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Prologue 

This document provides a formal, model-based introduction to classical test theory and 

reliability. More specifically, it describes a parametric statistical model for observed and true test 

scores, and uses this model to define the reliability of a test. It extends the model, first to the case 

of two tests and then to the general case of multiple tests as well as to composite tests. In these 

extensions, we consider assumptions about various relationships that may exist among true 

scores for different tests and the implications that these relationships have for expressing 

reliability. 

The traditional model for classical test theory (see, for instance, Lord & Novick, 1968) differs in 

two important ways from the model used here. First, the traditional model is non-parametric, in 

the sense that no specific probability distribution is assumed for the test scores. The model used 

here assumes (multivariate) Normal distributions for test scores. Second, the traditional model 

adopts a two-level hierarchical sampling approach, assuming both between-person and within-

person (replication) sampling of test scores. The model used here assumes only between-person 

sampling of test scores. This follows Holland’s (1990) treatment of probabilities in item response 

theory. Both of these differences with the traditional model allow a simpler treatment of classical 

test theory with the model used here. 

Since we are using a formal, model-based approach to introducing reliability, it may be 

worthwhile to make a general observation about the use of models. Describing his own work in 

test theory, Rasch (1960, p. 37) stated the following: 

“That the model is not true is certainly correct, no models are … Models should not be 

true but it is important that they are applicable.” 
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To put this another way, it is not important that the assumptions made by a model be correct. 

They certainly will not be. What is important is that the inferences we wish to make based on a 

model are robust to the (inevitable) violations of the model’s assumptions. For instance, the 

model introduced here assumes that both true and error scores are Normally distributed, and that 

conditional error variances are constant for different values of the true score. These assumptions 

certainly do not hold, except for simulated data. However, the formulas that are derived based on 

these assumptions are useful in many settings. This is analogous to the robustness of inferences 

based on the standard linear regression model in statistics. 

Finally, before beginning the actual introduction, let’s compare our treatment of classical test 

theory with item response theory. The use of a parametric classical test theory model and only 

considering between-person sampling of test scores both parallel modern treatments of item 

response theory. This makes the point that classical test theory and item response theory have 

much more in common than is often acknowledged. It is a point that is also made by Lord (1980, 

p. 7) in his text on item response theory: 

“Nothing in this book will contradict either the assumptions or basic conclusions of 

classical test theory. Additional assumptions will be made; these will allow us to answer 

questions that classical test theory cannot answer.” 

A Parametric Classical Test Theory Model for a Single Test: Defining Reliability 

We start with a population of people and a test that we think measures something about the 

people that’s of interest to us. Let’s imagine that each person in the population has what we’ll 

call an observed score on the test. For a randomly selected person from the population, we may 
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treat their observed score as a random variable and denote it by X. It has a probability 

distribution with mean denoted by 

   XAve X    

and variance denoted by 

   2
XVar X   . 

To discuss the concept of the reliability of an observed score for a given test and a given 

population of people, we need to introduce something called a true score, also associated with 

each person in the population. This true score is sometimes referred to as a latent variable to 

emphasize the fact that it is not observable. True scores (and latent variables generally) only exist 

in the context of a model, so we need to make that model explicit. Now that we have two scores 

associated with each person, randomly sampling a person from the population creates a bivariate 

random variable that we may denote by  ,X T . 

Our model has two components. First, we specify the conditional distribution of X given T:  

  2~ , EX T N T   . 

This part of the model says that the conditional distribution of X given T is Normal, with mean T 

and variance 2
E

  : 

  Ave X T T  and   2
EVar X T   . 

In other words, if we take the mean observed score for all persons in our population who have 

the same true score, then that mean observed score is equal to the true score. Also, if we find the 
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variance of the observed scores for all persons in our population who have the same true score, 

that variance is equal to a constant (not dependent on the true score) that we denote by 2
E

 . 

The second component of the model simply says that the true score has a Normal distribution 

with mean 
T  and variance 2

T
 : 

  2~ ,T TT N    . 

These two components taken together imply that  ,X T  has a bivariate Normal distribution. 

They also imply that we may write the mean and variance of the observed score as 

 
X T     

and  

2 2 2
X T E

     . 

Thus we have 

  2 2~ ,
T T E

X N     . 

Moreover, we may write the covariance between X and T as 

   2,
T

Cov X T   . 

Consequently, we may write the squared correlation between X and T as 

  
2

2 2
2, T

XT

X

Corr X T



   . 

