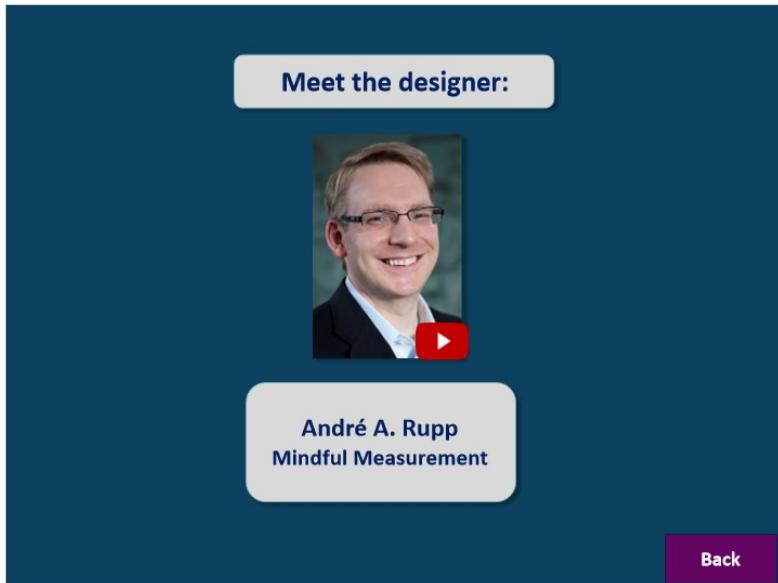


DM27 SLIDES (Rater Models, Version 1.0)

1. Module Overview

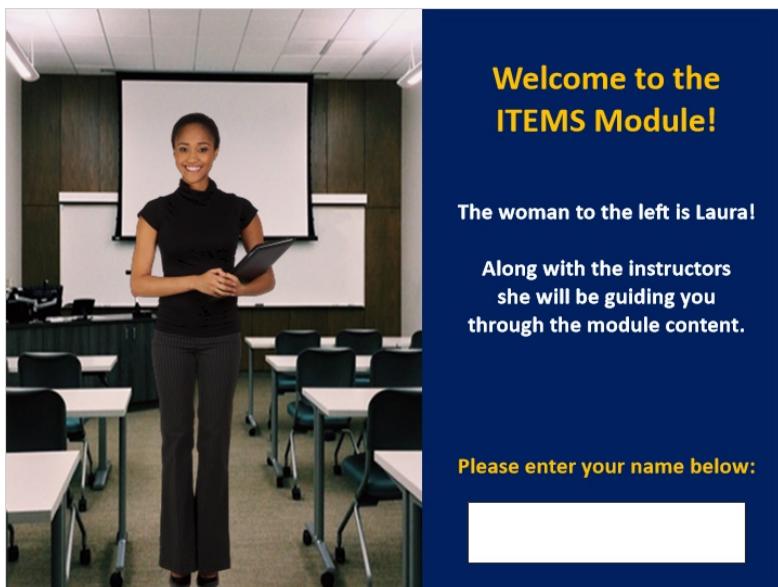

1.1 Module Cover (START)

1.2 Instructor

A video player interface showing a portrait of Jodi M. Casabianca, a woman with long brown hair, smiling. The text 'Meet the instructor:' is above the video. Below the video, the text 'Jodi M. Casabianca' and 'Educational Testing Service' is displayed. A 'Back' button is in the bottom right corner.

1.3 Designer

Meet the designer:



André A. Rupp
Mindful Measurement

Back

This slide features a dark blue background. At the top, a white rounded rectangle contains the text "Meet the designer:". Below this is a portrait of a man with glasses and a suit, with a YouTube play button icon overlaid. A second white rounded rectangle below the portrait contains the name "André A. Rupp" and "Mindful Measurement". At the bottom right is a purple "Back" button.

1.4 Welcome

Welcome to the
ITEMS Module!

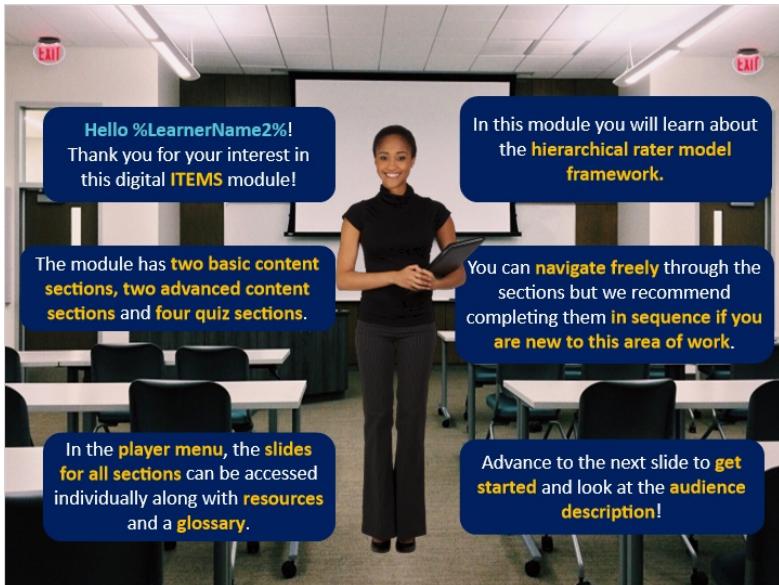
The woman to the left is Laura!

Along with the instructors
she will be guiding you
through the module content.

Please enter your name below:

This slide has a dark blue background. On the left is a photograph of a woman named Laura standing in a classroom. The right side contains text: "Welcome to the ITEMS Module!", "The woman to the left is Laura!", "Along with the instructors she will be guiding you through the module content.", and "Please enter your name below:" followed by a text input field.

Untitled Layer 1 (Slide Layer)


Welcome to the **ITEMS** Module!

The woman to the left is Laura!

Along with the instructors
she will be guiding you
through the module content.

Please enter your name below:

1.5 Overview

Hello %LearnerName2%!
Thank you for your interest in
this digital **ITEMS** module!

In this module you will learn about
the **hierarchical rater model**
framework.

The module has **two basic content
sections, two advanced content
sections and four quiz sections.**

You can **navigate freely** through the
sections but we recommend
completing them **in sequence** if you
are new to this area of work.

In the **player menu**, the **slides
for all sections** can be accessed
individually along with **resources**
and a **glossary**.

Advance to the next slide to **get
started** and look at the **audience
description!**

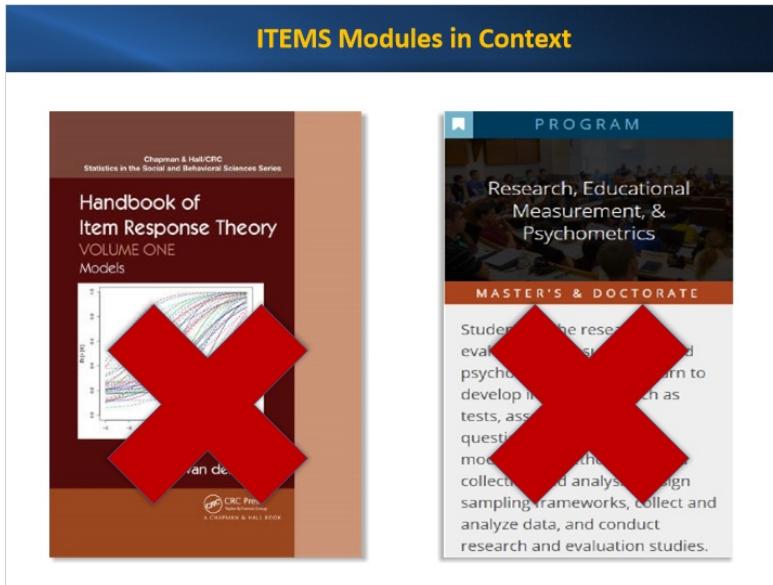
1.6 Target Audience

Target Audience

Anyone who would like a gentle statistical introduction to this topic:

- graduate students and faculty in Master's, Ph.D., or certificate programs
- psychometricians and other measurement professionals
- data scientists / analysts
- research assistants or research scientists
- technical project directors
- assessment developers

However, we hope that you find the information in this module useful no matter what your official title or role in an organization is!


1.7 Expectations (I)

Let's discuss expectations....

1.8 Expectations (II)

ITEMS Modules in Context

The slide is titled "ITEMS Modules in Context". It features two images: a book cover for "Handbook of Item Response Theory, VOLUME ONE Models" and a program brochure for "Research, Educational Measurement, & Psychometrics". Both the book and the brochure are crossed out with large red X's.

1.9 Learning Objectives

Learning Objectives

The slide is titled "Learning Objectives". It features a target with an arrow hitting the bullseye, symbolizing achievement of learning objectives. Below the target are four numbered learning objectives:

1. Describe the common rater effects and their impact on test taker scores
2. Understand the main advantage of the HRM framework over other IRT rater models and when it is appropriate to use
3. Discuss the HRM-based rater parameters and describe how they capture different rater behaviors
4. Understand the HRM framework components and conceptualize special cases relevant to specific data sets

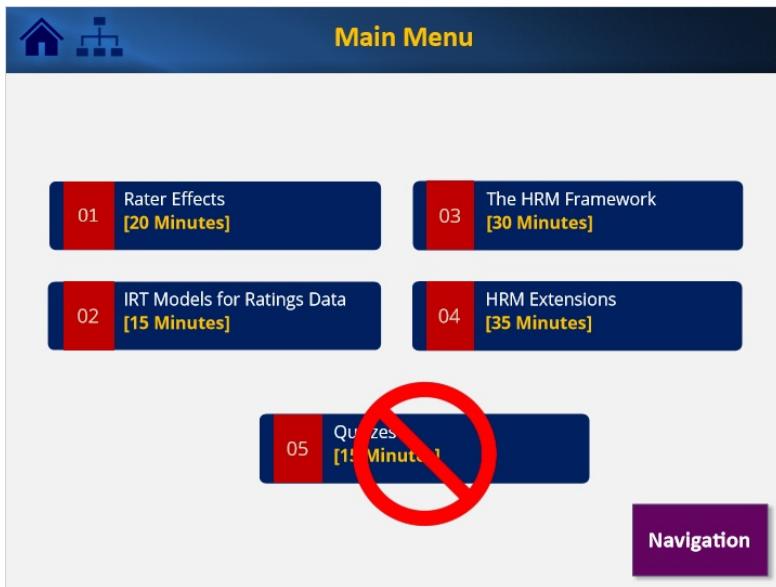
1.10 Prerequisites

Prerequisites

1. Familiarity with constructed response scoring, rater reliability, and rater agreement
2. Completed a two-semester graduate level applied statistics course series and a two-semester psychometric theory course series
3. Completed a graduate level item response theory course

1.11 Module Citation

Module Citation


Module Citation

Casabianca, J. M. (2021). Hierarchical rater models (Digital ITEMS Module 27). *Educational Measurement: Issues and Practice*, 40(4).

FREE WEB RESOURCES

1.12 Main Menu

2. Section 1: Rater Effects

2.1 Cover: Section 1

2.2 Objectives: Section 2

Learning Objectives

Understand how interrater agreement and rater accuracy are measures of rating quality

1. Understand how interrater agreement and rater accuracy are measures of rating quality

2. Describe the common rater effects

3. Discuss the impacts of rater effects on scores

2.3 Tasks with Ratings

Ratings of Constructed Responses

Types of Constructed Response Items or Performance Tasks

Multiple choice	Short Answer (Show work)	Essay (Explain, discuss, compare, etc.)	...	Performance, Activity, or Behavior
Right/wrong; Machine scored (SAT, Praxis)	Right/wrong with partial credit; different correct responses (NAEP, PISA)	Partial credit; many correct responses with different degrees of quality; different scoring designs (GRE Analytical Writing)	...	Holistic or rubric-based rating (CLASS-S)

Increasing scoring complexity

2.4 Agreement vs. Accuracy

The slide is titled "Measuring Rating Quality" in yellow text on a dark blue header. Below the title are two boxes: "Rater Agreement" (blue box with two people shaking hands) and "Rater Accuracy" (green box with a target icon). A list of bullet points is located in the bottom right corner of the slide area.

- **Agreement** concerns concordance between multiple raters' evaluation of the same work
- **Accuracy** concerns concordance between a rater and the true score assigned by an expert rater

Accuracy (Slide Layer)

The slide is titled "More on Accuracy" in yellow text on a dark blue header. Below the title is a list of bullet points.

- Cronbach (1955) decomposed rater accuracy into four parts:
 1. elevation, or overall accuracy
 2. differential elevation, or discrimination among test takers,
 3. stereotype accuracy, or discrimination among traits, and
 4. differential accuracy, or discrimination among test takers within traits.

Different measures of rater accuracy that are linked to specific components may not be correlated.

- Accuracy can also be criterion- or norm-referenced.

[Back](#)

2.5 Measuring Interrater Agreement

Measuring Interrater Agreement

- Reliability scoring/sampling
- Interrater agreement/reliability measures
 - ✓ Correlation between rater r and rater r'
 - ✓ Rates of exact agreement, adjacent agreement, non-adjacent agreement
 - ✓ Quadratically weighted Kappa (QWK)
 - ✓ Intraclass correlation coefficient (ICC)
- Using interrater agreement as a measure of rating quality is misleading because there could be high agreement and inaccurate ratings

2.6 Measuring Rater Accuracy

Measuring Rater Accuracy

- Rater accuracy is a complex notion. Agreement with experts is not the only way to measure accuracy
- For now, let's consider rater accuracy the extent to which a rater agrees with expert scores (or true scores). We estimate this using:
 - ✓ Correlation between rater r and true score
 - ✓ Rates of exact agreement, adjacent agreement, non-adjacent agreement
 - ✓ Quadratically weighted Kappa (QWK)
 - ✓ Intraclass correlation coefficient (ICC)
- Operational setting -> performance on validity responses

2.7 Agreement Statistics Do Not Provide

What do these measures provide?

- Low agreement statistics may indicate poor quality ratings, but may not help target specific rater issues.
- Example: Validity agreement rates for five raters.
 - Aside from inaccuracy, what type of errors are these raters making?

Validity Agreement Rates			
Rater ID	% Exact Agreement	% Adjacent Agreement	% Discrepant
0001	95%	2%	3%
0002	100%	0%	0%
0003	85%	10%	5%
0004	85%	10%	5%
0005	60%	10%	30%

2.8 Common Rater Effects

Common Rater Effects

- Severity/Leniency (negative/positive bias)
- Centrality/Extremity
- Restriction of range
- Halo effects
- Accuracy/Inaccuracy
- and more...

