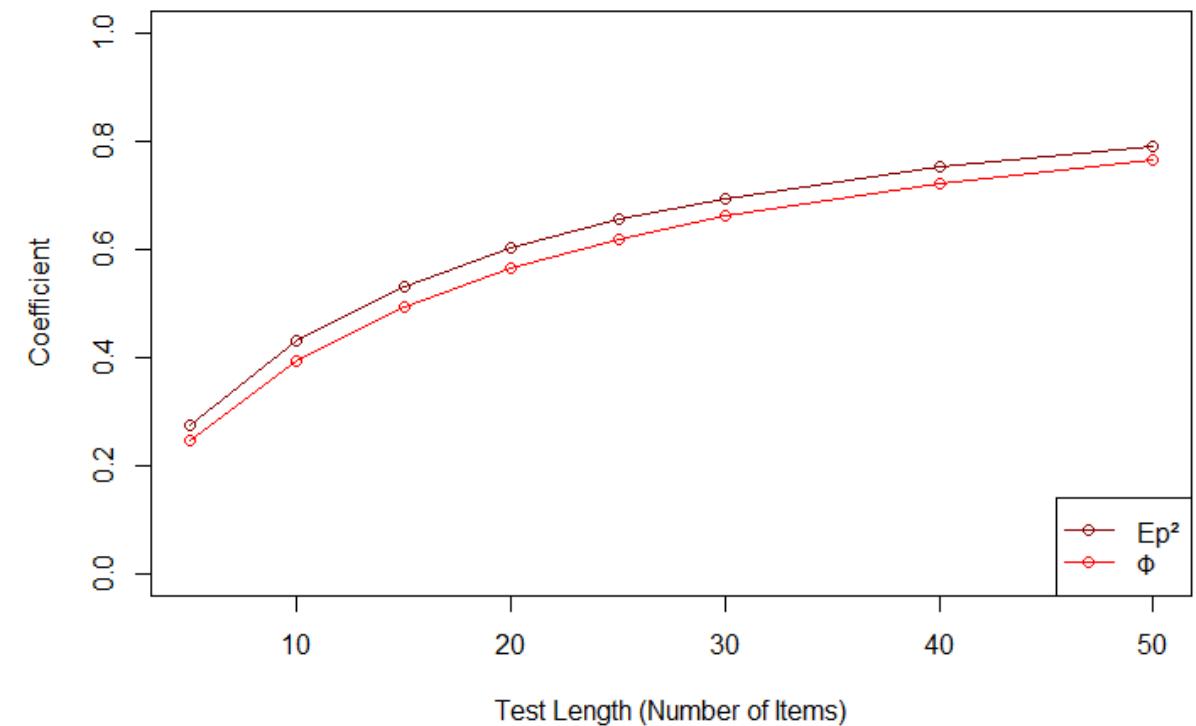
## Final output
d_study_table <- data.frame(
  n_i = n_items_list,
  sigma2_delta = round(sigma2_delta, 4),
  sigma2_Delta = round(sigma2_Delta, 4),
  Ep2 = round(Ep2, 4),
  phi = round(phi, 4)
)
```

# D Study Output for $p \times I$ Design

```
> print(d_study_table)
  n_i sigma2_delta sigma2_Delta    Ep2     phi
1   5     0.0385    0.0448 0.2751 0.2456
2  10     0.0192    0.0224 0.4314 0.3944
3  15     0.0128    0.0149 0.5323 0.4941
4  20     0.0096    0.0112 0.6028 0.5657
5  25     0.0077    0.0090 0.6548 0.6195
6  30     0.0064    0.0075 0.6948 0.6614
7  40     0.0048    0.0056 0.7522 0.7226
8  50     0.0038    0.0045 0.7914 0.7650
```


```
# Plot 1: Error variances
plot(n_items_list, sigma2_delta, type = "o", col = "blue", ylim = range(c(sigma2_delta, sigma2_Delta)),
  xlab = "Test Length (Number of Items)", ylab = "Error Variance",
  main = "Relative and Absolute Error Variance by Test Length")
lines(n_items_list, sigma2_Delta, type = "o", col = "darkgreen")
legend("topright", legend = c("Relative Error Variance ( $\sigma^2\delta$ )", "Absolute Error Variance ( $\sigma^2\Delta$ )"),
  col = c("blue", "darkgreen"), lty = 1, pch = 1)

# Plot 2: G and Phi coefficients
plot(n_items_list, Ep2, type = "o", col = "darkred", ylim = c(0,1),
  xlab = "Test Length (Number of Items)", ylab = "Coefficient",
  main = "Generalizability and Dependability Coefficients")
lines(n_items_list, phi, type = "o", col = "red")
legend("bottomright", legend = c("Ep2", " $\Phi$ "),
  col = c("darkred", "red"), lty = 1, pch = 1)
```


- ✓ The output table on the left provides estimated D study results for 5, 10, 15, 20, 25, 30, 40, and 50 items.
- ✓ Optional Step: Plotting the error variances and the coefficients in R for visualization.

# Visualizing the Error Variances and G Coefficients Results

Relative and Absolute Error Variance by Test Length



Generalizability and Dependability Coefficients



# Section Learning Objectives

2

## $p \times (r: i)$ Design

In this design, we will utilize one of the Genova sample datasets: *Synthetic Data Set No. 4*. The G-study design is denoted as  $p \times (r: i)$ , indicating that raters are nested within items, and examinees are crossed with items in the universe of admissible observations. Both raters and items are considered random facets and were sampled independently. Raters were randomly assigned to specific items, ensuring no overlap in rater assignments across items.

# Dataset Overview and $p \times (r: i)$ Design

## Data Structure:

- ✓ 10 persons
- ✓ 3 polytomous items
- ✓ 4 raters nested in each of the 3 items
- ✓ Persons crossed with items
- ✓ Raters nested within items

**Table** Data Structure for the  $p \times (r: i)$  Design

| Person | <i>i1</i> |           |           |           | <i>i2</i> |           |           |           | <i>i3</i> |            |            |            |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|
|        | <i>r1</i> | <i>r2</i> | <i>r3</i> | <i>r4</i> | <i>r5</i> | <i>r6</i> | <i>r7</i> | <i>r8</i> | <i>r9</i> | <i>r10</i> | <i>r11</i> | <i>r12</i> |
| 1      | 5         | 6         | 5         | 5         | 5         | 3         | 4         | 5         | 6         | 7          | 3          | 3          |
| 2      | 9         | 3         | 7         | 7         | 7         | 5         | 5         | 5         | 7         | 7          | 5          | 2          |
| 3      | 3         | 4         | 3         | 3         | 5         | 3         | 3         | 5         | 6         | 5          | 1          | 6          |
| 4      | 7         | 5         | 5         | 3         | 3         | 1         | 4         | 3         | 5         | 3          | 3          | 5          |
| 5      | 9         | 2         | 9         | 7         | 7         | 7         | 3         | 7         | 2         | 7          | 5          | 3          |
| 6      | 3         | 4         | 3         | 5         | 3         | 3         | 6         | 3         | 4         | 5          | 1          | 2          |
| 7      | 7         | 3         | 7         | 7         | 7         | 5         | 5         | 7         | 5         | 5          | 5          | 4          |
| 8      | 5         | 8         | 5         | 7         | 7         | 5         | 5         | 4         | 3         | 2          | 1          | 1          |
| 9      | 9         | 9         | 8         | 8         | 6         | 6         | 6         | 5         | 5         | 8          | 1          | 1          |
| 10     | 4         | 4         | 4         | 3         | 3         | 5         | 6         | 5         | 5         | 7          | 1          | 1          |

# Prepare Data for G Study Analysis Using *lmer* for $p \times (r: i)$ Design