The reliability of X for the given population of persons is defined as this squared correlation: 
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  2
XT

Rel X  .  

As indicated above, we may also write 

    
2 2

2 2 and 1T E

X X

Rel X Rel X
 
 

    . 

 

A Classical Test Theory Model for Two Tests 

Now suppose we wish to consider the relationship between two tests. We may denote the random 

variables defined by their observed scores as 1X and 2X , with corresponding true score random 

variables denoted as 1T  and 2T . Any time we are working with two tests, we will extend our 

earlier model in one important way. Specifically, we assume 

      
2

1
1 2 1 2 2 1 2 2

2

0
, , ~ , ;

0
E

E

X X T T N T T




  
  
   

 . 

The new assumption here is that, given their true scores, the two observed scores are 

uncorrelated. In the context of the bivariate Normal distribution, this means that the observed 

scores are conditionally independent, given their true scores. 

We also make an assumption about the distribution of the true scores. Specifically, we assume 

that  1 2,T T  has a general bivariate Normal distribution: 

    
2
1 12

1 2 2 1 2 2
12 2

, ~ , ; T T

T T

T T

T T N
 

 
 

  
  
   

. 

These two assumptions imply the following form for the distribution of the observed scores: 
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    
2 2
1 1 12

1 2 2 1 2 2 2
12 2 2

, ~ , ; T E T

T T

T T E

X X N
  

 
  

  
  

   
. 

In particular, note that we may write the covariance between the two observed scores as equal to 

the covariance between their true scores: 

    1 2 1 2 12, , TCov X X Cov T T   . 

This is a consequence of the conditional independence assumption. 

Congeneric Tests 

Now suppose that the two tests we are considering “measure the same thing.” Specifically, 

suppose there exists a “common” true score T with   0Ave T   and   1Var T   such that 

1 1 1TT T    and 2 2 2TT T   . 

In this case, 1X and 2X  are called congeneric tests.  

Using our earlier results, this implies that 

    1 1 1Ave X Ave T    and    2 2 2Ave X Ave T   . 

The model also implies that 

   2
1 1TVar T  ,   2

2 2TVar T   , and  1 2 1 2, T TCov T T    , so  1 2, 1Corr T T   . 

 As a consequence of the perfect correlation between 1T  and 2T , we may write 

    
       

2
2 2

2 1 2 1 2
1 2 1 22 2

1 2 1 2

,
T T

X X

Cov T T
Corr X X Rel X Rel X

Var X Var X

 
 

            
  

 . 
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Essentially Tau Equivalent Tests 

A special case of congeneric tests occurs when 

 1 2T T T
     . 

In this case, the two tests are called essentially tau equivalent. (If it is also the case that 1 2  , 

then the two tests are simply called tau equivalent.)  

The essentially tau equivalent model implies that 

       2
1 2 1 2, TVar T Var T Cov T T    . 

Consequently, we have 

   2
1 2, TCov X X   . 

In general, the reliability of 1X  is given by 

    
 

1
1

1

Var T
Rel X

Var X
  . 

If 1X  and 2X  are essentially tau equivalent, we may write 

    
 

1 2
1

1

,Cov X X
Rel X

Var X
 . 

 

Similarly, 

    
 

1 2
2

2

,Cov X X
Rel X

Var X
 . 
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In other words, if 1X  and 2X  are essentially tau equivalent, we may express the reliability of 

each of these tests in terms of moments of the observed scores. Note that the two tests are not 

necessarily equally reliable, due to the fact that 2
1E  and 2

2E  need not be equal.  

(Essentially) Parallel Tests 

A special case of the essentially tau equivalent model occurs when 

 1 2   and 2 2
1 2E E

   . 

In this case, 

1 2T T  ,    1 2Ave X Ave X  and    1 2Var X Var X . 

We say that these two tests are parallel and we have the result that 

      1 2 1 2 12, XRel X Rel X Corr X X     . 

This result says that the reliability of a test is given by its correlation with a parallel test. Note 

that this result does not require the test means to be equal. Suppose we call two tests with 

1 2   and 2 2
1 2E E

   essentially parallel. We may generalize our result to say that the 

reliability of a test equals its correlation with an essentially parallel test. 

Composite Tests 

Returning to our general model for two tests 1X and 2X , we define a new composite observed 

score equal to their sum: 

 1 2 1 2X X X    . 
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We may define the true score for this composite observed score as 

 1 2 1 2T T T    . 