2.9 Impact on Scores (I)

Impact on Scores (I)

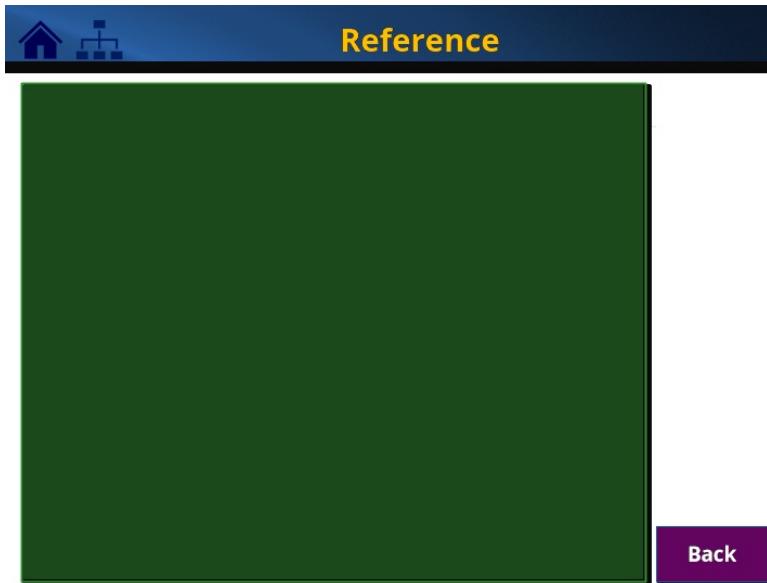
Generalizability studies reveal the proportions of variance attributable to rater error. For example, approximately 35% of variance in ratings of emotional support in the classroom

(Casabianca, Lockwood, & McCaffrey, 2015)

- **Severity/Leniency** – shifts in average ratings
- **Centrality/Extremity** – decrease or increase in ratings SD
- **Inaccuracy/Accuracy**
 - low rate of exact agreement
 - low $r(\text{observed}, \text{true})$

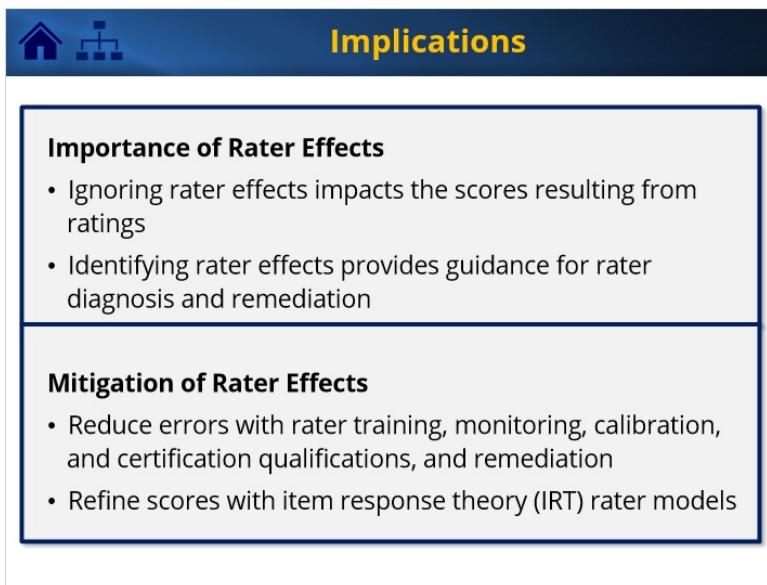
2.10 Impact on Scores (II)

Impact on Scores (II)


Table 2. Descriptive Statistics for Simulated Raw Scores by Rater Effect Group

Group	N	Score Level					Mean	SD	r
		0	1	2	3	4			
Normal	84	11%	21%	37%	22%	9%	1.97	1.11	0.65
Lenient	2	3%	8%	29%	30%	30%	2.77	1.04	0.60
Central	2	7%	23%	43%	22%	5%	1.97	0.97	0.42
Inaccurate	2	11%	22%	34%	22%	12%	2.02	1.17	0.46

Note: r = the correlation between the average of the scores assigned to each examinee by raters in the Normal group and the scores assigned by a single randomly chosen rater the group represented by the row of the table.

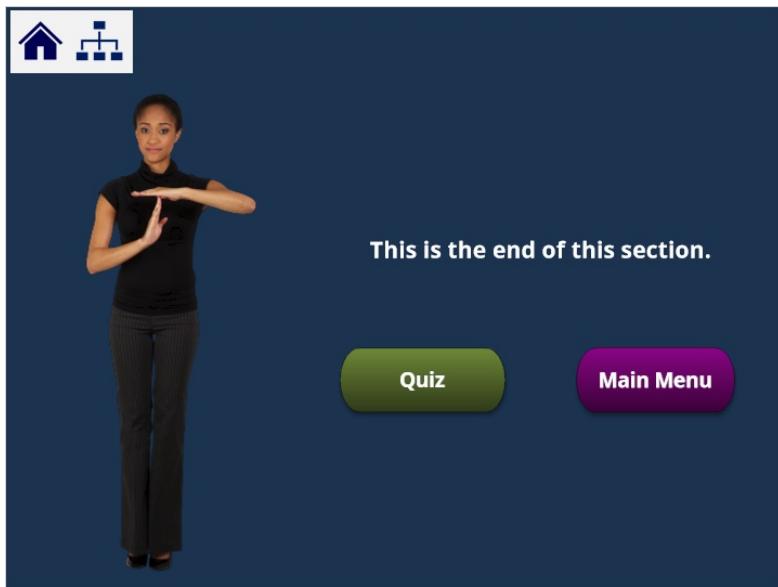

Reference

Reference (Slide Layer)

The image shows a slide titled 'Reference' with a dark blue header. The header contains a house icon and the word 'Reference' in yellow. Below the header is a large green rectangular area, likely a placeholder for content. In the bottom right corner of this green area is a small purple button with the word 'Back' in white.

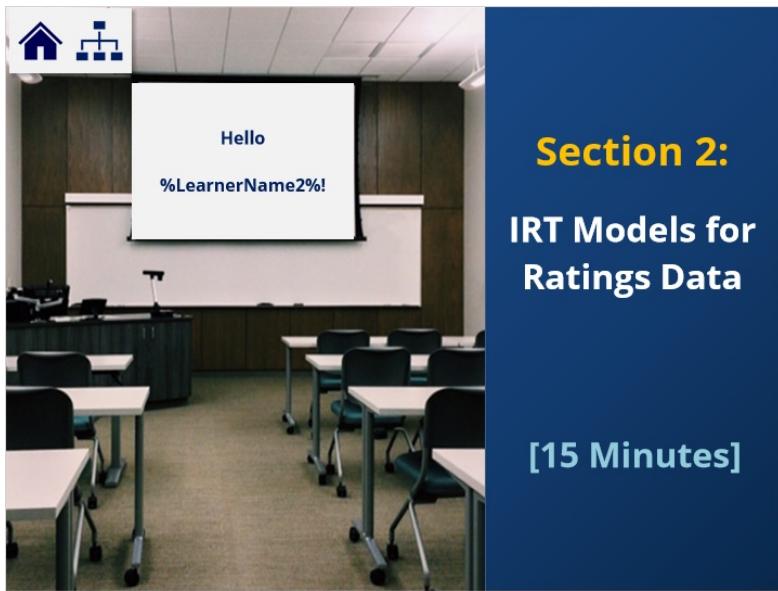
2.11 Implications

The image shows a slide titled 'Implications' with a dark blue header. The header contains a house icon and the word 'Implications' in yellow. The slide is divided into two main sections: 'Importance of Rater Effects' and 'Mitigation of Rater Effects', each with a list of bullet points.


Importance of Rater Effects

- Ignoring rater effects impacts the scores resulting from ratings
- Identifying rater effects provides guidance for rater diagnosis and remediation

Mitigation of Rater Effects


- Reduce errors with rater training, monitoring, calibration, and certification qualifications, and remediation
- Refine scores with item response theory (IRT) rater models

2.12 Bookend: Section 1

3. Section 2: IRT Models for Ratings Data

3.1 Cover: Section 2

3.2 Objectives: Section 2

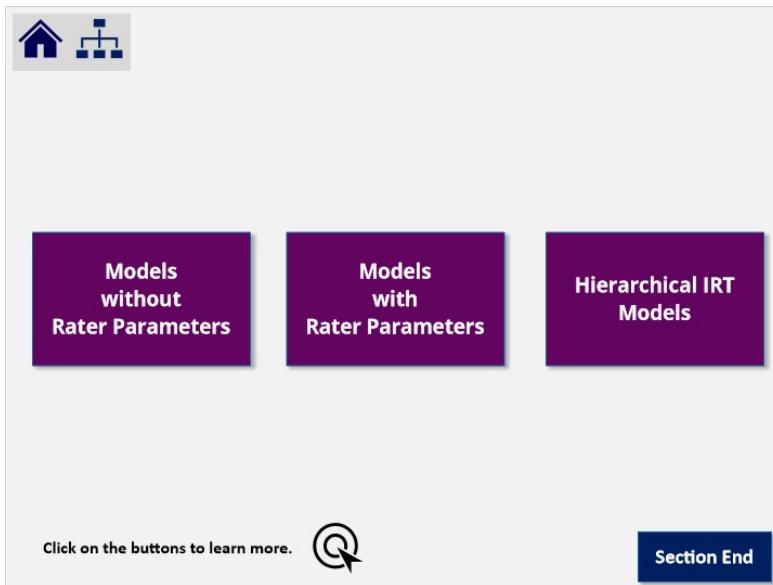
Learning Objectives

1. Discuss the various types of IRT models for ratings at a high level.

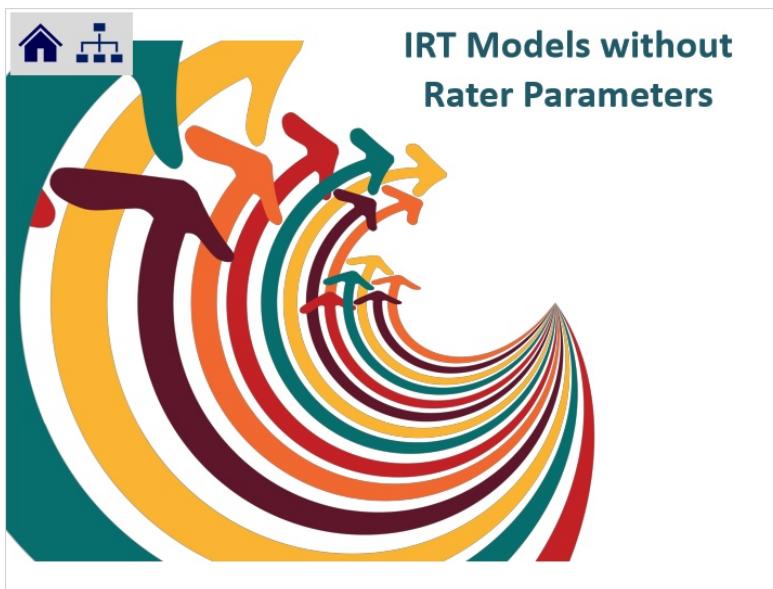
2. Understand the differences between item response and rater response modeling approaches.

3. Describe how different rater effects manifest in the parameter estimates of IRT rater models.

4. Describe the differences in the local independence assumptions and the information accumulation problem.


3.3 IRT Models for Ratings Data

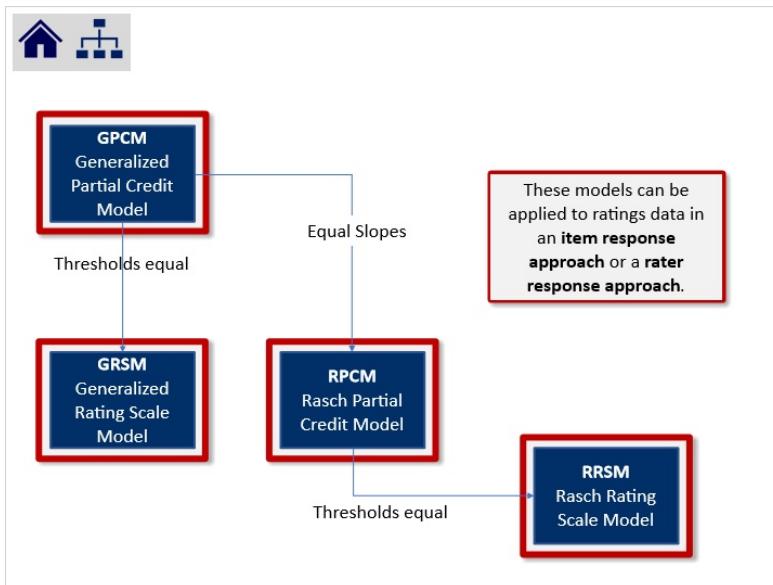
IRT Models for Ratings Data


- Polytomous IRT models without rater parameters
- Polytomous IRT models with rater parameters
 - ✓ Multi-faceted Rasch Model (Linacre, 1989)
 - ✓ Muraki's Raters'-effect model (Muraki, 1993)
- Hierarchical IRT rater models

3.4 Topic Selection

A screenshot of a user interface for topic selection. At the top left are icons for a house and a network. Below the house icon is a large, empty rectangular area. At the bottom left, the text "Click on the buttons to learn more." is followed by a magnifying glass icon. At the bottom right is a dark blue button labeled "Section End". In the center, there are three purple rectangular buttons with white text: "Models without Rater Parameters", "Models with Rater Parameters", and "Hierarchical IRT Models".

3.5 Bookmark: Polytomous Models w/o Rater Parameters


A screenshot of a bookmark for "Polytomous Models w/o Rater Parameters". At the top left are icons for a house and a network. The main content area features a large, colorful graphic of overlapping, curved lines in shades of yellow, orange, red, and teal, with several arrows pointing upwards and outwards from the curves. To the right of the graphic, the text "IRT Models without Rater Parameters" is displayed in a dark blue font.

3.6 General Principles

General Principles

- **Item response models** treats each rating as an item response, even if there are multiple ratings per item

Example: N=1,000 test takers, 15 CR items, 50 raters, 2 ratings per item per test taker-> IRT model considers this a test administration with N=1,000 test takers and 30 items.
- **Rater response models** can be applied to a lone CR item to analyze raters' responses instead of analyzing items

Example: N=1,000 test takers, 1 CR item, 50 raters, 2 ratings per item -> IRT model considers this a test administration with N=1,000 test takers and 50 items. Item parameter estimates describe characteristics of raters instead of items.

3.7 Model Comparison

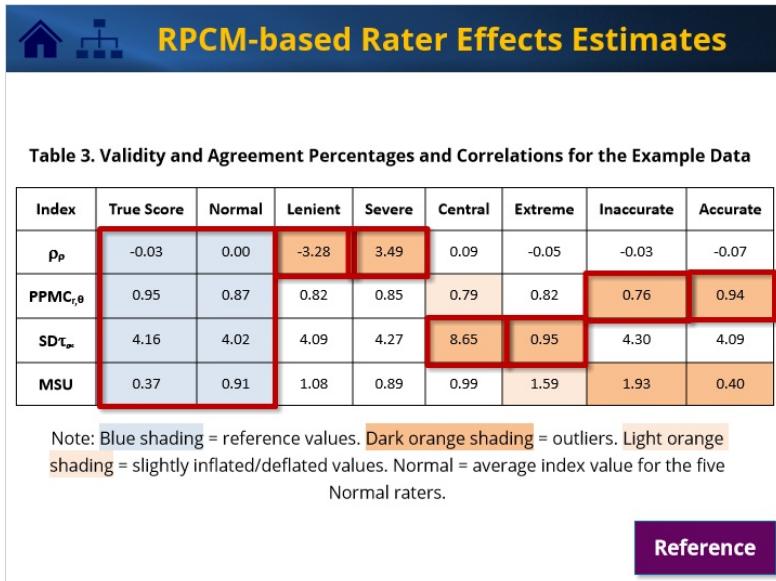
3.8 Rater Response Modeling Approach

Rater Response Modeling Approach

Model	Index	Severity/ Leniency	Centrality/ Extremity	Accuracy/ Inaccuracy
RRSM	ρ_r	+ / -		
	$PPMC_{r,8}$	- ^a / N		+ / -
	$PPMC_{res,exo}$	- / +		+ ^a / - ^a
	MSU	+ / +		- / +
RPCM	ρ_r	+ / -		
	$PPMC_{r,8}$	- ^a / N		+ / -
	$PPMC_{res,exo}$	+ ^a / N		+ / -
	$SD\tau_{rk}$	+ / -		+ / N
GRSM	MSU	- ^a / + ^a		- / +
	ρ_r	+ / -		
	$PPMC_{r,8}$	- ^a / + ^a		+ / -
	α_r	- ^a / + ^a		+ / -
GPCM	ρ_r	+ / -		
	$PPMC_{r,8}$	- ^a / N		+ / -
	$SD\tau_{rk}$	+ / -		- ^a / + ^a
	α_r	+ ^a / - ^a		+ / -

Reference
Notation

Reference (Slide Layer)

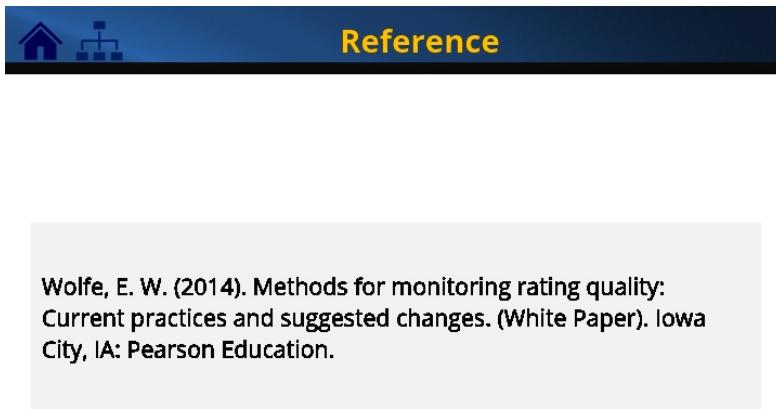


Reference

Wolfe, E. W. (2014). Methods for monitoring rating quality: Current practices and suggested changes. (White Paper). Iowa City, IA: Pearson Education.