```
library(tidyverse)
library(dplyr)
data <- read.table("C:/Users/data/Genova data.txt", header = FALSE, sep = "", fill = TRUE)
colnames(data) <- c(paste0("I1_R", 1:4), paste0("I2_R", 1:4), paste0("I3_R", 1:4))
data$Person <- factor(1:nrow(data))
long_data <- data %>%
  pivot_longer(
    cols = -Person,
    names_to = c("Item", "Rater"),
    names_pattern = "I(\d)_R(\d)",
    values_to = "Score"
  )
long_data <- long_data %>%
  mutate(
    Item = factor(paste0("I", Item)),
    Rater = factor(Rater),
    RaterInItem = factor(paste0("I", Item, "_R", Rater))
  )
```

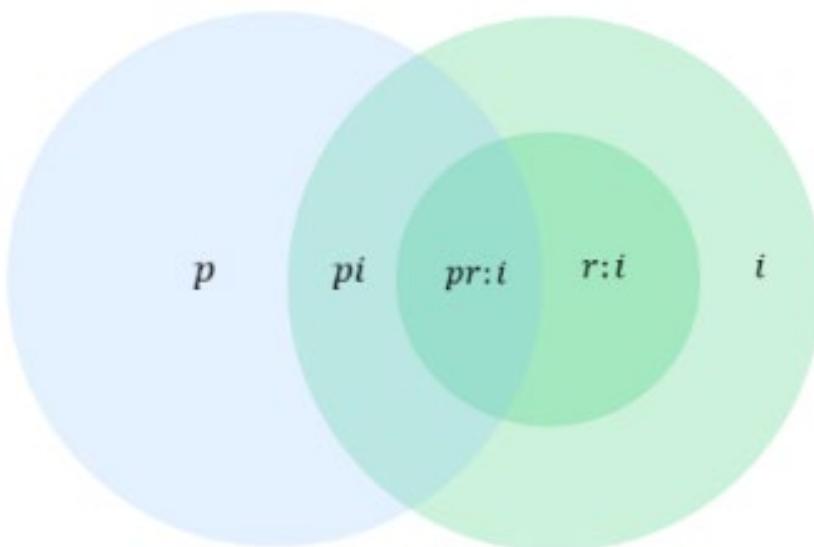
| I1_R1 | I1_R2 | I1_R3 | I1_R4 | I2_R1 | I2_R2 | I2_R3 | I2_R4 | I3_R1 | I3_R2 | I3_R3 | I3_R4 | Person |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| 5     | 6     | 5     | 5     | 5     | 3     | 4     | 5     | 6     | 7     | 3     | 3     | 1      |
| 9     | 3     | 7     | 7     | 7     | 5     | 5     | 5     | 7     | 7     | 5     | 2     | 2      |
| 3     | 4     | 3     | 3     | 5     | 3     | 3     | 5     | 6     | 5     | 1     | 6     | 3      |
| 7     | 5     | 5     | 3     | 3     | 1     | 4     | 3     | 5     | 3     | 3     | 5     | 4      |
| 9     | 2     | 9     | 7     | 7     | 7     | 3     | 7     | 2     | 7     | 5     | 3     | 5      |
| 3     | 4     | 3     | 5     | 3     | 3     | 6     | 3     | 4     | 5     | 1     | 2     | 6      |
| 7     | 3     | 7     | 7     | 7     | 5     | 5     | 7     | 5     | 5     | 5     | 4     | 7      |
| 5     | 8     | 5     | 7     | 7     | 5     | 5     | 4     | 3     | 2     | 1     | 1     | 8      |
| 9     | 9     | 8     | 8     | 6     | 6     | 5     | 5     | 5     | 8     | 1     | 1     | 9      |
| 4     | 4     | 4     | 3     | 3     | 5     | 6     | 5     | 5     | 7     | 1     | 1     | 10     |

→

|    | Person | Item | Rater | Score | RaterInItem |
|----|--------|------|-------|-------|-------------|
| 1  | 1      | I1   | 1     | 5     | II1_R1      |
| 2  | 1      | I1   | 2     | 6     | II1_R2      |
| 3  | 1      | I1   | 3     | 5     | II1_R3      |
| 4  | 1      | I1   | 4     | 5     | II1_R4      |
| 5  | 1      | I2   | 1     | 5     | II2_R1      |
| 6  | 1      | I2   | 2     | 3     | II2_R2      |
| 7  | 1      | I2   | 3     | 4     | II2_R3      |
| 8  | 1      | I2   | 4     | 5     | II2_R4      |
| 9  | 1      | I3   | 1     | 6     | II3_R1      |
| 10 | 1      | I3   | 2     | 7     | II3_R2      |
| 11 | 1      | I3   | 3     | 3     | II3_R3      |
| 12 | 1      | I3   | 4     | 3     | II3_R4      |
| 13 | 2      | I1   | 1     | 9     | II1_R1      |
| 14 | 2      | I1   | 2     | 3     | II1_R2      |
| 15 | 2      | I1   | 3     | 7     | II1_R3      |

Showing 1 to 16 of 120 entries, 5 total columns

# G Study Using *lmer* for $p \times (r:i)$ Design


## STEPS:

- Model equation:

$$X_{pir} = \mu + \nu_p + \nu_i + \nu_{r:i} + \nu_{pi} + \nu_{pr:i}$$

- Decomposition of the Variance components:

- ✓  $\sigma_p^2$
- ✓  $\sigma_i^2$
- ✓  $\sigma_{r:i}^2$
- ✓  $\sigma_{pi}^2$
- ✓  $\sigma_{pr:i}^2$