Based on our general bivariate classical test theory model, we may write 

  2 2
1 2 1 2 1 2 1 2~ , E EX T N T       and  2 2

1 2 1 2 1 12 2~ , 2T T T T TT N          . 

These results imply the following distribution for the composite observed score: 

  2 2 2 2
1 2 1 2 1 1 12 2 2~ , 2

T T T E T T E
X N             . 

In general, the reliability of 1 2X   may be written as 

   
 

2 2 2 2
1 2 1 12 2 1 2

1 2 2 2 2 2 2 2 2 2
1 2 1 1 12 2 2 1 1 12 2 2

2 1
2 2

T T T E E

T E T T E T E T T E

Var T
Rel X

Var X

    
         






  
   

       
. 

Now suppose that 1X  and 2X  are essentially tau equivalent. In this case, the composite true 

score may be written as 

 1 2 1 22T T       . 

 The reliability of 1 2X   is given by 

    
   

2
1 2

1 2
1 2 1 2

4 T
Var T

Rel X
Var X Var X




 

   . 

Using the result for the covariance of essentially tau equivalent tests, we may write the reliability 

of 1 2X   as 

    
 

1 2
1 2

1 2

4 ,Cov X X
Rel X

Var X




 . 
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Thus we may write the reliability of the composite test using observed score moments. 

An equivalent result was given by Rulon (1939). Define the observed difference score 1 2X   as 

 1 2 1 2X X X    . 

If we continue to assume that 1X  and 2X  are essentially tau equivalent, then the true difference 

score 1 2T   is equal to a constant  1 2   and we have 

   2 2
1 2 1 2E E

Var X      . 

In other words, the difference score between two tau equivalent tests has zero reliability. This 

allows us to write 

    
 

1 2
1 2

1 2

1
Var X

Rel X
Var X






  . 

Another equivalent version of this result is given by 

      
 

1 2
1 2

1 2

2 1
Var X Var X

Rel X
Var X




 
  

 
. 

We will return to a more general version of this expression (known as coefficient alpha) in the 

next section. 

Now suppose 1X and 2X  are (essentially) parallel tests. In this case, we may write the variance 

of 1 2X   as 

            1 2 1 1 2 2 1 12 , 2 1Var X Var X Cov X X Var X Var X Rel X        . 
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This lets us write the reliability of  1 2X   as 

    
 

 
 

1 2 1
1 2

1 2 1

2 , 2
1 , 1

Corr X X Rel X
Rel X

Corr X X Rel X
  

 
. 

This result is known as the Spearman-Brown formula. (See, for instance, Lord & Novick, 1968, 

p. 84.) A generalization of this formula to the case where a test score 1 kX   is obtained as the 

sum of k parallel test scores is given by 

    
   

1
1

11 1k

kRel X
Rel X

k Rel X
 

 
. 

We should emphasize that the Spearman-Brown results only hold for composite tests made up of 

essentially parallel component tests. In other words, 1 2, ,..., kX X X  must all be essentially 

parallel, i.e. have the same true scores. except for constant differences, and equal error variances. 

In the next section, we consider a general theory for multiple tests. 

Multivariate Classical Test Theory 

The purpose of this section is to generalize the formal framework provided for classical test 

theory to the case where we have many tests. Specifically, we continue to consider a population 

of people from which we may sample the people randomly. Now, instead of each person having 

an observed score on a single test, we imagine that they each have an observed score on each of k 

tests. For convenience, we may use vector notation to represent the associated random vector of 

observed scores resulting from random sampling of people from the population: 

  1,..., k
X X X  . 
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Similarly, we imagine a random vector of true scores associated with the observed scores in a 

sense to be made explicit: 

  1,..., kT T T . 

We assume that the conditional distribution of X given T is k-variate Normal: 

  ;k ENX T T Σ:  . 

The conditional covariance matrix 
EΣ  is assumed to be diagonal, with the th

j  diagonal element 

denoted by 2
Ej

  . For a multivariate Normal distribution, this assumption implies conditional 

independence among the observed scores, given the true scores. It also implies the following 

univariate conditional distributions for 
j

X  given 
j

T  : 

  2~ ,
j j j Ej

X T N T   . 

Finally, we assume that the distribution of the true score vector T is a general k-variate Normal: 

  ~ ;k T TNT μ Σ  . 