Back

3.9 Using IRT Model Parameter Estimates for Rater Diagnosis

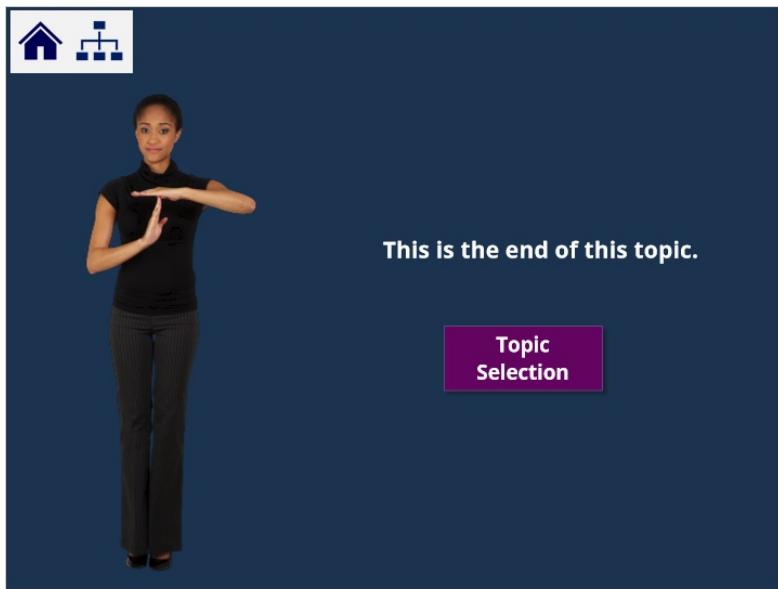

The interface shows a title bar with a house icon and the text "RPCM-based Rater Effects Estimates". Below is a table titled "Table 3. Validity and Agreement Percentages and Correlations for the Example Data". The table has columns: Index, True Score, Normal, Lenient, Severe, Central, Extreme, Inaccurate, and Accurate. Rows are labeled ρ_p , $PPMC_{1,0}$, $SD\tau_p$, and MSU. Shading indicates data quality: blue for reference values, dark orange for outliers, and light orange for slightly inflated/deflated values. A note at the bottom explains the shading. A "Reference" button is at the bottom right.

Index	True Score	Normal	Lenient	Severe	Central	Extreme	Inaccurate	Accurate
ρ_p	-0.03	0.00	-3.28	3.49	0.09	-0.05	-0.03	-0.07
$PPMC_{1,0}$	0.95	0.87	0.82	0.85	0.79	0.82	0.76	0.94
$SD\tau_p$	4.16	4.02	4.09	4.27	8.65	0.95	4.30	4.09
MSU	0.37	0.91	1.08	0.89	0.99	1.59	1.93	0.40

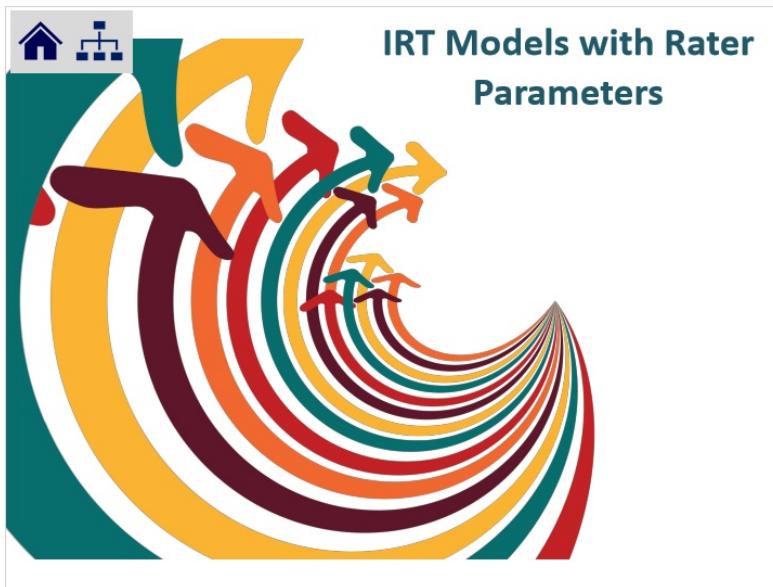
Note: Blue shading = reference values. Dark orange shading = outliers. Light orange shading = slightly inflated/deflated values. Normal = average index value for the five Normal raters.

Reference

Reference (Slide Layer)



The interface shows a title bar with a house icon and the text "Reference". Below is a text box containing a citation. A "Back" button is at the bottom right.


Wolfe, E. W. (2014). Methods for monitoring rating quality: Current practices and suggested changes. (White Paper). Iowa City, IA: Pearson Education.

Back

3.10 Bookend: Polytomous Models w/o Rater Parameters

3.11 Bookmark: Polytomous Models with Rater Parameters

3.12 Multi-faceted Rasch Model (I)

Multi-faceted Rasch Model (I)

- Multifaceted Rasch model (MFRM; Linacre, 1989)

$$\log \left[\frac{P(X_{ijr} = k | \theta_i)}{P(X_{ijr} = k-1 | \theta_i)} \right] = \theta_i - \beta_j - \gamma_{jk} - \phi_r$$

where ϕ_r is a **rater severity parameter**.

- Muraki's rater effect model (Muraki, 1993) generalizes the facets model by adding a discrimination parameter (a-parameter) for the item.

3.13 Multi-faceted Rasch Model (II)

Multi-faceted Rasch Model (II)

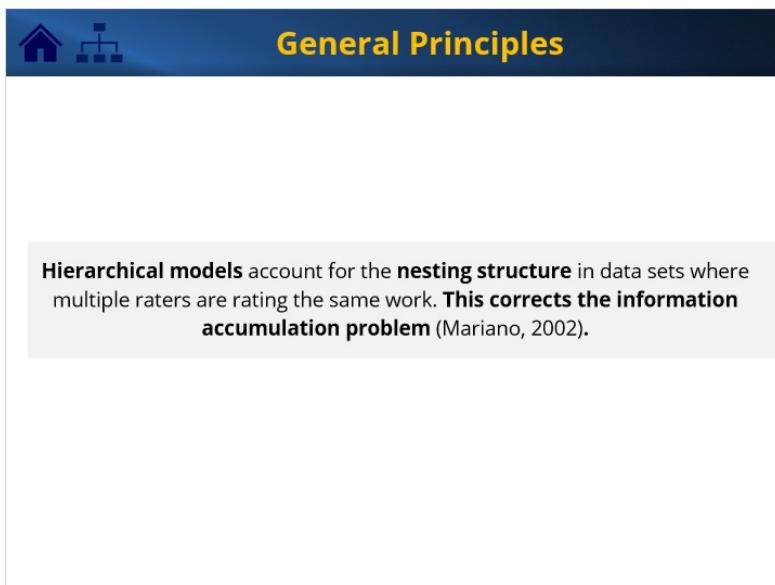
- Expanding the MFRM is relatively straightforward and there are numerous variants of the MFRM (see Myford & Wolfe, 2003)
- The MFRM can be used to detect leniency/severity, central tendency, accuracy, randomness, halo, and differential leniency/severity (Linacre, 1989; Myford & Wolfe, 2003, 2004)
 - ✓ In a variant of the MFRM that includes rater-item-specific thresholds, γ_{jrk} rater centrality can be captured via the SD of these thresholds
 - ✓ Rater accuracy can be approximated using rater fit statistics which tend to correspond to expert ratings (Wind & Engelhard, 2012), and post-model estimation approximations (Linacre, 2004; Wind, Engelhard, & Wesolowski, 2016)

3.14 Multi-faceted Rasch Model (III)

Multi-faceted Rasch Model (III)

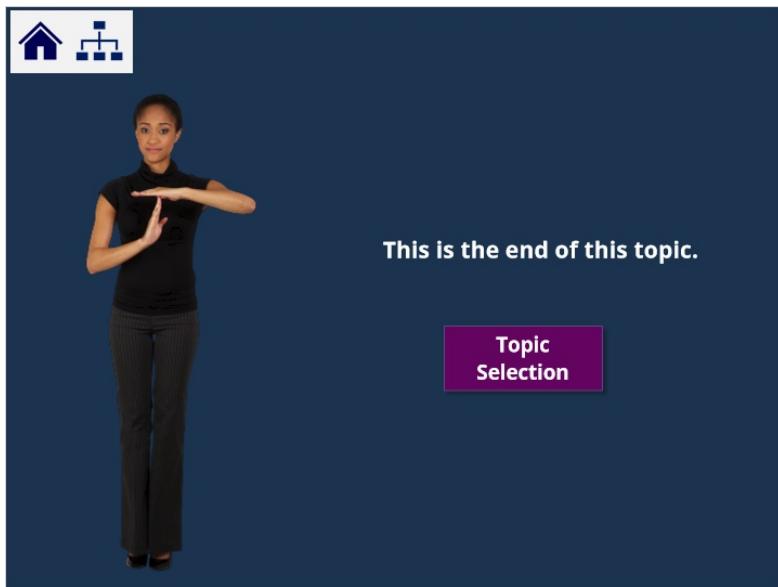
- The underlying IRT assumption of local independence given the latent trait technically applies in these MFRM
- However, it is unreasonable to make that assumption since it is unlikely that ratings assigned to the same response will be independent
 - ✓ In some scenarios, we want to consider each individual rater as contributing a different expert opinion
 - ✓ In many scenarios, we ask raters to use a scoring rubric, and expect consistency in their use of the scoring rubric.

3.15 Bookend: Polytomous Models with Rater Parameters

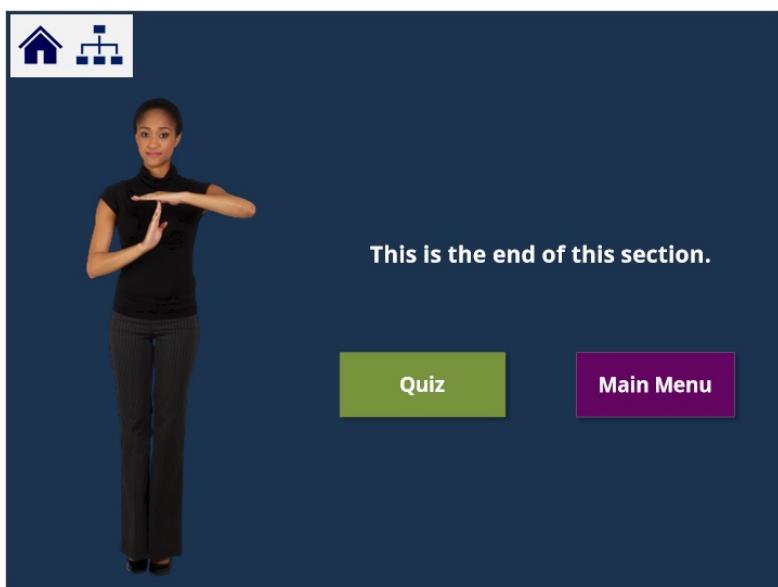

This is the end of this topic.

Topic Selection

3.16 Bookmark: Hierarchical IRT Models


3.17 General Principles

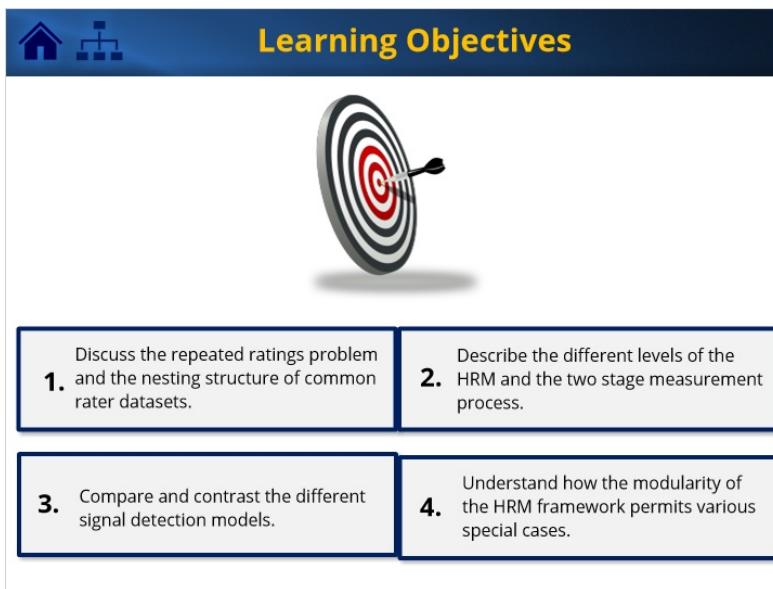
A slide titled 'General Principles' with a dark blue header bar. The text in the body states: 'Hierarchical models account for the **nesting structure** in data sets where multiple raters are rating the same work. This corrects the **information accumulation problem** (Mariano, 2002).'


General Principles

Hierarchical models account for the **nesting structure** in data sets where multiple raters are rating the same work. This corrects the **information accumulation problem** (Mariano, 2002).