```
library(lme4)
# Fit G-study model with p x (r : i) design
g_model <- lmer(Score ~ 1 +
                  (1 | Person) +
                  (1 | Item) +
                  (1 | RaterInItem) +
                  (1 | Person:Item),
                  data = long_data)

# Get variance components
vc <- as.data.frame(VarCorr(g_model))
print(vc)
```

# G Study Output for $p \times (r:i)$ Design

## Estimated Variance Components:

```
> print(vc)
```

|   | grp         | var1        | var2 | vcov      | sdcov     |
|---|-------------|-------------|------|-----------|-----------|
| 1 | Person:Item | (Intercept) | <NA> | 0.5595499 | 0.7480307 |
| 2 | RaterInItem | (Intercept) | <NA> | 0.6474889 | 0.8046669 |
| 3 | Person      | (Intercept) | <NA> | 0.4730233 | 0.6877669 |
| 4 | Item        | (Intercept) | <NA> | 0.3253211 | 0.5703693 |
| 5 | Residual    |             | <NA> | 2.3802862 | 1.5428176 |

# D Studies for $p \times (R:I)$ Design

## STEPS:

- Define D study conditions.
- Use G study estimated variance components to:
  - ✓ Compute the relative and absolute variances.
  - ✓ Compute the G and Phi coefficients for each condition.

```
# Function to compute D-study results for given items and raters
compute_G_Phi <- function(n_i, n_r) {
  rel_error <- (var_pi / n_i) + (var_pir / (n_i * n_r))
  abs_error <- (var_i / n_i) + (var_r_i / (n_i * n_r)) + (var_pi / n_i) + (var_pir / (n_i * n_r))

  G_coef <- var_p / (var_p + rel_error)
  Phi_coef <- var_p / (var_p + abs_error)

  return(data.frame(
    Relative_Error = rel_error,
    Absolute_Error = abs_error,
    G_Coefficient = G_coef,
    Phi_Coefficient = Phi_coef
  ))
}

# Apply D-study conditions
dstudy_conditions <- data.frame(
  Items = c(1, 2, 3, 4, 5, 6),
  Raters = c(12, 6, 4, 3, 2, 2)
)

# Compute for each row
d_results <- do.call(rbind, apply(dstudy_conditions, 1, function(row) {
  compute_G_Phi(as.numeric(row["Items"]), as.numeric(row["Raters"]))
}))
# Combine with the original D-study table
final_results <- cbind(dstudy_conditions, round(d_results, 4))
print(final_results)
```

# D Study Summary Output Table for $p \times (R:I)$ Design

```
print(final_results)
```

| Items | Raters | Relative_Error | Absolute_Error | G_Coefficient | Phi_Coefficient |
|-------|--------|----------------|----------------|---------------|-----------------|
| 1     | 12     | 0.7579         | 1.1372         | 0.3843        | 0.2938          |
| 2     | 6      | 0.4781         | 0.6948         | 0.4973        | 0.4051          |
| 3     | 4      | 0.3849         | 0.5473         | 0.5514        | 0.4636          |
| 4     | 3      | 0.3382         | 0.4735         | 0.5831        | 0.4997          |
| 5     | 2      | 0.3499         | 0.4798         | 0.5748        | 0.4965          |
| 6     | 2      | 0.2916         | 0.3998         | 0.6186        | 0.5420          |

*Note.* The selection of D-study conditions was informed by Table 4.6 in Brennan (2001), ensuring that the product of  $n_i$ , and  $n_r$  (numbers of items and raters) remained as close to 12 as possible without exceeding it.

# References

- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). *Fitting linear mixed-effects models using lme4*. Journal of Statistical Software, 67(1), 1–48.  
<https://doi.org/10.18637/jss.v067.i01>
- Brennan, R. L. (2001). *Generalizability theory*. Springer-Verlag.

# Conducting G and D Studies in GENOVA

# Section Learning Objectives

6

## GENOVA Demonstration

Prepare data for GENOVA analysis

Create GENOVA control cards for  
 $p \times i$  design

Create GENOVA control cards for  
 $p \times (r: i)$  design

Interpret the output generated by  
GENOVA

# Data Preparation

# Data structure

## 1. $p \times i$ design: (data 1)

✓ 36 person, 30 items.

## 2. $p \times (r: i)$ design: (data 2)

✓ 10 person, 4 raters nested within 3 items.

## Data 1

Item →

## Data 2

## Person —

# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , G study

- **Format**

- ✓ The control card should be prepared in a text (.txt) format.
- ✓ Each card consists of an Identifier and Parameters.
- ✓ The Identifier must be located in columns 1–12, and the Parameters in columns 13–80.

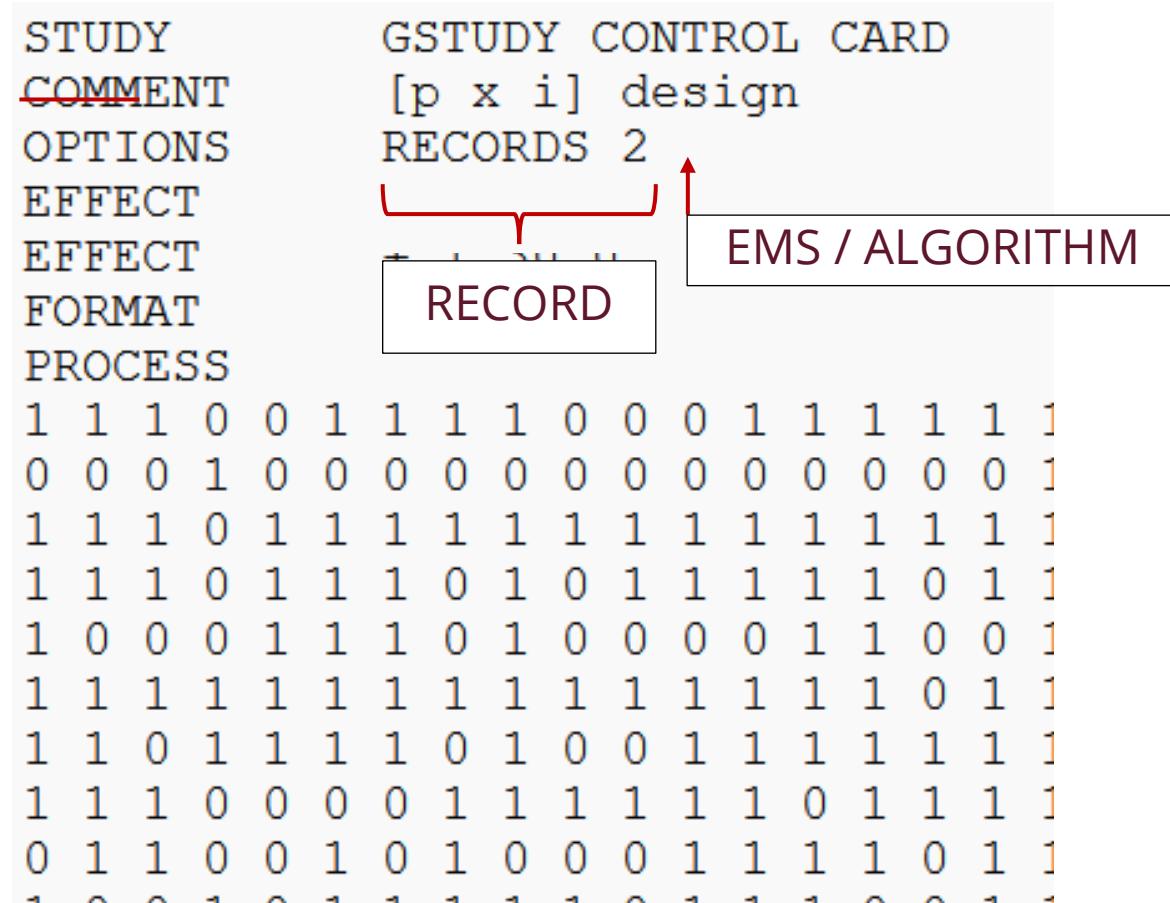
# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , G study

## 1. STUDY

- ✓ Can be used interchangeably with 'GSTUDY'.
- ✓ User-defined alphanumeric heading that appears on output page.

## 2. COMMENT


✓ comments or notes for output file.

# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , G study

### 3. OPTIONS

- RECORDS
  - ✓ ALL : print all input records.
  - ✓ NONE : suppress the printing of input records.
  - ✓ NUMEREC : print only the first and last NUMEREC input records.
- EMS / ALGORITHM
  - ✓ Specify which estimated variance components from the G-study are to be used in D-study.
  - ✓ Default = EMS



# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , G study

## 4. EFFECT

- \*/+ (Optional)
  - ✓ \*: Marks the facet that defines each record.
  - ✓ +: Print cell mean scores of facet.
- MFACET
  - ✓ Facet for the study.
  - ✓ Letters (A~Z) and colon (:).

# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , G study

## 4. EFFECT

- NUMLEV
  - ✓ Sample size for the facet.
- NPOPUL (Optional)
  - ✓ Population or universe size for the facet.
  - ✓ Default = 0 (infinite universe).