The th
j  element of 

Tμ  is denoted by 
Tj

 . The diagonal elements of 
TΣ  are the variances of the 

true scores. The th
j  diagonal element is denoted by 2

Tj . The off-diagonal elements of 
TΣ  are 

the covariances among the true scores. The covariance between jT  and jT   is denoted by Tjj   . 

Combining the two distributional assumptions, we may obtain the distribution for X: 

  ~ ;
k X X

NX μ Σ  . 
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Here we have 

 
X Tμ μ  . 

The diagonal elements of 
XΣ   are the variances of the observed scores. They may be written as 

 2 2 2
Xj Tj Ej

     . 

The off-diagonal elements are the observed score covariances. They may be written as 

 Xjj Tjj    . 

Using matrix notation, we may write 

 
X T E Σ Σ Σ  . 

Reliability for Composite Observed Scores 

Now consider a composite observed score random variable defined as 

 1
1

k

k k j

j

X X


 1 X  . 

(Here 
k1  denotes a vector with k elements, all equal to 1.) 

1 kX   has a corresponding composite true score random variable given by 

 1
1

k

k k j

j

T T


 1 T . 

The conditional distribution of 1 kX   given 1 kT   is Normal: 
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 2
1 1 1

1
~ ,

k

k k k Ej

j

X T N T   


 
 
 

  . 

The distribution of 1 kT   is also Normal: 

 2
1

1 1
~ ,

k k k

k Tj Tj Tjj

j j j j

T N    
  

 
 

 
    . 

Using matrix notation, we may write this as 

  ~ ,k k T k T kN  1 T 1 μ 1 Σ 1  . 

Similarly, we may write 

  ~ ,k k X k X kN  1 X 1 μ 1 Σ 1 . 

These results allow us to write the reliability of 1 kX   as 

      
 

2

2 11
1 1 1

2 21

1 1

,

k k

Tj Tjj

j j jk

k k k k k k

k
Tj Ej Tjj

j j j j

Var T
Rel X Corr X T

Var X

 

  


 

  



  


  

 

 

  
 . 

We may write this expression as 

    

2

1
1

1

1

k

Ej

j

k

k

Rel X
Var X







 


. 

It is always true that 

 2 2
Xj Ej

   . 

Consequently, we may write 
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    

2

1
1

1

1

k

Xj

j

k

k

Rel X
Var X







 


. 

Thus the right hand side of this expression is a general lower bound for the reliability of a 

composite score. 

Essentially Tau Equivalent Component Scores 

We say that the component tests with observed scores jX  and true scores jT  are essentially tau 

equivalent if there exists a random variable T (with mean 0 and variance denoted by 2
T

 ) and 

constants j  such that 

 j jT T    . 

In this case, the composite true score is given by 

 1
1

k

j j

j

T kT 


   . 

Note that 

 2 2
Tj Tjj T

     . 

We may write the variance of 1 kT   as 

   2 2
1 k T

Var T k    . 

The variance of 1 kX   becomes 

   2 2 2
1

1

k

k T Ej

j

Var X k  


  . 
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Thus the reliability of a composite test made up of essentially tau equivalent components is given 

by 

   
 

2 2
1

1
2 2 21

1

k T
k k

k
T Ej

j

Var T k
Rel X

Var X
k



 








 


. 

Now let’s evaluate the right hand side of the inequality given in the previous section for the case 

of essentially tau equivalent components: 

 
 

   
2 2 2

2 2 2
1 1

12
2 2 2 2 2 21

1 1

1 1

k k

Xj T Ej
Tj j

kk k

k
T Ej T Ej

j j

k
k k k k

Rel X
Var X k

k k

   

   

 




 

   
      

  

 

 
 . 

This allows us to write the following equality: 

    

2

1
1

1

1
1

k

Xj

j

k

k

k
Rel X

k Var X







 
         
 
 


. 

The expression on the right hand side of this equation is commonly referred to as coefficient 

alpha (Cronbach, 1951). It is equal to the reliability of a composite test if and only if the 

component tests are essentially tau equivalent. 

However, it has an additional, general property. For any set of components for which the 

assumptions of multivariate classical test theory hold, we may write the following inequality for 

the reliability of the composite: 
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    

2

1
1

1

1
1

k

Xj

j

k

k

k
Rel X

k Var X







 
         
 
 


. 

In other words, coefficient alpha gives a lower bound for the reliability of any composite test, 

and equals the reliability if and only if the components are essentially tau equivalent. 