3.18 Bookend: Hierarchical IRT Models

3.19 Bookend: Section 2


4. Section 3: The HRM Framework

4.1 Cover: Section 3

The image shows a classroom setting with rows of desks and chairs. On the wall, there is a whiteboard with the text "Hello" and "%LearnerName%". To the right of the classroom image is a blue vertical panel with the following text:
Section 3:
The HRM Framework
[30 Minutes]

4.2 Objectives: Section 3

Learning Objectives

1. Discuss the repeated ratings problem and the nesting structure of common rater datasets.

2. Describe the different levels of the HRM and the two stage measurement process.

3. Compare and contrast the different signal detection models.

4. Understand how the modularity of the HRM framework permits various special cases.

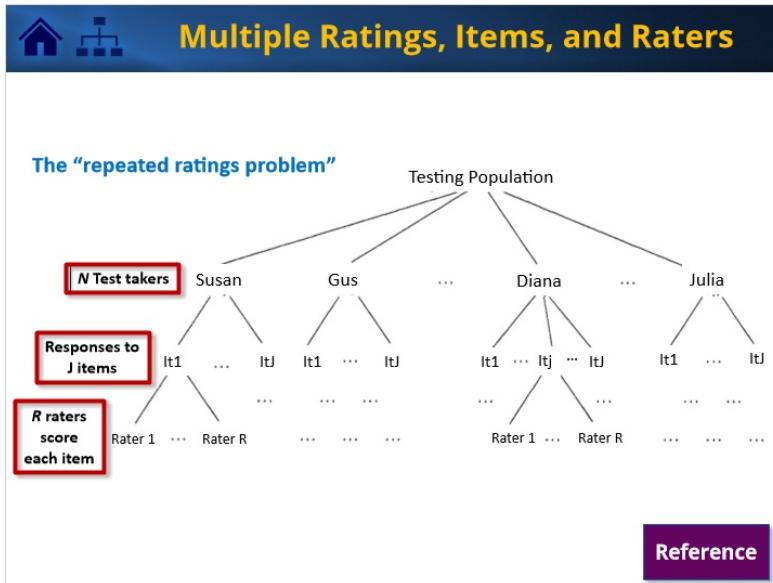
4.3 Topic Selection

HRM Foundations

More on the SDM

Modularity of the HRM

Worked Example

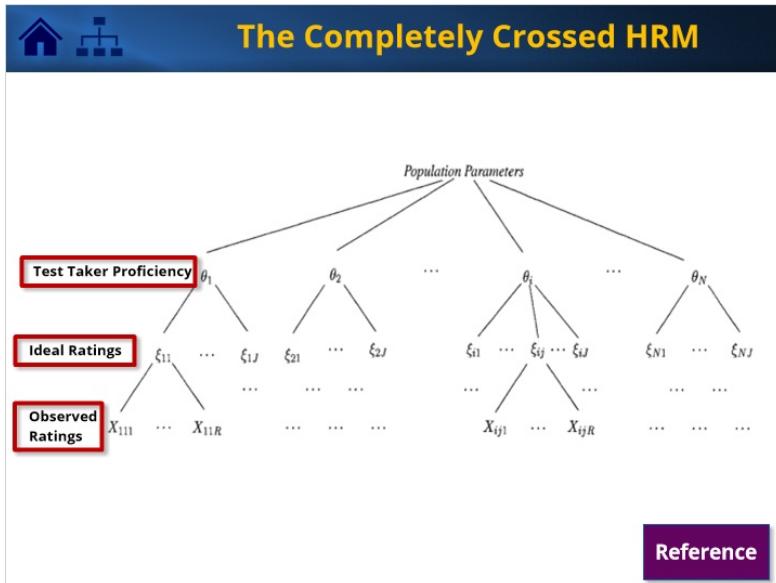

Click on the buttons to learn more.

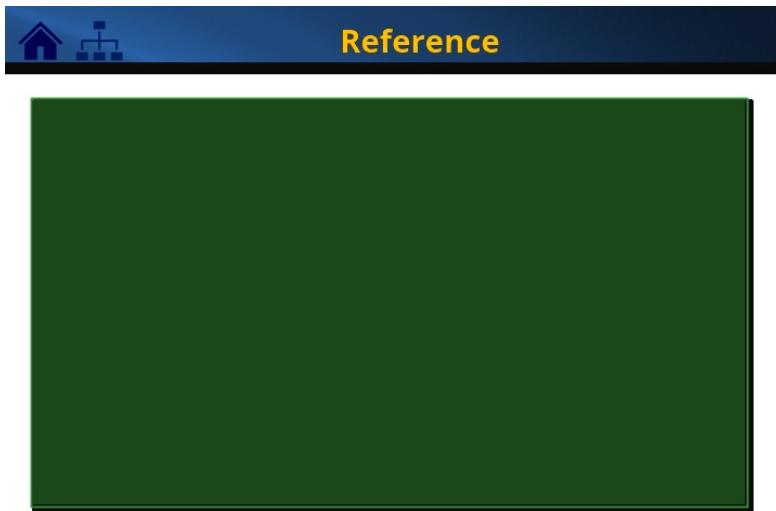
Section End

4.4 Bookmark: HRM Foundations

HRM Foundations

4.5 The Completely Crossed HRM


Reference (Slide Layer)


Source: Patz, R. J., Junker, B. W., Johnson, M. S., & Mariano, L. T. (2002). The hierarchical rater model for rated test items and its application to largescale educational assessment data. *Journal of Educational and Behavioral Statistics*, 27, 341-384.

Back

4.6 The Completely Crossed HRM

Reference (Slide Layer)

Source: Patz, R. J., Junker, B. W., Johnson, M. S., & Mariano, L. T. (2002). The hierarchical rater model for rated test items and its application to largescale educational assessment data. *Journal of Educational and Behavioral Statistics*, 27, 341-384.

Back

4.7 Ideal Ratings

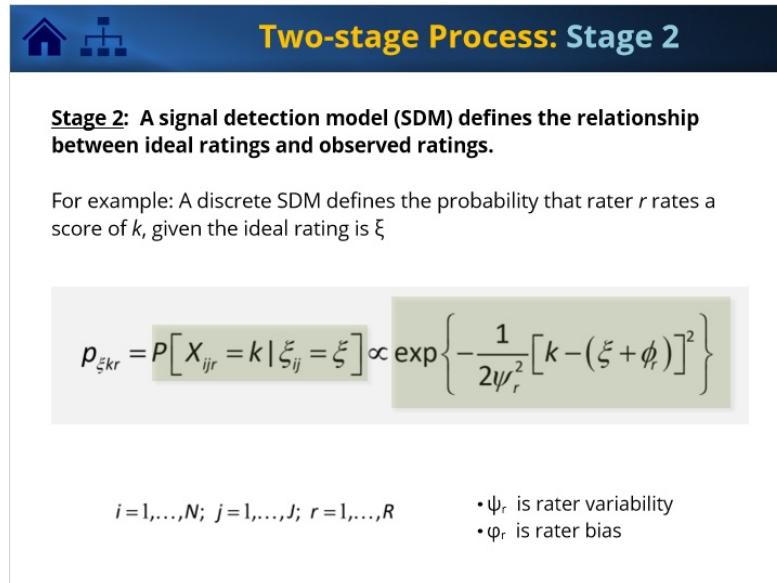
Ideal Ratings

- **Ideal ratings** are per-item (per-test taker) **latent variables** for estimating a test taker's **true response** to an item
 - Think: "true score"
 - The test taker's response scored without rater bias or variability
- We collect **observed ratings** to estimate **ideal ratings**

4.8 Two-stage Model I

Two-stage Process: Stage 1

Stage 1: An IRT model defines the relationship between ideal ratings and latent traits


Example: K -category Generalized Partial Credit Model (GPCM; Muraki, 1992) relates test taker proficiency to ideal ratings

$$P[\xi_{ij} = \xi | \theta_i, \beta_j, \gamma_{jk}] = \frac{\exp\left\{\sum_{k=1}^{\xi} \alpha_i(\theta_i - \beta_j) - \gamma_{jk}\right\}}{\sum_{h=0}^{K-1} \exp\left\{\sum_{k=1}^h \alpha_i(\theta_i - \beta_j) - \gamma_{jk}\right\}}$$

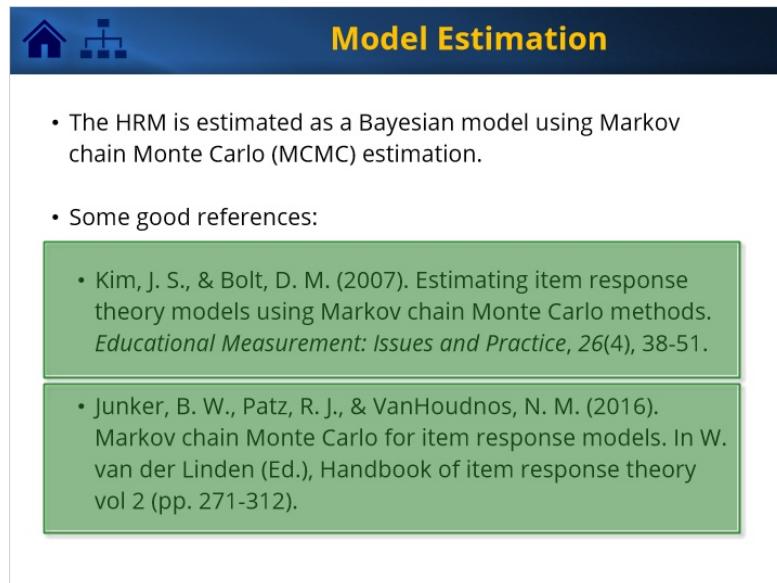
$i = 1, \dots, N; j = 1, \dots, J; k = 1, \dots, K$

- ξ_{ij} is ideal rating for test taker i on item j
- α_i is item discrimination
- β_j is item difficulty
- γ_{jk} step parameter at category k

4.9 Two-stage Model II

Two-stage Process: Stage 2

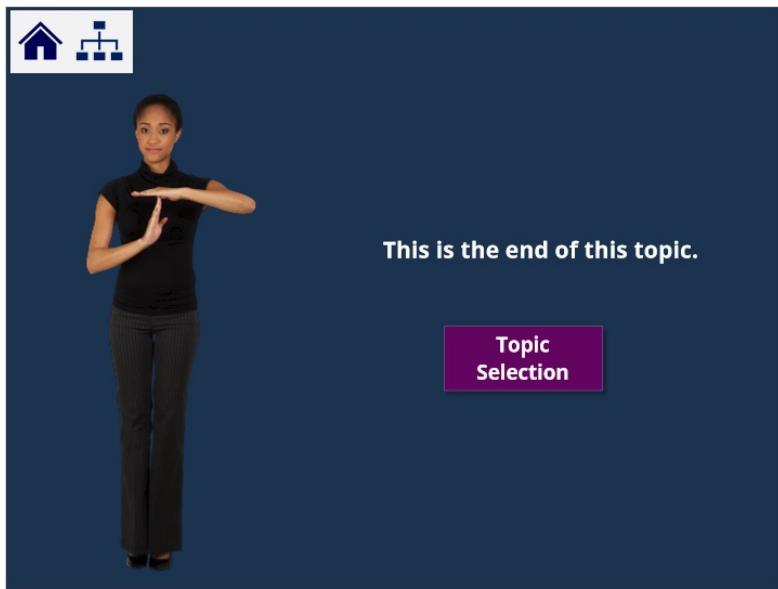
Stage 2: A signal detection model (SDM) defines the relationship between ideal ratings and observed ratings.


For example: A discrete SDM defines the probability that rater r rates a score of k , given the ideal rating is ξ

$$p_{\xi kr} = P[X_{ijr} = k | \xi_{ij} = \xi] \propto \exp \left\{ -\frac{1}{2\psi_r^2} [k - (\xi + \phi_r)]^2 \right\}$$

$i = 1, \dots, N; j = 1, \dots, J; r = 1, \dots, R$

- ψ_r is rater variability
- ϕ_r is rater bias


4.10 Two-stage Model II

Model Estimation

- The HRM is estimated as a Bayesian model using Markov chain Monte Carlo (MCMC) estimation.
- Some good references:
 - Kim, J. S., & Bolt, D. M. (2007). Estimating item response theory models using Markov chain Monte Carlo methods. *Educational Measurement: Issues and Practice*, 26(4), 38-51.
 - Junker, B. W., Patz, R. J., & VanHoudnos, N. M. (2016). Markov chain Monte Carlo for item response models. In W. van der Linden (Ed.), *Handbook of item response theory* vol 2 (pp. 271-312).

4.11 Bookend: HRM Foundations

4.12 Bookmark: SDM Component

4.13 Modeling Rater Behavior in the

 Modeling Rater Behavior I: Patz et al. (2002)

Matrix of Rating Probabilities
 $p_{\xi kr} = P[\text{Rater } r \text{ rates } k \mid \text{ideal rating } \xi]$ in each row of this matrix

Ideal Rating (ξ)	Observed Rating (k)				
	0	1	2	3	4
0	p_{00r}	p_{01r}	p_{02r}	p_{03r}	p_{04r}
1	p_{10r}	p_{11r}	p_{12r}	p_{13r}	p_{14r}
2	p_{20r}	p_{21r}	p_{22r}	p_{23r}	p_{24r}
3	p_{30r}	p_{31r}	p_{32r}	p_{33r}	p_{34r}
4	p_{40r}	p_{41r}	p_{42r}	p_{43r}	p_{44r}

4.14 Modeling Rater Behavior in the

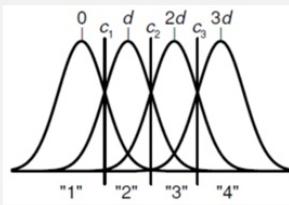
 Modeling Rater Behavior II: Patz et al. (2002)

Probabilities in each row of the matrix can be made proportional to a **Normal density**:

The normal density:

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}[x - \mu]^2\right\}$$

The discrete SDM in the Patz et al. (2002) HRM:


$$p_{\xi kr} = P[X_{ijr} = k \mid \xi_{ij} = \xi] \propto \exp\left\{-\frac{1}{2\psi_r^2}[k - (\xi + \phi)]^2\right\}$$

4.15 Modeling IV: De Carlo et al. (2011)

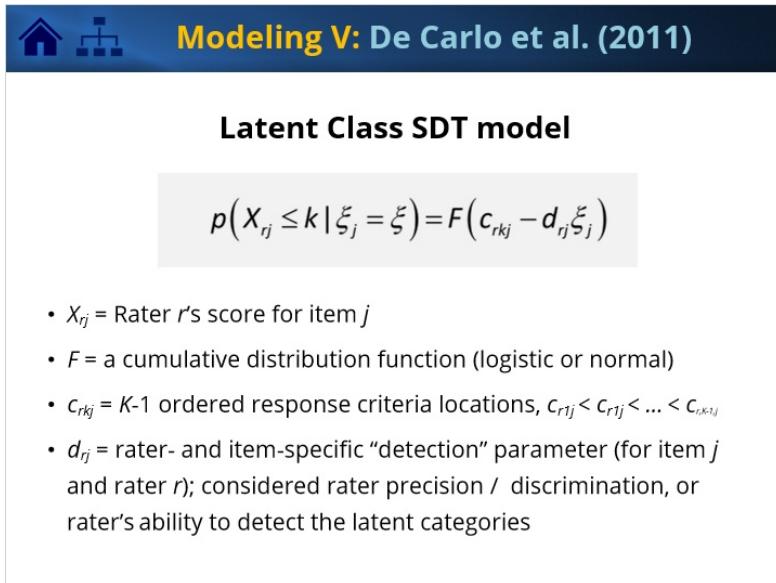
 Modeling IV: De Carlo et al. (2011)

DeCarlo et al. (2011) noted that the Patz et al. (2002) HRM only captures rater bias and variability and proposed a different model for Level 1

A Latent Class SDT model

d = distances between perceptual distributions (here, equidistant)

c = response criteria locations;
divide the scoring decision space

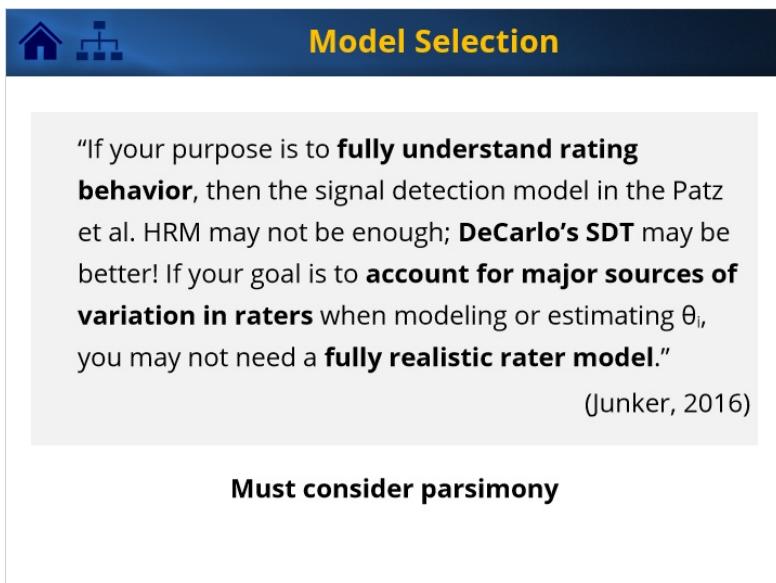

Reference

Reference (Slide Layer)