```

STUDY      GSTUDY CONTROL CARD
COMMENT    [p x i] design
OPTIONS   RECORDS 2
EFFECT    * P 36 0
EFFECT  + T 30 0
FORMAT    NUMLEV .0) MPOPUL
PROCESS

1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0
1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1
0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1

```

# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , G study

## 5. FORMAT

- Specify FORTRAN format for reading data.
- The parameter must be enclosed within parentheses.
- e.g., (30F2.0)
  - ✓ 30: Total of 30 values.
  - ✓ F2: Each value occupies 2 characters.
  - ✓ .0: No digits after the decimal point.

# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , G study

### 6. PROCESS

- Data used for analysis

1) Enter data directly into the control card

2) Provide data through a separate file

- ✓ An integer value specifying the logical unit number to be used for reading the input data (excluding 5 and 6).
- ✓ The data file must end with a blank line (press Enter after the last record).

|                |                |
|----------------|----------------|
| STUDY          | GSTUDY         |
| COMMENT        | [p x i] design |
| OPTIONS        | RECORDS 2      |
| EFFECT         | * P 36 0       |
| EFFECT         | + I 30 0       |
| FORMAT         | (30F2.0)       |
| <u>PROCESS</u> | 7              |
| <u>FINISH</u>  |                |

Unit number

```
1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1
0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1
1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1
1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1
1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1
1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1
0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0
1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1
1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1
1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1
1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0
1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1
1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0
1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1
0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1
```

# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , D study

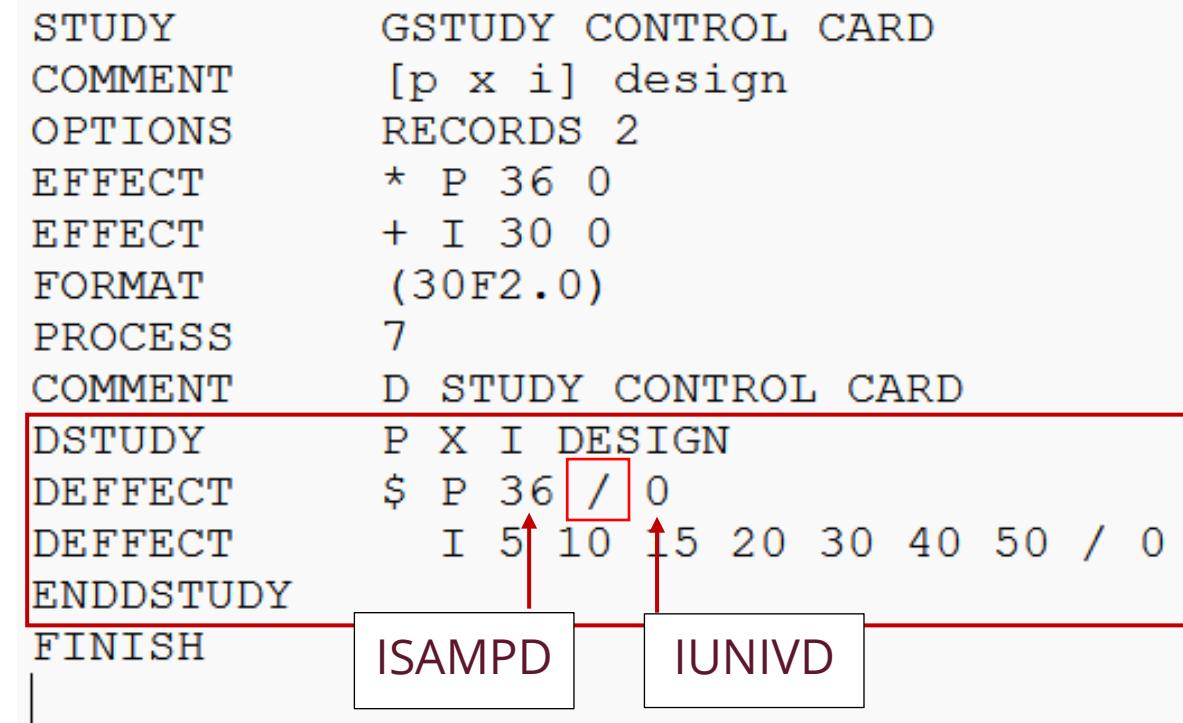
### 1. DSTUDY

- A user-defined alphanumeric heading that will appear on D study output page.

### 2. DEFFECT

- \$:
  - ✓ Indicates the object of measurement in the D study.
- DFACET:
  - ✓ Facet for D study.
  - ✓ Letters (A~Z) and colon (:).

|           |                           |
|-----------|---------------------------|
| STUDY     | GSTUDY CONTROL CARD       |
| COMMENT   | [p x i] design            |
| OPTIONS   | RECORDS 2                 |
| EFFECT    | * P 36 0                  |
| EFFECT    | + I 30 0                  |
| FORMAT    | (30F2.0)                  |
| PROCESS   | 7                         |
| COMMENT   | D STUDY CONTROL CARD      |
| DSTUDY    | P X I DESIGN              |
| DEFFECT   | \$ P 36 / 0               |
| DEFFECT   | I 5 10 15 20 30 40 50 / 0 |
| ENDDSTUDY |                           |
| FINISH    | \$                        |


DFACET

# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , D study

### 2. DEFFECT

- ISAMPD: (Optional)
  - ✓ Values indicating the sample size.
  - ✓ GENOVA automatically repeats the last sample size for a facet if fewer values are given.
  - ✓ Default = sample size from the G study  
0 = Infinite
- IUNIVD: (Optional)
  - ✓ Population or universe size for the facet.
  - ✓ Must have '/' when a IUNIVD value is specified
  - ✓ Default = size from the G study  
0 = Infinite
- e.g., D study results for 36-5, 36-10, 36-15, 36-20, 36-30, 36-40, 36-50



# Creating Control Cards for GENOVA

## Control cards for $p \times i$ , D study

### 3. ENDDSTUDY

- Indicate the end of control card.

|           |                           |
|-----------|---------------------------|
| STUDY     | GSTUDY CONTROL CARD       |
| COMMENT   | [p x i] design            |
| OPTIONS   | RECORDS 2                 |
| EFFECT    | * P 36 0                  |
| EFFECT    | + I 30 0                  |
| FORMAT    | (30F2.0)                  |
| PROCESS   | 7                         |
| COMMENT   | D STUDY CONTROL CARD      |
| DSTUDY    | P X I DESIGN              |
| DEFFECT   | \$ P 36 / 0               |
| DEFFECT   | I 5 10 15 20 30 40 50 / 0 |
| ENDDSTUDY |                           |
| FINISH    |                           |
|           |                           |

# Program Execution: GENOVA

## Launch the GENOVA program

- Execute the file 'genova36.exe'

### 1. UNIT 5:

- ✓ Enter the name of the control card.
- ✓ The control card must be located in the same folder as the 'Genova36.exe' file.

### 2. UNIT 6:

- ✓ Enter the name of the output file.
- ✓ An output file will be generated following successful program execution.

### 3. UNIT 7: (Optional)

- ✓ Enter the name of the data file.
- ✓ The unit number is displayed according to the value entered in the PROCESS section of the control card.