 Reference

Back

4.16 Modeling V: De Carlo et al. (2011)


Modeling V: De Carlo et al. (2011)

Latent Class SDT model

$$p(X_{rj} \leq k | \xi_j = \xi) = F(c_{rkj} - d_{rj}\xi_j)$$

- X_{rj} = Rater r 's score for item j
- F = a cumulative distribution function (logistic or normal)
- c_{rkj} = $K-1$ ordered response criteria locations, $c_{r1j} < c_{r2j} < \dots < c_{rKj}$
- d_{rj} = rater- and item-specific "detection" parameter (for item j and rater r); considered rater precision / discrimination, or rater's ability to detect the latent categories

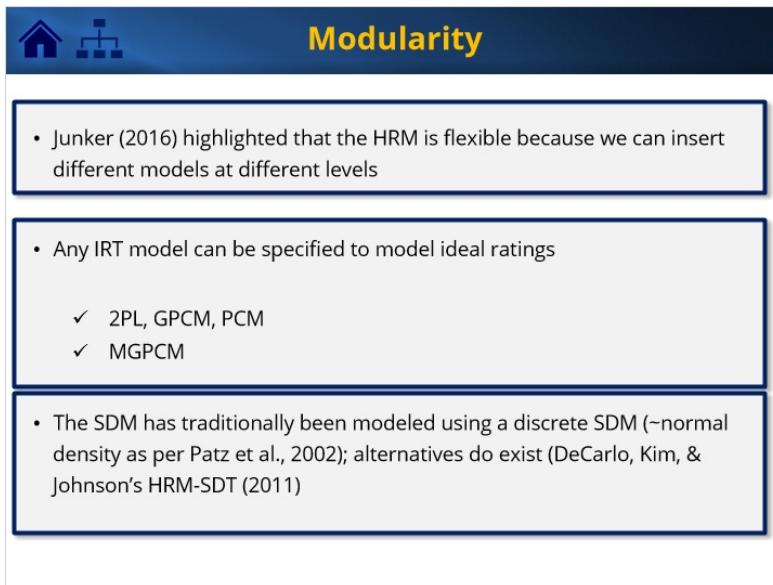
4.17 Model Selection

Model Selection

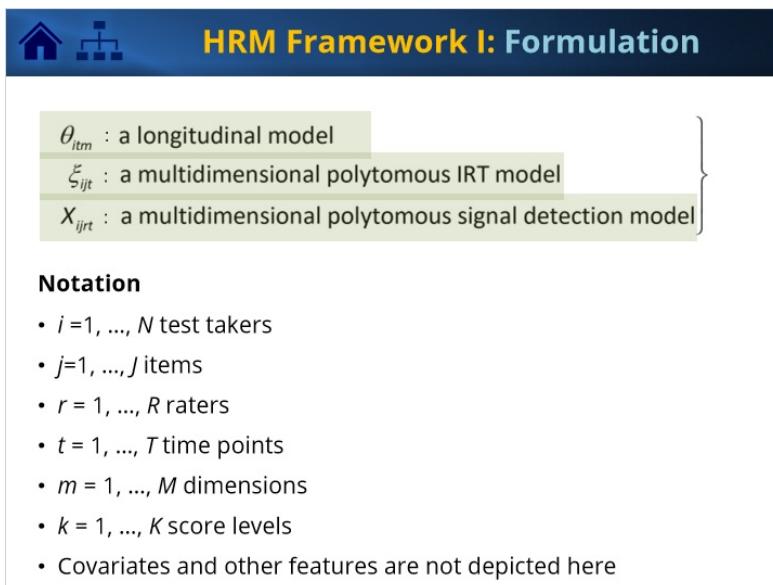
"If your purpose is to **fully understand rating behavior**, then the signal detection model in the Patz et al. HRM may not be enough; **DeCarlo's SDT** may be better! If your goal is to **account for major sources of variation in raters** when modeling or estimating θ_i , you may not need a **fully realistic rater model**."

(Junker, 2016)

Must consider parsimony


4.18 Bookend: SDM Component

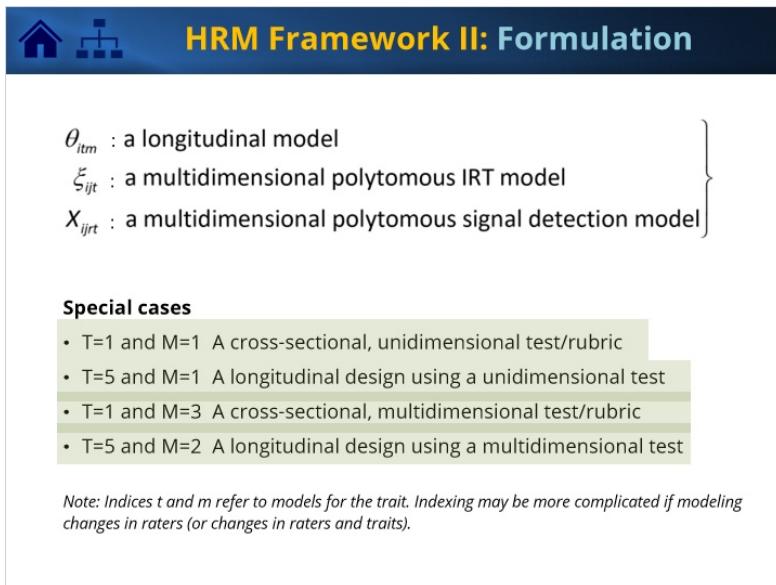
4.19 Bookmark: Modularity


4.20 Modularity

Modularity

- Junker (2016) highlighted that the HRM is flexible because we can insert different models at different levels
- Any IRT model can be specified to model ideal ratings
 - ✓ 2PL, GPCM, PCM
 - ✓ MGPCM
- The SDM has traditionally been modeled using a discrete SDM (~normal density as per Patz et al., 2002); alternatives do exist (DeCarlo, Kim, & Johnson's HRM-SDT (2011))

4.21 HRM Framework I: Formulation


HRM Framework I: Formulation

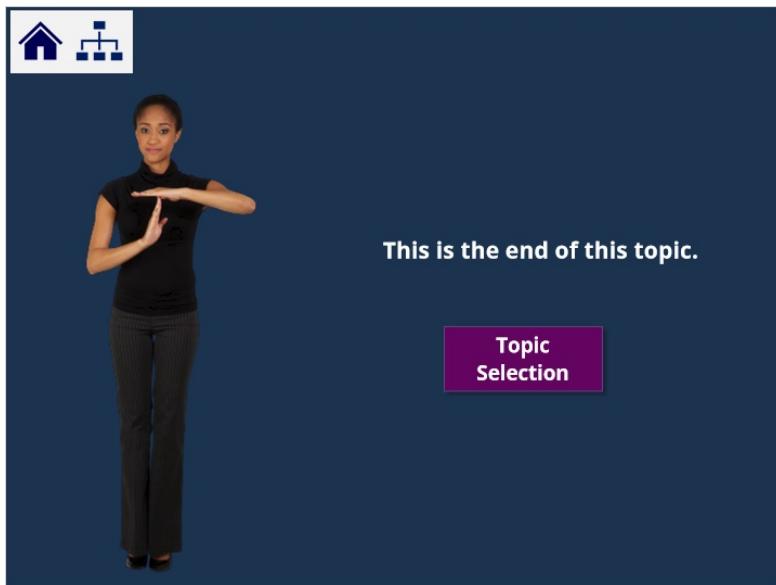
θ_{itm} : a longitudinal model
 ξ_{ijt} : a multidimensional polytomous IRT model
 X_{ijrt} : a multidimensional polytomous signal detection model

Notation

- $i = 1, \dots, N$ test takers
- $j = 1, \dots, J$ items
- $r = 1, \dots, R$ raters
- $t = 1, \dots, T$ time points
- $m = 1, \dots, M$ dimensions
- $k = 1, \dots, K$ score levels
- Covariates and other features are not depicted here

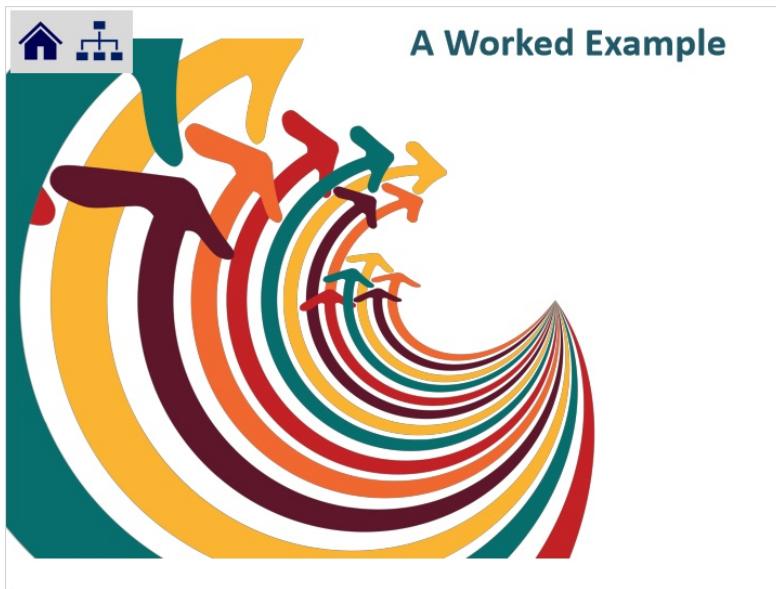
4.22 HRM Framework II: Formulation

HRM Framework II: Formulation


θ_{itm} : a longitudinal model
 ξ_{ijt} : a multidimensional polytomous IRT model
 X_{ijt} : a multidimensional polytomous signal detection model

Special cases

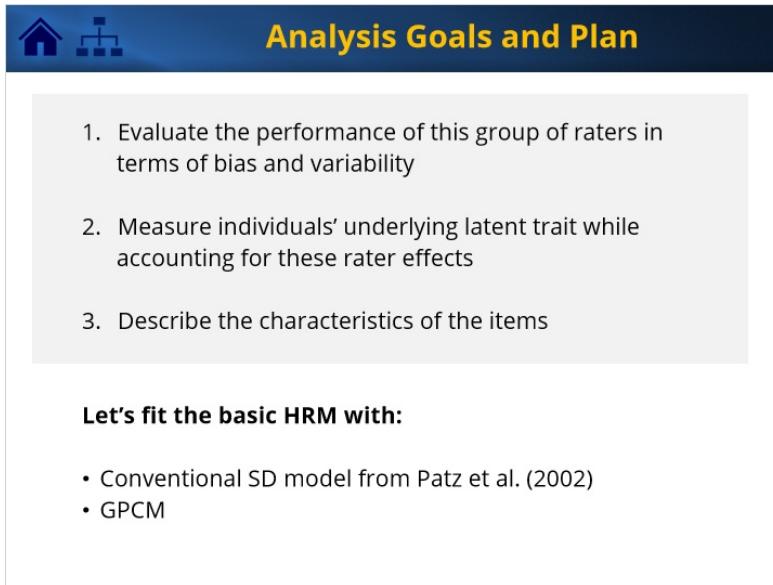
- T=1 and M=1 A cross-sectional, unidimensional test/rubric
- T=5 and M=1 A longitudinal design using a unidimensional test
- T=1 and M=3 A cross-sectional, multidimensional test/rubric
- T=5 and M=2 A longitudinal design using a multidimensional test


Note: Indices t and m refer to models for the trait. Indexing may be more complicated if modeling changes in raters (or changes in raters and traits).

4.23 Bookend: Modularity

Topic Selection

4.24 Bookmark: Worked Example

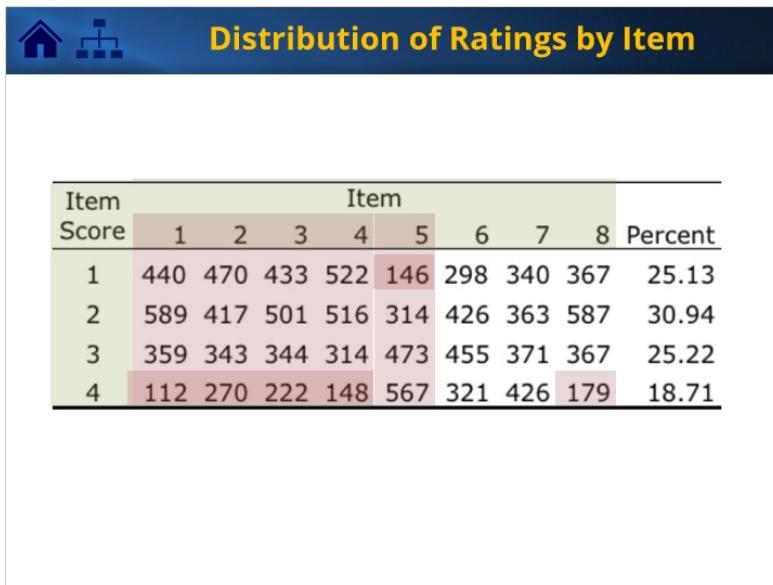


4.25 Rating Design and Data Structure

Rating Design and Data Structure

- Consider a large-scale assessment, which involves the rating of $N = 500$ test takers by $R = 10$ raters
- The test contains $J = 8$ CR items, each scored on a $K = 4$ point scale
- Test takers were scored by 3 different raters on all items with each rater assigned to multiple individuals (partially crossed design)
- 12,000 total ratings

4.26 Analysis Goals and Plan


The slide has a dark blue header with a house icon and the text "Analysis Goals and Plan" in yellow. The main content area is light gray with a list of three goals:

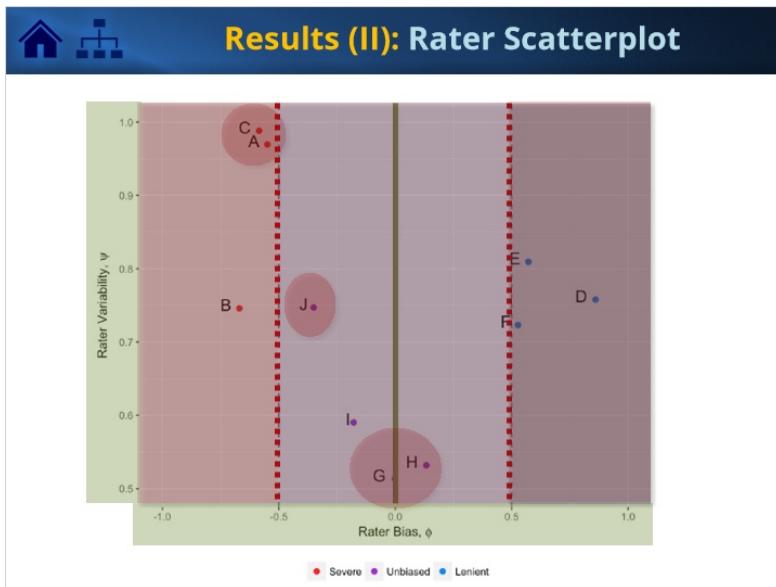
1. Evaluate the performance of this group of raters in terms of bias and variability
2. Measure individuals' underlying latent trait while accounting for these rater effects
3. Describe the characteristics of the items

Let's fit the basic HRM with:

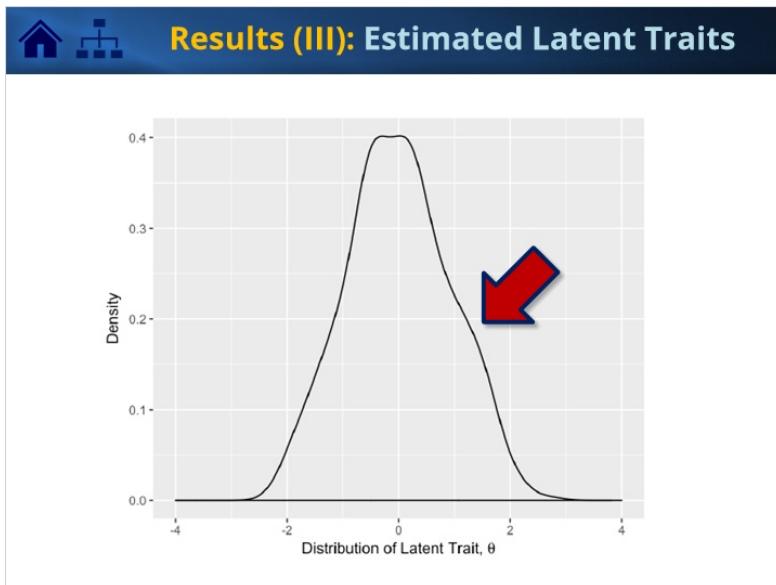
- Conventional SD model from Patz et al. (2002)
- GPCM

4.27 Distribution of Ratings by Item

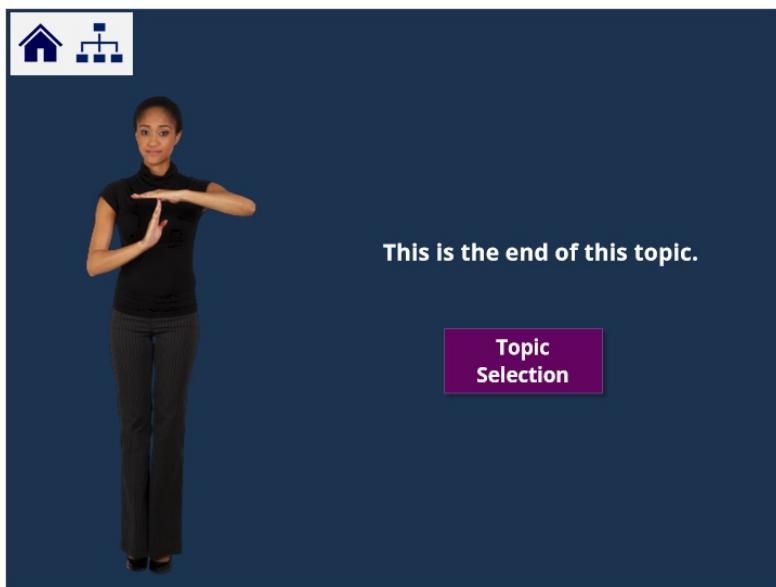
The slide has a dark blue header with a house icon and the text "Distribution of Ratings by Item" in yellow. The main content area is light gray and contains a table showing the distribution of ratings by item.

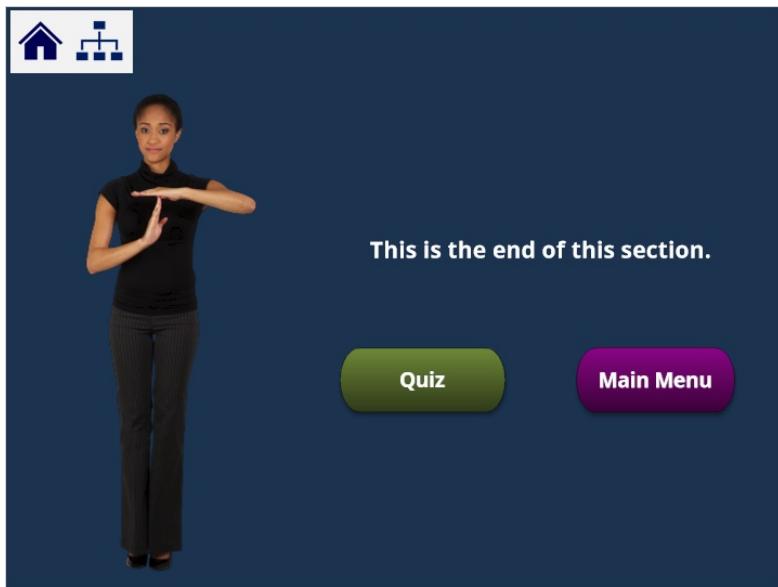

Score	Item								Percent
	1	2	3	4	5	6	7	8	
1	440	470	433	522	146	298	340	367	25.13
2	589	417	501	516	314	426	363	587	30.94
3	359	343	344	314	473	455	371	367	25.22
4	112	270	222	148	567	321	426	179	18.71

4.28 Results (I): Summary Statistics


Results (I): Summary Statistics

	mean	sd	X2.5.	X25.	X50.	X75.	X97.5.	Rhat	n.eff
alpha[1]	1.5062	0.2198	1.1070	1.3536	1.4879	1.6498	1.9822	1.0013	2400
alpha[2]	1.2515	0.1699	0.9550	1.1293	1.2401	1.3599	1.6103	1.0007	3000
alpha[3]	2.0403	0.2991	1.5159	1.8323	2.0153	2.2326	2.6814	1.0010	3000
gamma[1,2]	-1.0588	0.1439	-1.3620	-1.1508	-1.0541	-0.9603	-0.7912	1.0007	3000
gamma[2,2]	-0.0598	0.1698	-0.3739	-0.1722	-0.0681	0.0456	0.3009	1.0006	3000
gamma[3,2]	-0.7923	0.1130	-1.0210	-0.8679	-0.7885	-0.7148	-0.5811	1.0013	2500
gamma[4,2]	-0.2752	0.1187	-0.5120	-0.3533	-0.2770	-0.1969	-0.0400	1.0018	1500
phi.r[1]	-0.5496	0.0478	-0.6440	-0.5805	-0.5481	-0.5179	-0.4572	1.0008	3000
phi.r[2]	-0.6695	0.0394	-0.7484	-0.6956	-0.6692	-0.6429	-0.5933	1.0014	3000
phi.r[3]	-0.5850	0.0465	-0.6762	-0.6166	-0.5851	-0.5525	-0.4939	1.0010	3000
psi.r[1]	0.9694	0.0342	0.9064	0.9456	0.9679	0.9915	1.0383	1.0009	3000
psi.r[2]	0.7459	0.0272	0.6926	0.7278	0.7457	0.7632	0.7989	1.0011	3000
psi.r[3]	0.9881	0.0332	0.9244	0.9652	0.9878	1.0102	1.0542	1.0028	860
theta[1]	-0.4755	0.3997	-1.2750	-0.7326	-0.4754	-0.1957	0.2753	1.0007	3000
theta[2]	0.8032	0.3391	0.1405	0.5700	0.8066	1.0307	1.4824	1.0007	3000
theta[3]	0.4746	0.3878	-0.2961	0.2212	0.4870	0.7343	1.2238	1.0035	670


4.29 Results (II): Rater Scatterplot


4.30 Results (III): Estimated Latent Traits

4.31 Bookend: Worked Example

4.32 Bookend: Section 3

5. Section 4: HRM Extensions

5.1 Cover: Section 4

5.2 Objectives: Section 4

Learning Objectives

1. Understand the general approach to modeling rater covariates.

2. Discuss the components of the longitudinal HRM that model changes in traits.

3. Describe how the HRM may be adapted to accommodate multidimensionality in traits and rater behavior.

4. Compare use of the M-HRM to other modeling approaches that ignore the multidimensionality.

5.3 Topic Selection

Covariates

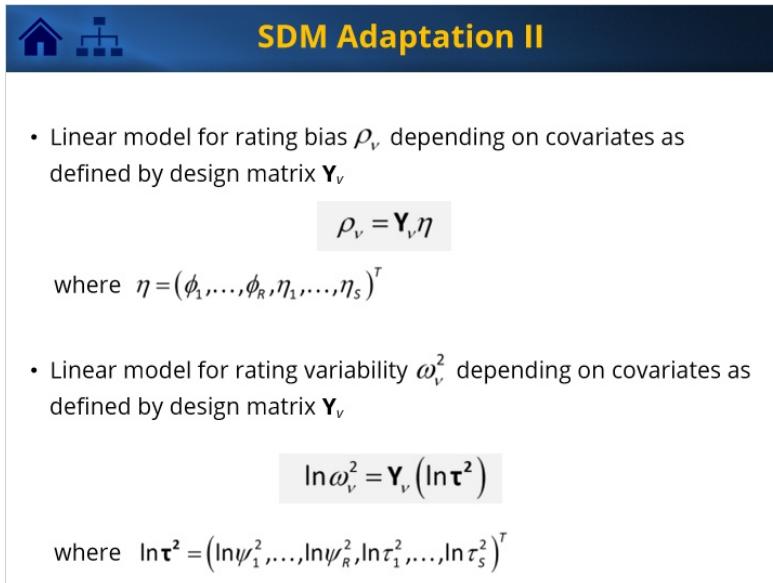
Longitudinal HRM

Multidimensional HRM

Click on the buttons to learn more.

Section End

5.4 Bookmark: Covariates



5.5 SDM Adaptation I

A slide titled "SDM Adaptation I" in a yellow font, with a blue header bar containing a house icon. The slide content is as follows:

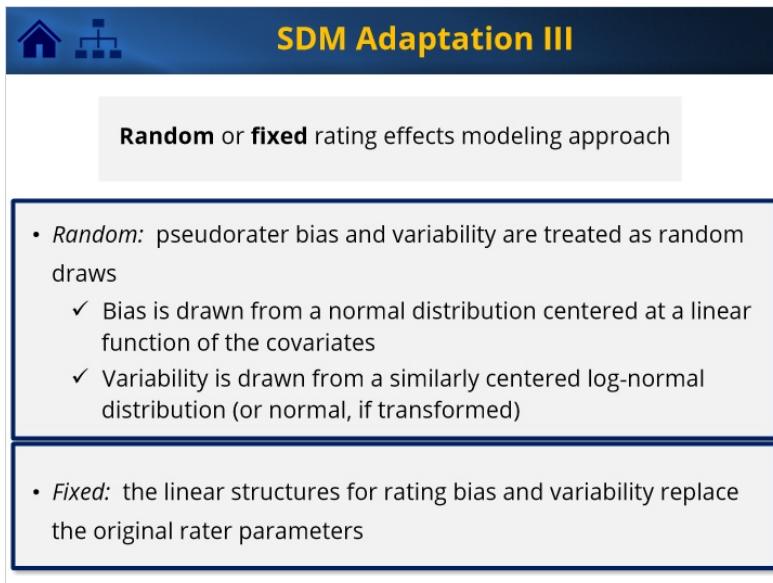
- To incorporate **rater covariates** and estimate their effects, we adapt the SDM:
$$p_{\xi_{kv}} = P[X_{ijv} = k | \xi_{ij} = \xi] \propto \exp\left\{-\frac{1}{2\omega_v^2} [k - (\xi + \rho_v)]^2\right\}$$
- Here, **bias** is ρ_v and rater SD is ω_v for **pseudorater** v ($v = 1, \dots, V$). There is a pseudorater for every unique combination of rater and rater covariate.
- Specify with a $V \times (R+S)$ design matrix \mathbf{Y}_v
 - ✓ R columns contain binary indicators per rater
 - ✓ S columns contain rater covariates (or covariate factors)

5.6 SDM Adaptation II

SDM Adaptation II

- Linear model for rating bias ρ_v depending on covariates as defined by design matrix \mathbf{Y}_v

$$\rho_v = \mathbf{Y}_v \boldsymbol{\eta}$$


where $\boldsymbol{\eta} = (\phi_1, \dots, \phi_r, \eta_1, \dots, \eta_s)^T$

- Linear model for rating variability ω_v^2 depending on covariates as defined by design matrix \mathbf{Y}_v

$$\ln \omega_v^2 = \mathbf{Y}_v (\ln \tau^2)$$

where $\ln \tau^2 = (\ln \psi_1^2, \dots, \ln \psi_r^2, \ln \tau_1^2, \dots, \ln \tau_s^2)^T$

5.7 SDM Adaptation III

SDM Adaptation III

Random or **fixed** rating effects modeling approach

- Random:** pseudorater bias and variability are treated as random draws
 - ✓ Bias is drawn from a normal distribution centered at a linear function of the covariates
 - ✓ Variability is drawn from a similarly centered log-normal distribution (or normal, if transformed)
- Fixed:** the linear structures for rating bias and variability replace the original rater parameters

5.8 Examples

Examples

- Mariano, L. T., & Junker, B. W. (2007). Covariates of the rating process in hierarchical models for multiple ratings of test items. *Journal of Educational and Behavioral Statistics*, 32(3), 287-314.
- Casabianca, J. M., Junker, B. W., & Patz, R. J. (2016). Hierarchical rater models. In W. van der Linden (Ed.), *Handbook of item response theory Vol 2* (pp. 449-465). Chapman and Hall/CRC.
- Check back in future versions of this module!

5.9 Bookend: Covariates

This is the end of this topic.

Topic Selection

5.10 Bookmark: Longitudinal HRM

5.11 Longitudinal Assessment Scenarios

A screenshot of a presentation slide with a dark blue header bar. On the left of the header is a blue house icon with three small squares above it. To the right of the icon, the text "Longitudinal Assessment Scenarios" is written in a yellow, bold, sans-serif font. The main content area is divided into three sections, each with a blue border. The first section contains a bullet point and an example. The second section contains a bullet point, an example, and two checkmarks. The third section contains a bullet point, an example, and three checkmarks.

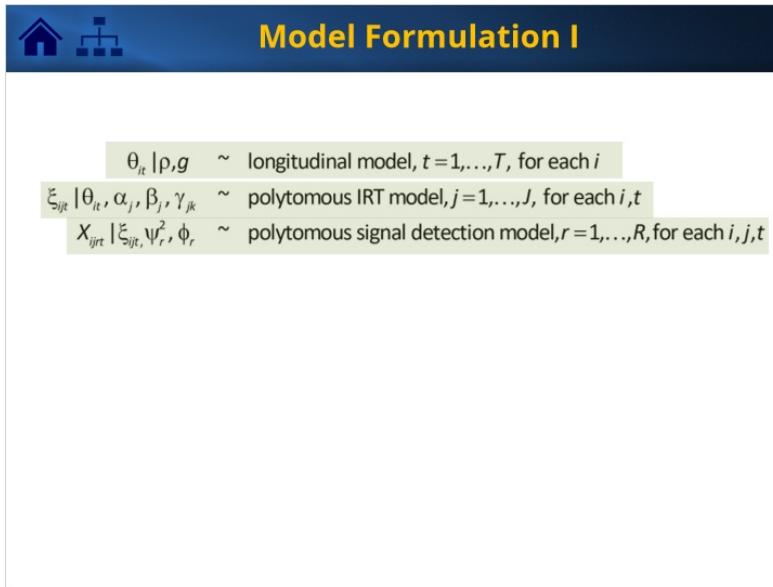
- **Large-scale testing**
Example: Tracking learning progressions (Winsight, 2017)
- **Educational interventions**
Example: Social and Character Development (IES, 2010)
 - ✓ 5 time points (over 3 years)
 - ✓ Teachers and parents are raters of children's behavior
- **Studies of teaching quality**
Example: Measures of Effective Teaching (BMGF, 2012)
 - ✓ No intervention
 - ✓ 4 time points (over 2 years)
 - ✓ Trained raters (certain % of classrooms double-scored) evaluate teacher and student interactions