```
File name missing or blank - please enter file name
UNIT 5? card1.txt
File name missing or blank - please enter file name
UNIT 6? output1.txt
File name missing or blank - please enter file name
UNIT 7? data1.txt
```

# Interpreting the GENOVA Output

## Output file

- Note: The output file shown in this presentation includes only selected pages from the full output.

|                                                                                                                                              |                            |        |                 |                |            |   |   |   |      |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-----------------|----------------|------------|---|---|---|------|
| GENOVA VERSION 3.1                                                                                                                           | CONTROL CARD INPUT LISTING | PAGE 1 |                 |                |            |   |   |   |      |
| COLUMN 11111111122222222333333334444444455555555666666667777777778<br>1234567890123456789012345678901234567890123456789012345678901234567890 |                            |        |                 |                |            |   |   |   |      |
| STUDY                                                                                                                                        | GSTUDY CONTROL CARD        |        |                 |                |            |   |   |   |      |
| COMMENT                                                                                                                                      | [p x i] design             |        |                 |                |            |   |   |   |      |
| OPTIONS                                                                                                                                      | RECORDS 2                  |        |                 |                |            |   |   |   |      |
| EFFECT                                                                                                                                       | * P 36 0                   |        |                 |                |            |   |   |   |      |
| EFFECT                                                                                                                                       | + I 30 0                   |        |                 |                |            |   |   |   |      |
| FORMAT                                                                                                                                       | (30F2.0)                   |        |                 |                |            |   |   |   |      |
| PROCESS                                                                                                                                      |                            |        |                 |                |            |   |   |   |      |
| GENOVA VERSION 3.1                                                                                                                           | G STUDY                    | PAGE 2 |                 |                |            |   |   |   |      |
| GSTUDY CONTROL CARD                                                                                                                          |                            |        |                 |                |            |   |   |   |      |
| EXPANDED MAIN AND INTERACTION EFFECT TABLE                                                                                                   |                            |        |                 |                |            |   |   |   |      |
| (** = INFINITE)                                                                                                                              | P                          | I      | TOTAL           | DEGREES        |            |   |   |   |      |
| SAMPLE SIZE                                                                                                                                  | 36                         | 30     | PRIMARY INDICES | NUMBER INDICES | OF FREEDOM |   |   |   |      |
| UNIVERSE SIZE                                                                                                                                | ****                       | ****   |                 |                |            |   |   |   |      |
| *****                                                                                                                                        |                            |        |                 |                |            |   |   |   |      |
| *                                                                                                                                            | *                          | *      | *               |                |            |   |   |   |      |
| *                                                                                                                                            | P                          | *      | 1               | *              | 0          | * | 1 | 1 | 35   |
| *                                                                                                                                            | I                          | *      | 0               | *              | 1          | * | 1 | 1 | 29   |
| *                                                                                                                                            | *                          | *      | *               | *              |            |   |   |   |      |
| *****                                                                                                                                        |                            |        |                 |                |            |   |   |   |      |
| *                                                                                                                                            | *                          | *      | *               | *              |            |   |   |   |      |
| *                                                                                                                                            | PI                         | *      | 1               | *              | 1          | * | 2 | 2 | 1015 |
| *                                                                                                                                            | *                          | *      | *               | *              |            |   |   |   |      |
| *****                                                                                                                                        |                            |        |                 |                |            |   |   |   |      |

# Interpreting the GENOVA Output

## Output file

- Input data / Mean of input data

| GSTUDY CONTROL CARD                    |    |         |         |         |         |         |         |         | PAGE    | 3 |
|----------------------------------------|----|---------|---------|---------|---------|---------|---------|---------|---------|---|
| INPUT RECORD LISTING WITH RECORD MEANS |    |         |         |         |         |         |         |         |         |   |
| RECORD #                               | 1  | 1.00000 | 1.00000 | 1.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 |   |
|                                        |    | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |   |
|                                        |    | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 0.00000 | 0.00000 |   |
|                                        |    | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 1.00000 | 0.70000 |         |   |
| RECORD #                               | 2  | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |   |
|                                        |    | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |   |
|                                        |    | 0.00000 | 1.00000 | 1.00000 | 1.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 |   |
|                                        |    | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 1.00000 | 0.30000 |         |   |
| RECORD #                               | 35 | 1.00000 | 1.00000 | 1.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |   |
|                                        |    | 1.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 0.00000 | 1.00000 | 1.00000 |   |
|                                        |    | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 |   |
|                                        |    | 1.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 | 0.73333 |         |   |
| RECORD #                               | 36 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 |   |
|                                        |    | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |   |
|                                        |    | 1.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 | 0.00000 | 1.00000 |   |
|                                        |    | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 1.00000 | 0.60000 |         |   |

# Interpreting the GENOVA Output

## Output file

- Grand mean

GENOVA VERSION 3.1 PAGE 4  
G STUDY GSTUDY CONTROL CARD

CELL MEAN SCORES

\*\*\*\*\*

**\*\*\* GRAND MEAN = 0.6129630 \*\*\***

\*\*\*\*\*

MEAN SCORES FOR EFFECT: I SUBSCRIPT NOTATION: (I)

|        |          |        |          |        |          |        |          |
|--------|----------|--------|----------|--------|----------|--------|----------|
| (1) =  | 0.833333 | (2) =  | 0.777778 | (3) =  | 0.555556 | (4) =  | 0.333333 |
| (5) =  | 0.500000 | (6) =  | 0.805556 | (7) =  | 0.638889 | (8) =  | 0.694444 |
| (9) =  | 0.722222 | (10) = | 0.333333 | (11) = | 0.611111 | (12) = | 0.611111 |
| (13) = | 0.777778 | (14) = | 0.638889 | (15) = | 0.750000 | (16) = | 0.416667 |
| (17) = | 0.777778 | (18) = | 0.833333 | (19) = | 0.472222 | (20) = | 0.694444 |
| (21) = | 0.666667 | (22) = | 0.527778 | (23) = | 0.361111 | (24) = | 0.277778 |
| (25) = | 0.833333 | (26) = | 0.361111 | (27) = | 0.583333 | (28) = | 0.250000 |
| (29) = | 0.972222 | (30) = | 0.777778 |        |          |        |          |

# Interpreting the GENOVA Output

## Output file

- Variance components

| GENOVA VERSION 3.1                                                                                                 |                    |                          | GSTUDY CONTROL CARD             |                              | PAGE | 6                    |
|--------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|---------------------------------|------------------------------|------|----------------------|
| G STUDY                                                                                                            |                    |                          | G STUDY RESULTS                 |                              |      |                      |
| (** = INFINITE) P I                                                                                                |                    |                          |                                 |                              |      |                      |
| SAMPLE SIZE                                                                                                        | 36                 | 30                       |                                 |                              |      |                      |
| UNIVERSE SIZE                                                                                                      | ****               | ****                     |                                 |                              |      | QFM = QUADRATIC FORM |
| EFFECT                                                                                                             | DEGREES OF FREEDOM | MODEL<br>USING ALGORITHM | VARIANCE<br>USING EMS EQUATIONS | COMPONENTS<br>STANDARD ERROR |      |                      |
| P                                                                                                                  | 35                 | 0.0146196                | 0.0146196                       | 0.0048985                    |      |                      |
| I                                                                                                                  | 29                 | 0.0318482                | 0.0318482                       | 0.0094500                    |      |                      |
| PI                                                                                                                 | 1015               | 0.1924174                | 0.1924174                       | 0.0085329                    |      |                      |
| NOTE: THE "ALGORITHM" AND "EMS" ESTIMATED VARIANCE COMPONENTS WILL BE IDENTICAL IF THERE ARE NO NEGATIVE ESTIMATES |                    |                          |                                 |                              |      |                      |

1. Estimated variance components (EVC)
2. EVC recalculated by replacing any negative estimates with zero
  - \* 1=2 if there are no negative estimates
3. Standard error of EVC

# Interpreting the GENOVA Output

## Output file

- Variance components
- $\delta$
- $\Delta$
- $E\rho^2$
- $\Phi$

GENOVA VERSION 3.1  
D STUDY

P X I DESIGN

D STUDY DESIGN NUMBER 001-001

OBJECT OF MEASUREMENT : P FACETS : I  
G STUDY POPULATION SIZE : INFINITE G STUDY UNIVERSE SIZES : INFINITE  
D STUDY POPULATION SIZE : INFINITE D STUDY UNIVERSE SIZES : INFINITE  
D STUDY SAMPLE SIZE : 36 D STUDY SAMPLE SIZES : 5

VARIANCE COMPONENTS IN TERMS OF  
G STUDY UNIVERSE (OF ADMISSIBLE OBSERVATIONS) SIZES

VARIANCE COMPONENTS IN TERMS OF  
D STUDY UNIVERSE (OF GENERALIZATION) SIZES

| EFFECT | VARIANCE<br>COMPONENTS<br>FOR SINGLE<br>OBSERVATIONS | FINITE<br>UNIVERSE<br>SAMPLING | VARIANCE COMPONENTS<br>FOR MEAN SCORES |                  |           | VARIANCE<br>COMPONENTS<br>FOR SINGLE<br>OBSERVATIONS | FINITE<br>UNIVERSE<br>SAMPLING | VARIANCE COMPONENTS<br>FOR MEAN SCORES |                  |           | STANDARD<br>ERRORS |
|--------|------------------------------------------------------|--------------------------------|----------------------------------------|------------------|-----------|------------------------------------------------------|--------------------------------|----------------------------------------|------------------|-----------|--------------------|
|        |                                                      |                                | COR-<br>RECTIONS                       | FRE-<br>QUENCIES | ESTIMATES |                                                      |                                | COR-<br>RECTIONS                       | FRE-<br>QUENCIES | ESTIMATES |                    |
| P      | 0.01462                                              | 1.0000                         | 1                                      | 0.01462          | 0.00490   | 0.01462                                              | 1.0000                         | 1                                      | 0.01462          | 0.00490   |                    |
| I      | 0.03185                                              | 1.0000                         | 5                                      | 0.00637          | 0.00189   | 0.03185                                              | 1.0000                         | 5                                      | 0.00637          | 0.00189   |                    |
| PI     | 0.19242                                              | 1.0000                         | 5                                      | 0.03848          | 0.00171   | 0.19242                                              | 1.0000                         | 5                                      | 0.03848          | 0.00171   |                    |

QFM = QUADRATIC FORM

STANDARD  
STANDARD  
DEVIATION  
VARIANCE  
VARIANCE

|                         |         |         |         |
|-------------------------|---------|---------|---------|
| UNIVERSE SCORE          | 0.01462 | 0.12091 | 0.00490 |
| EXPECTED OBSERVED SCORE | 0.05310 | 0.23044 | 0.00509 |
| LOWER CASE DELTA        | 0.03848 | 0.19617 | 0.00171 |
| UPPER CASE DELTA        | 0.04485 | 0.21179 | 0.00251 |
| MEAN                    | 0.00784 | 0.08857 |         |

GENERALIZABILITY COEFFICIENT = 0.27531 ( 0.37989)  
PHI = 0.24582 ( 0.32594)

NOTE: SIGNAL/NOISE RATIOS ARE IN PARENTHESES

# Interpreting the GENOVA Output

## Output file

- Summary of D study results

| GENOVA VERSION 3.1<br>D STUDY                               |              |        |      |      |                   | P X I DESIGN | PAGE    | 24      |         |         |                 |
|-------------------------------------------------------------|--------------|--------|------|------|-------------------|--------------|---------|---------|---------|---------|-----------------|
| SUMMARY OF D STUDY RESULTS FOR SET OF CONTROL CARDS NO. 001 |              |        |      |      |                   |              |         |         |         |         |                 |
| D STUDY                                                     | SAMPLE SIZES |        |      |      | V A R I A N C E S |              |         |         |         |         |                 |
|                                                             | DESIGN       | INDEX= | \$P  | I    | UNIVERSE          | EXPECTED     | LOWER   | UPPER   | GEN.    | COEF.   | PHI             |
|                                                             | NO           | UNIV.= | INF. | INF. | SCORE             | OBSERVED     | CASE    | CASE    | MEAN    |         |                 |
|                                                             |              |        |      |      |                   | SCORE        | DELTA   | DELTA   |         |         |                 |
| 001-001                                                     |              |        | 36   | 5    |                   | 0.01462      | 0.05310 | 0.03848 | 0.04485 | 0.00784 | 0.27531 0.24582 |
| 001-002                                                     |              |        | 36   | 10   |                   | 0.01462      | 0.03386 | 0.01924 | 0.02243 | 0.00413 | 0.43175 0.39463 |
| 001-003                                                     |              |        | 36   | 15   |                   | 0.01462      | 0.02745 | 0.01283 | 0.01495 | 0.00289 | 0.53264 0.49440 |
| 001-004                                                     |              |        | 36   | 20   |                   | 0.01462      | 0.02424 | 0.00962 | 0.01121 | 0.00227 | 0.60311 0.56593 |
| 001-005                                                     |              |        | 36   | 30   |                   | 0.01462      | 0.02103 | 0.00641 | 0.00748 | 0.00165 | 0.69506 0.66167 |
| 001-006                                                     |              |        | 36   | 40   |                   | 0.01462      | 0.01943 | 0.00481 | 0.00561 | 0.00134 | 0.75242 0.72280 |
| 001-007                                                     |              |        | 36   | 50   |                   | 0.01462      | 0.01847 | 0.00385 | 0.00449 | 0.00115 | 0.79162 0.76523 |

# Creating Control Cards for GENOVA

## Control cards for $p \times (r:i)$ , G & D study

### 1. EFFECT

- EFFECT cards must list facets in order from the slowest-moving to fastest-moving in nested design.

### 2. DEFFECT

- If there are specific conditions to be analyzed in the D study, they can be stated in the DEFFECT card to produce results.
- e.g., Item – Rater: 1-12, 2-6, 3-4, 4-3, 5-2, 6-2