5.12 Longitudinal Modeling in the IRT

Longitudinal Modeling in the IRT

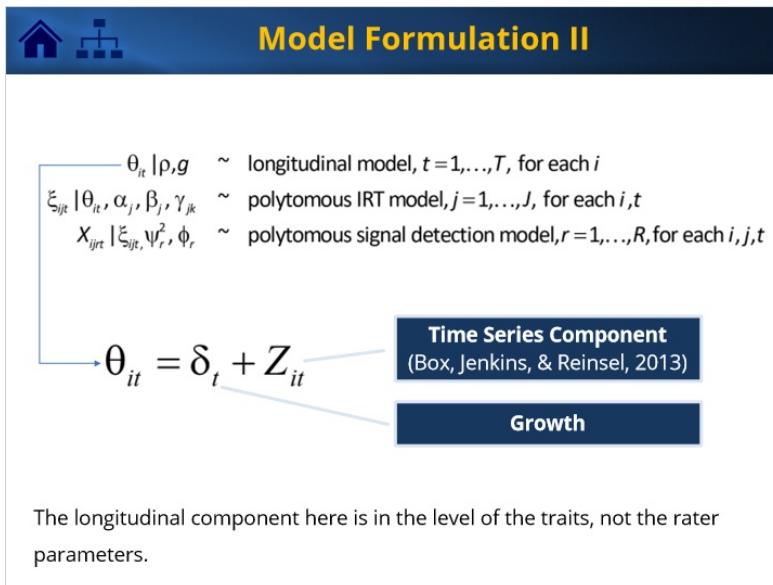
IRT must make assumptions about the stability of the latent trait (Andersen, 1985; Embretson, 1991, 1997; McArdle, Petway & Hishinuma, 2015; Millsap, 2010; Robert & Ma, 2006):

- ✓ Changes we observe in individuals are due to real changes or growth
- ✓ The construct definition does not change over time
- ✓ Counter-example: items on a depression scale may perform differently for pre-adolescents versus adolescents


5.13 The L-HRM

The L-HRM

- **The L-HRM presented here assumes:**
 - ✓ Scalar invariance (Horn & McArdle, 1992; Little, 2013; Meredith, 1993)
 - ✓ one common set of item parameters for all time points
 - ✓ permits changes in the latent traits to be attributed to real changes, and not changes in the relationship between the items and the construct (Meredith, 1993).
 - ✓ Dual change score modeling approach which incorporates growth and autoregressive components (McArdle et al., 2015)
- **Estimates overall growth** (not individual growth/trends)
- **Permits the explicit modeling of different types of growth** even though we discuss linear growth only


5.14 Model Formulation I

Model Formulation I

$\theta_{it} | \rho, g \sim$ longitudinal model, $t = 1, \dots, T$, for each i
 $\xi_{ijt} | \theta_{it}, \alpha_j, \beta_j, \gamma_{jk} \sim$ polytomous IRT model, $j = 1, \dots, J$, for each i, t
 $X_{ijt} | \xi_{ijt}, \psi_r^2, \phi_r \sim$ polytomous signal detection model, $r = 1, \dots, R$, for each i, j, t

5.15 Model Formulation II

Model Formulation II

$\theta_{it} | \rho, g \sim$ longitudinal model, $t = 1, \dots, T$, for each i
 $\xi_{ijt} | \theta_{it}, \alpha_j, \beta_j, \gamma_{jk} \sim$ polytomous IRT model, $j = 1, \dots, J$, for each i, t
 $X_{ijt} | \xi_{ijt}, \psi_r^2, \phi_r \sim$ polytomous signal detection model, $r = 1, \dots, R$, for each i, j, t

$\theta_{it} = \delta_t + Z_{it}$

Time Series Component
(Box, Jenkins, & Reinsel, 2013)

Growth

The longitudinal component here is in the level of the traits, not the rater parameters.

5.16 Model Formulation III

Model Formulation III

$$\theta_{it} = \delta_t + Z_{it}$$

$\delta_t = g * ([t-1] / [T-1])$ for linear growth

Note: g is overall growth, which is what we estimate

$$Z_{it} = U_{it} + \varepsilon_{it} + \eta \varepsilon_{i(t-1)}$$

U_{it} is an autoregressive term, $U_{it} \sim N(\rho * U_{i(t-1)}, \tau_\theta)$
 $\rho \sim Unif(-1,1)$ is the autocorrelation
 ε_{it} is a random error, $\varepsilon_{it} \sim N(0, \omega_\varepsilon)$
 $\eta \sim Unif(-1,1)$ is a moving average parameter

5.17 Model Formulation II

Model Formulation II

The model can be restated using two steps implemented at each time point t

Step 1: AR(1) process (with no trend).

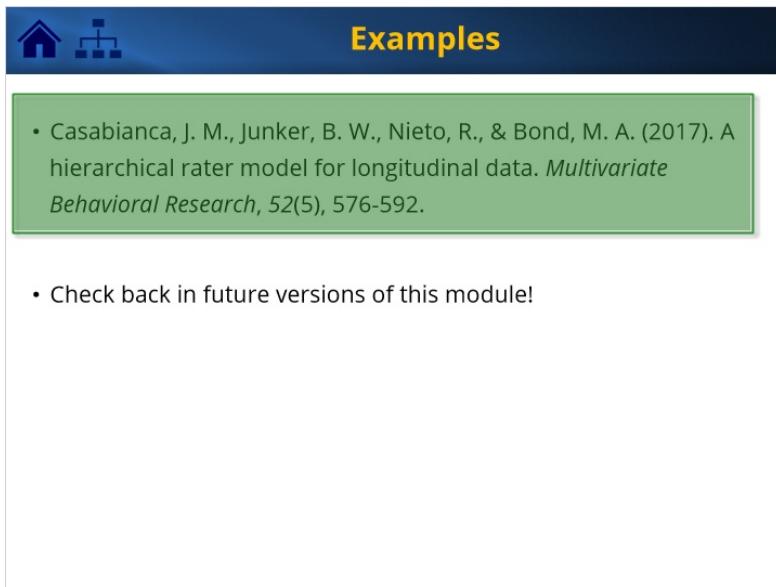
- When $t = 1$ and there is no lagged value, $Z_{it} \sim N(0, \tau_\theta)$
- When $t > 1$, we place a normal prior with different (hyper)parameters on this quantity, namely,
 $Z_{it} \sim N(\rho * Z_{i(t-1)}, \tau_\theta / (1 - \rho^2))$

Step 2: The latent trait at time t is computed as an additive function of the estimated parameters: $\theta_{it} = \delta_t + Z_{it}$

5.18 What about Rater Drift?

Rater Drift

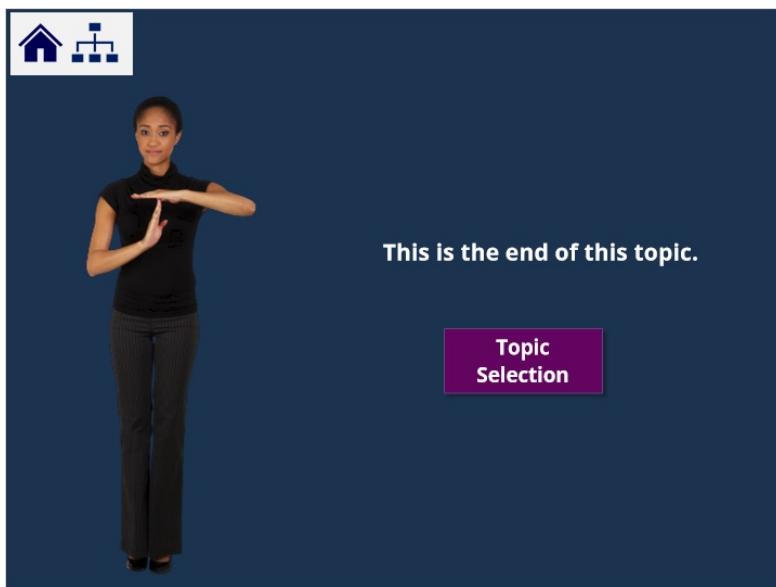
- Most data designs **do not permit the decoupling** of changes in test takers and changes in raters; the times of the response and the measurement are completely conflated
- The longitudinal component of the L-HRM can be **applied to traits only, rater parameters only, or both** (if the design permits); see Casabianca, Lockwood, & McCaffrey (2015)


5.19 Other Parameterizations

Other Parameterizations

- Different **levels of invariance** in item parameters
- Different **types of growth structures**
 - ✓ Individual growth trends
 - ✓ Different types of trends
 - ✓ Unequally-spaced time points

5.20 Examples


The slide has a dark blue header with a house icon and the word 'Examples' in yellow. A green callout box contains the following text:

- Casabianca, J. M., Junker, B. W., Nieto, R., & Bond, M. A. (2017). A hierarchical rater model for longitudinal data. *Multivariate Behavioral Research*, 52(5), 576-592.

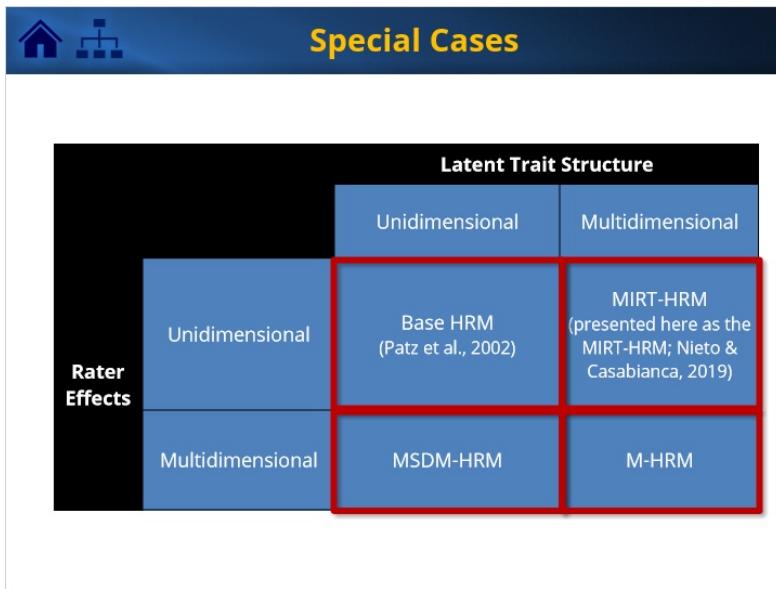
Below the callout box, there is a list item:

- Check back in future versions of this module!

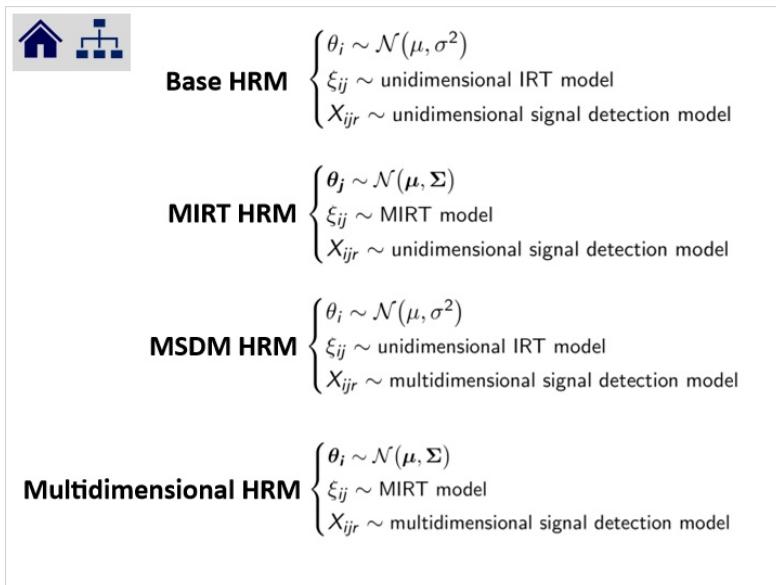
5.21 Bookend: Multidimensional HRM

The slide has a dark blue background. At the top left is a house icon. In the center, a woman in a black top and pants is making a 'time out' hand gesture. To her right, the text 'This is the end of this topic.' is displayed. At the bottom right is a purple button with the text 'Topic Selection'.

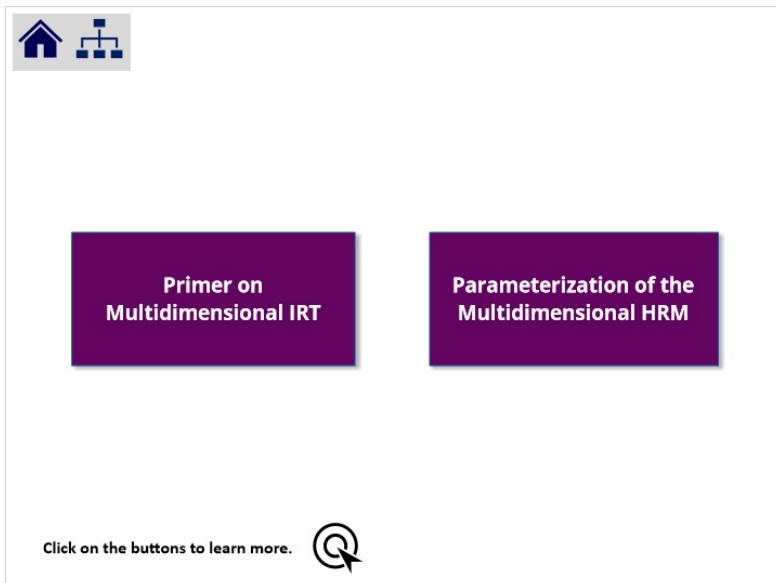
5.22 Bookmark: Multidimensional HRM



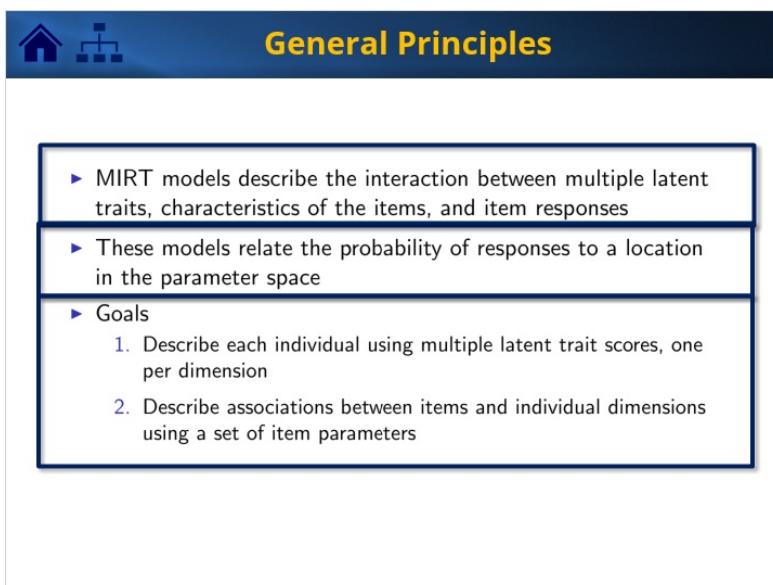
5.23 General Principles


A slide titled "General Principles" with a blue header bar. The header bar includes a house icon and a network icon on the left, and the title "General Principles" in yellow text on the right. The main content area is a white box with a dark blue border, containing the following text:

- ▶ A multidimensional HRM (M-HRM) offers a framework for modeling these two processes
 1. Multidimensional IRT (MIRT) used to locate individuals in this measurement space
 2. A signal-detection process sensitive to dimension-specific rater effects
- ▶ Analysis should capture the complexity with which rating instruments are constructed, and address the measurement goals


5.24 Possible Special Cases Under this Multidimensional Framework

5.25 Model Variants



5.26 Subtopic Selection

Click on the buttons to learn more.

5.27 General Principles

- ▶ MIRT models describe the interaction between multiple latent traits, characteristics of the items, and item responses
- ▶ These models relate the probability of responses to a location in the parameter space
- ▶ Goals
 - 1. Describe each individual using multiple latent trait scores, one per dimension
 - 2. Describe associations between items and individual dimensions using a set of item parameters

5.28 Multidimensional 2PL Model

Multidimensional 2PL Model

$$\text{logit}\{\Pr(y_{ij} = 1 | \theta_i, \alpha_j, \delta_j)\} = \alpha_j \theta'_i + \delta_j$$

- ▶ Let the number of dimensions be denoted by $m = (1, \dots, M)$
- ▶ $\alpha_j = \alpha_{jm}$: vector of dimension-specific item discrimination parameters
- ▶ $\theta_i = \theta_{im}$: vector of dimension-specific latent traits
- ▶ δ_j : (scalar) intercept parameter (related to item difficulty)
- ▶ $\alpha_j \theta'_i = \alpha_{j1} \theta_{i1} + \dots + \alpha_{jM} \theta_{iM}$

5.29 Multidimensional Generalized Partial Credit Model (MGPC; Yao & Schwarz, 2006)

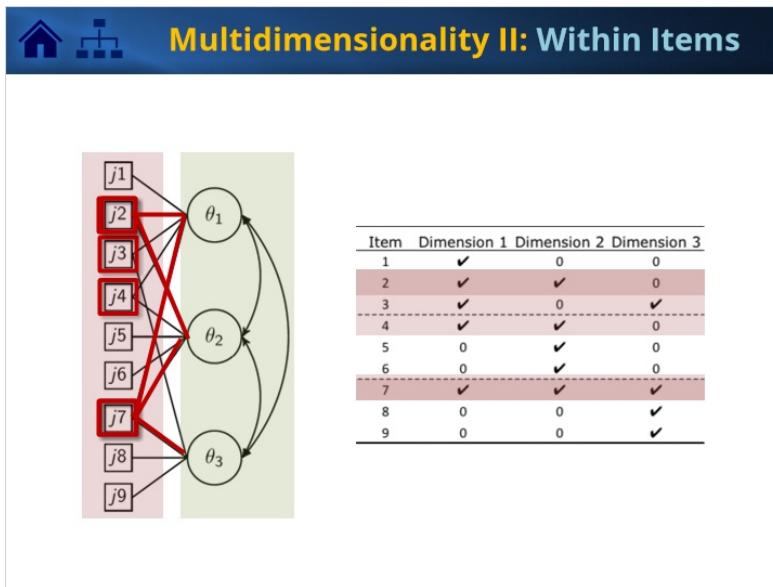
Multidimensional GPCM

$$\Pr(y_{ij} = k | \theta_i, \alpha_j, \gamma_{jk}) = \frac{\exp\{(k-1)\alpha_j \theta'_i - \sum_{k=1}^K \gamma_{jk}\}}{\sum_{h=1}^K \exp\{(k-1)\alpha_j \theta'_i - \sum_{k=1}^h \gamma_{jk}\}}$$

- ▶ Let $k = (1, \dots, K)$ denote the category of a polytomous item j with K total categories
- ▶ θ_i and α_j as previously defined
- ▶ γ_{jk} : threshold parameters, assumed constant across dimensions
- ▶ This parameterization of the MGPCM is a multidimensional variation of the nominal response model

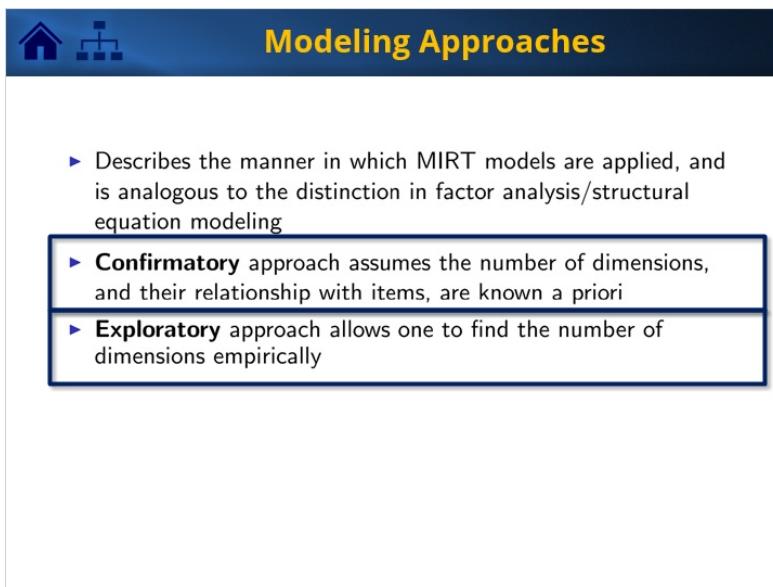
5.30 Multidimensional Generalized Partial Credit Model (MGPC; Yao & Schwarz, 2006)

Types of Multidimensionality


- ▶ This distinction refers to how dimensions influence item responses
- ▶ **Between-item dimensionality**—each item measures a *single* dimension
 - ▶ An item response is influenced by a single dimension
 - ▶ α_j contains at most one non-zero value
 - ▶ AKA: simple factorial structure
- ▶ **Within-item dimensionality**—each item measures *multiple* constructs
 - ▶ Responses influenced by a composite of dimensions
 - ▶ α_j may contain more than one non-zero value
 - ▶ AKA: complex factorial structure

5.31 Between-Item Dimensionality

Multidimensionality I: Between Items


Item	Dimension 1	Dimension 2	Dimension 3
1	✓	0	0
2	✓	0	0
3	✓	0	0
4	0	✓	0
5	0	✓	0
6	0	✓	0
7	0	0	✓
8	0	0	✓
9	0	0	✓

5.32 Within-Item Dimensionality

A diagram illustrating a three-dimensional item response model. On the left, a vertical stack of nine items ($j1$ through $j9$) is shown. Items $j2$, $j3$, $j4$, and $j7$ are highlighted with red boxes. Item $j2$ is connected to three latent dimensions (θ_1 , θ_2 , θ_3) by red arrows. Item $j7$ is connected to θ_1 and θ_3 by red arrows. Items $j1$, $j5$, $j6$, $j8$, and $j9$ are connected to θ_1 , θ_2 , and θ_3 by black arrows. To the right of the diagram is a table showing the dimensionality of each item:

Item	Dimension 1	Dimension 2	Dimension 3
1	✓	0	0
2	✓	✓	0
3	✓	0	✓
4	✓	✓	0
5	0	✓	0
6	0	✓	0
7	✓	✓	✓
8	0	0	✓
9	0	0	✓

5.33 Modeling Approaches: Confirmatory vs. Exploratory

A diagram comparing confirmatory and exploratory modeling approaches. It features a blue header bar with the text "Modeling Approaches". Below the header, a list of points is presented, with the last two points highlighted in a blue box:

- Describes the manner in which MIRT models are applied, and is analogous to the distinction in factor analysis/structural equation modeling
- Confirmatory** approach assumes the number of dimensions, and their relationship with items, are known *a priori*
- Exploratory** approach allows one to find the number of dimensions empirically

5.34 Modeling Approaches: Confirmatory vs. Exploratory

More on MIRT

- Ackerman, T. A., Gierl, M. J., & Walker, C. M. (2003). Using multidimensional item response theory to evaluate educational and psychological tests. *Educational Measurement: Issues and Practice*, 22(3), 37-51.

- Check back in future versions of this module!

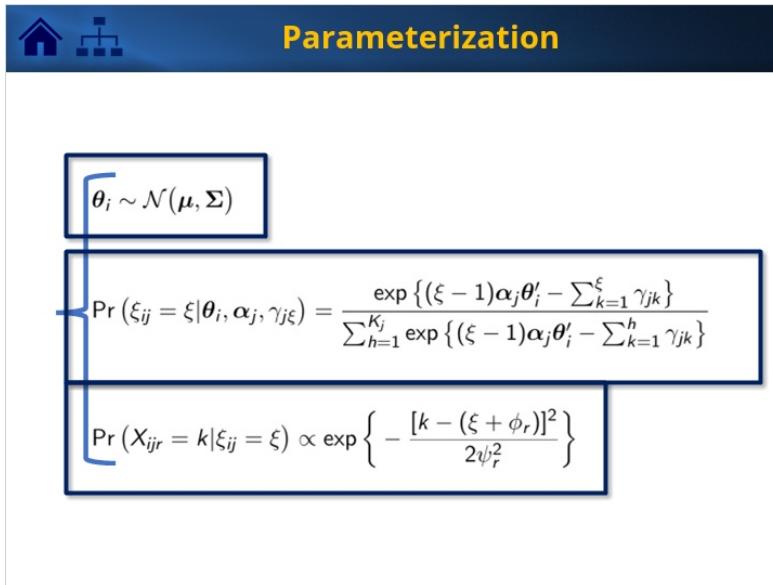
5.35 Bookend: Primer on Multidimensional IRT

This is the end of this subtopic.

Subtopic Selection

5.36 General Principles

General Principles

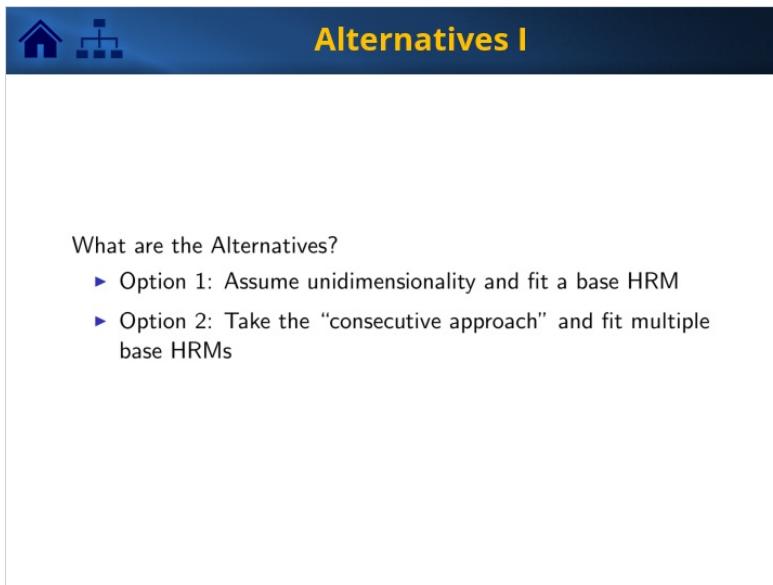

- Within the MIRT-HRM, the MGPCM is used to model *ideal ratings*
- Accounts for the correlation among dimensions by jointly modeling the covariance structure associated with the distribution of the latent traits
 - I.e., $\theta_i \sim \mathcal{N}(\mu, \Sigma)$
- For now, assumes rater effects are constant across dimensions for each rater (i.e., we are focusing on the MIRT-HRM)

5.37 2D ($M = 2$) MIRT-HRM modeling observed ratings from two raters, on two items each, for two individuals

Toy Example: SEM Representation

2D ($M = 2$) MIRT-HRM modeling observed ratings from two raters, on two items each, for two individuals

5.38 Parameterizing the MIRT-HRM


Parameterization

$\theta_i \sim \mathcal{N}(\mu, \Sigma)$

$\Pr(\xi_{ij} = \xi | \theta_i, \alpha_j, \gamma_{j\xi}) = \frac{\exp\{(\xi - 1)\alpha_j \theta'_i - \sum_{k=1}^{\xi} \gamma_{jk}\}}{\sum_{h=1}^{K_j} \exp\{(\xi - 1)\alpha_j \theta'_i - \sum_{k=1}^h \gamma_{jk}\}}$

$\Pr(X_{ijr} = k | \xi_{ij} = \xi) \propto \exp\left\{-\frac{[k - (\xi + \phi_r)]^2}{2\psi_r^2}\right\}$

5.39 Alternatives I

Alternatives I

What are the Alternatives?

- ▶ Option 1: Assume unidimensionality and fit a base HRM
- ▶ Option 2: Take the “consecutive approach” and fit multiple base HRMs

5.40 Alternatives II

Alternatives II: Fit Single Base HRM

- ▶ This implies ignoring the structure of the instrument and treating item responses as measuring a single skill or ability
- ▶ Limits the quality of diagnostic information available for individuals
- ▶ Potentially disregards the intended purpose of the instrument
- ▶ Ignores associations among dimensions

5.41 Alternatives II

Alternatives II: Fit Multiple Base HRMs

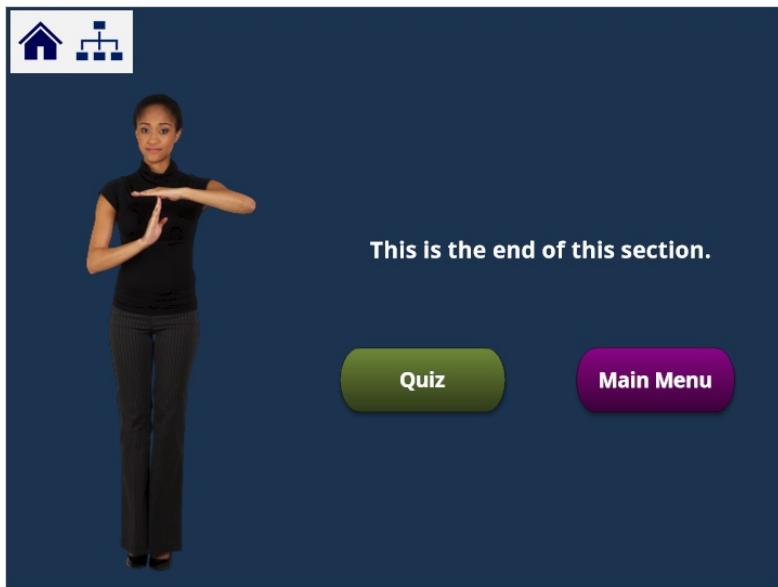
- ▶ Fit multiple base HRMs, one for each dimension
- ▶ Leads to multiple latent trait scores, and thus reflects the structure of the instrument
- ▶ However, ignores the associations among dimensions
 - ▶ When only few items measure each dimension, the correlations among dimensions serve as collateral information and improve precision of estimates (de la Torre & Patz, 2005; Wu & Wang, 2016)
 - ▶ Note that this is a common scenario for rating assessments

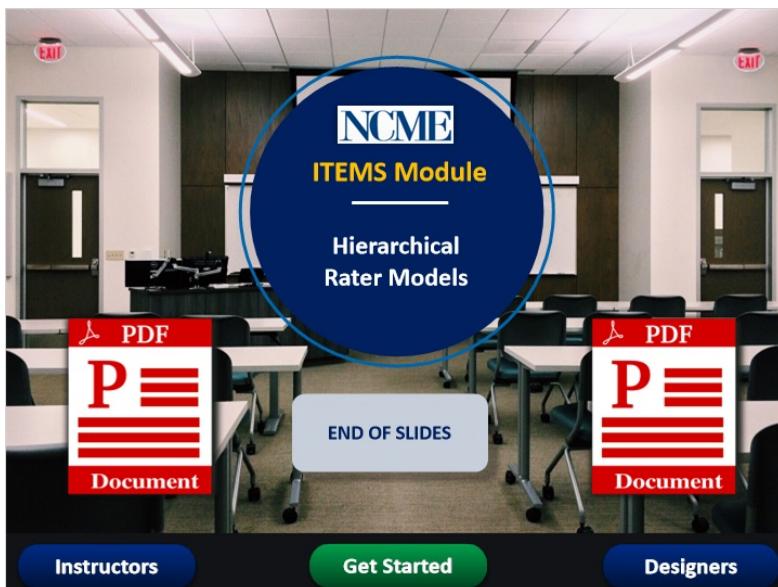
5.42 The M-HRM Thus Far

Examples

- Nieto, R., & Casabianca, J. M. (2019). Accounting for rater effects with the hierarchical rater model framework when scoring simple structured constructed response tests. *Journal of Educational Measurement*, 56(3), 547-581.
- Check back in future versions of this module!

5.43 Bookend: Parameterization of the Multidimensional HRM




This is the end of this subtopic.

Subtopic Selection

5.44 Bookend: Section 4

5.45 Module Cover (END)