```
STUDY      P X (r:i) DESIGN
COMMENT
OPTIONS    RECORDS 2
EFFECT    * P 10 0
EFFECT    + I 3 0
EFFECT    + R:I 4 0
FORMAT    (12F2.0)
PROCESS    7
COMMENT   D STUDY CONTROL CARDS
DSTUDY    P X (R:I)
DEFFECT   $ P
DEFFECT   I 1 2 3 4 5 6
DEFFECT   R:I 12 6 4 3 2 2
ENDDSTUDY
FINISH
```

Table Data Structure for the  $p \times (r:i)$  Design

| Person | i1 |    |    |    | i2 |    |    |    | i3 |     |     |     |
|--------|----|----|----|----|----|----|----|----|----|-----|-----|-----|
|        | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 |
| 1      | 5  | 6  | 5  | 5  | 5  | 3  | 4  | 5  | 6  | 7   | 3   | 3   |
| 2      | 9  | 3  | 7  | 7  | 7  | 5  | 5  | 5  | 7  | 7   | 5   | 2   |
| 3      | 3  | 4  | 3  | 3  | 5  | 3  | 3  | 5  | 6  | 5   | 1   | 6   |
| 4      | 7  | 5  | 5  | 3  | 3  | 1  | 4  | 3  | 5  | 3   | 3   | 5   |
| 5      | 9  | 2  | 9  | 7  | 7  | 7  | 3  | 7  | 2  | 7   | 5   | 3   |

# Interpreting the GENOVA Output

## Output file

- D study results for 3 items and 4 raters

| GENOVA VERSION 3.1                                                                     |                                                 | PAGE 1                                                                        |                                                      |                                                 |                                         |                                                                 |        |    |         |         |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|--------|----|---------|---------|--|
| D STUDY                                                                                |                                                 | P X (R:I)                                                                     |                                                      |                                                 |                                         |                                                                 |        |    |         |         |  |
| D STUDY DESIGN NUMBER 001-003                                                          |                                                 |                                                                               |                                                      |                                                 |                                         |                                                                 |        |    |         |         |  |
| OBJECT OF MEASUREMENT :                                                                | P                                               | FACETS :                                                                      | I R:I                                                |                                                 |                                         |                                                                 |        |    |         |         |  |
| G STUDY POPULATION SIZE :                                                              | INFINITE                                        | G STUDY UNIVERSE SIZES :                                                      | INFINITE INFINITE                                    |                                                 |                                         |                                                                 |        |    |         |         |  |
| D STUDY POPULATION SIZE :                                                              | INFINITE                                        | D STUDY UNIVERSE SIZES :                                                      | INFINITE INFINITE                                    |                                                 |                                         |                                                                 |        |    |         |         |  |
| D STUDY SAMPLE SIZE :                                                                  | 10                                              | D STUDY SAMPLE SIZES :                                                        | 3 4                                                  |                                                 |                                         |                                                                 |        |    |         |         |  |
| VARIANCE COMPONENTS IN TERMS OF<br>G STUDY UNIVERSE (OF ADMISSIBLE OBSERVATIONS) SIZES |                                                 | VARIANCE COMPONENTS IN TERMS OF<br>D STUDY UNIVERSE (OF GENERALIZATION) SIZES |                                                      |                                                 |                                         |                                                                 |        |    |         |         |  |
| VARIANCE<br>COMPONENTS<br>FOR SINGLE<br>OBSERVATIONS                                   | FINITE<br>UNIVERSE SAMPLING<br>COR-<br>RECTIONS | D STUDY<br>FOR MEAN SCORES<br>ESTIMATES                                       | VARIANCE<br>COMPONENTS<br>FOR SINGLE<br>OBSERVATIONS | FINITE<br>UNIVERSE SAMPLING<br>COR-<br>RECTIONS | D STUDY<br>FOR MEAN SCORES<br>ESTIMATES | VARIANCE<br>COMPONENTS<br>FOR MEAN SCORES<br>STANDARD<br>ERRORS |        |    |         |         |  |
| P                                                                                      | 0.47315                                         | 1.0000                                                                        | 1                                                    | 0.47315                                         | 0.38558                                 | 0.47315                                                         | 1.0000 | 1  | 0.47315 | 0.38558 |  |
| I                                                                                      | 0.32515                                         | 1.0000                                                                        | 3                                                    | 0.10838                                         | 0.14600                                 | 0.32515                                                         | 1.0000 | 3  | 0.10838 | 0.14600 |  |
| R:I                                                                                    | 0.64753                                         | 1.0000                                                                        | 12                                                   | 0.05396                                         | 0.03162                                 | 0.64753                                                         | 1.0000 | 12 | 0.05396 | 0.03162 |  |
| PI                                                                                     | 0.55957                                         | 1.0000                                                                        | 3                                                    | 0.18652                                         | 0.12554                                 | 0.55957                                                         | 1.0000 | 3  | 0.18652 | 0.12554 |  |
| PR:I                                                                                   | 2.38025                                         | 1.0000                                                                        | 12                                                   | 0.19835                                         | 0.03079                                 | 2.38025                                                         | 1.0000 | 12 | 0.19835 | 0.03079 |  |
| QFM = QUADRATIC FORM                                                                   |                                                 |                                                                               |                                                      |                                                 |                                         |                                                                 |        |    |         |         |  |

# Interpreting the GENOVA Output

## Output file

- Summary of D study results

| GENOVA VERSION 3.1<br>D STUDY                               |        |        |      |      | P X (R:I)         |          |          | PAGE    | 22      |         |         |         |
|-------------------------------------------------------------|--------|--------|------|------|-------------------|----------|----------|---------|---------|---------|---------|---------|
| SUMMARY OF D STUDY RESULTS FOR SET OF CONTROL CARDS NO. 001 |        |        |      |      |                   |          |          |         |         |         |         |         |
| <hr/>                                                       |        |        |      |      |                   |          |          |         |         |         |         |         |
| SAMPLE SIZES                                                |        |        |      |      | V A R I A N C E S |          |          |         |         |         |         |         |
| D STUDY                                                     | DESIGN | INDEX= | \$P  | I    | R                 | UNIVERSE | EXPECTED | LOWER   | UPPER   | GEN.    |         |         |
| NO                                                          | UNIV.= | INF.   | INF. | INF. |                   | SCORE    | OBSERVED | CASE    | CASE    | COEF.   |         |         |
|                                                             |        |        |      |      |                   | SCORE    | SCORE    | DELTA   | DELTA   | MEAN    |         |         |
| 001-001                                                     |        | 10     | 1    | 12   |                   | 0.47315  | 1.23107  | 0.75792 | 1.13704 | 0.50222 | 0.38434 | 0.29385 |
| 001-002                                                     |        | 10     | 2    | 6    |                   | 0.47315  | 0.95129  | 0.47814 | 0.69468 | 0.31167 | 0.49738 | 0.40515 |
| 001-003                                                     |        | 10     | 3    | 4    |                   | 0.47315  | 0.85802  | 0.38488 | 0.54722 | 0.24815 | 0.55144 | 0.46370 |
| 001-004                                                     |        | 10     | 4    | 3    |                   | 0.47315  | 0.81139  | 0.33825 | 0.47350 | 0.21639 | 0.58313 | 0.49982 |
| 001-005                                                     |        | 10     | 5    | 2    |                   | 0.47315  | 0.82309  | 0.34994 | 0.47972 | 0.21209 | 0.57485 | 0.49655 |
| 001-006                                                     |        | 10     | 6    | 2    |                   | 0.47315  | 0.76476  | 0.29162 | 0.39977 | 0.18463 | 0.61869 | 0.54203 |