Thus it may be useful to have a notation for alpha that would apply for any composite test, not 

just ones with essentially tau equivalent components: 

   

2

1
1

1

1
1

k

Xj

j

k

k

k
Alpha X

k Var X







 
         
 
 


. 

While it is a better lower bound than the one given in the previous section, since  1 1k k   , 

coefficient alpha is not, in general, a greatest lower bound for the reliability of a composite test. 

Nonetheless, this “conservative” property is an attractive one. (Note that there is lots of research 

on lower bounds for reliability.)  

Estimation 

Everything so far in this introduction has referred only to population quantities. The question 

naturally arises: How do we estimate the various quantities introduced here based on samples of 

test scores? The simple answer is that we typically use sample quantities that are unbiased 

estimates of the population quantities of interest. In the context of the multivariate Normal model 

that we have been working with, the first and second moments (means, variances and 

covariances) are the only population quantities needed to specify the model. Thus we may use 
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sample means of observed scores to estimate the corresponding population means, and we may 

use sample variances and covariances for the observed scores to estimate the corresponding 

population quantities. 

Thus, if we have an independent random sample of N vectors of k observed scores given by 

 1,...,i i ikx x x  for 1,...,i N , we may estimate the mean observed score for jX  using 

 
1

1ˆ
N

j ij

i

x
N




   
 

 . 

Similarly, we may estimate the observed score variance for jX  using 

  22

1

1ˆ ˆ
1

N

Xj ij j

i

x
N

 


    
 . 

The composite observed score for test taker i in our sample is given by 

 ,1
1

k

i k ij

j

x x


 . 

The estimated mean for the composite observed score is 

  1 ,1
1

1 N

k i k

i

Est Ave X x
N

 


       
  . 

Similarly, its estimated variance is 

     2

1 ,1 1
1

1
1

N

k i k k

i

Est Var X x Est Ave X
N

  


          
 . 

We may put these estimates together, substituting estimates for the corresponding population 

quantities to give, for instance, 
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    
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1

1
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j

k

k

k
Est Alpha X

k Est Var X







 
                
 
 


. 

This is the formula customarily used to estimate coefficient alpha. It should be noted that, 

although the numerator and denominator of the ratio in this estimator are both unbiased 

estimators for the corresponding population quantities, the sample ratio will not be unbiased as 

an estimator for the population ratio. Moreover, although the population formula for alpha gives 

a general lower bound for the reliability of 1 kX  , the sample estimator given above does not 

give a lower bound for the population reliability. Nonetheless, the estimator is widely used and 

may be useful in a variety of settings. 

Applications 

There are several practical applications for the reliability of a test beyond the basic one of 

describing the strength of association between observed and true scores for the test. When test 

scores are reported, it is often of interest to provide a corresponding standard error of 

measurement, 
E  in our notation. We may use the expression given at the beginning of this 

introduction, namely 

  
2

21 E

X

Rel X



  . 

Solving for 
E , we obtain 

  1
E X

Rel X    . 
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There is (at least) one caution that should be given regarding this use of reliability. The reliability 

and the observed score standard deviation must both be associated with the same population for 

this formula to be valid. It is not appropriate to take a value for the reliability of a test based on 

one population and apply it to another population with a different standard deviation for the 

observed scores. To phrase this another way, the reliability of a test is specific to the population 

on which it is based. It cannot be evaluated for one population and applied to another population. 

Suppose we want to estimate true scores based on observed scores. In this case, we want to 

consider the conditional distribution of T given X:  

         2~ 1 , 1
X X

T X N Rel X X Rel X Rel X Rel X               . 

From a Bayesian perspective, this is the posterior distribution for T given X. The following 

formula for the posterior mean is due to Kelley: 

      ˆ 1 XT X Rel X X Rel X          . 

The corresponding posterior standard deviation is called the standard error of estimation: 

      1
X

Var T X Rel X Rel X    . 

Finally, suppose we have two tests, 1X  and 2X  , with a correlation given by 

    1 2
1 2

1 2

,
,

X X

Cov X X
Corr X X

 
  . 

Suppose we would like to have an expression for the correlation between the true scores for the 

two tests. Recalling that the observed score and true score covariances are equal, we may write 
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        
   

1 2 1 2 1 21 2
1 2

1 2 1 2 1 2 1 2

, , ,
, X X

T T X X T T

Cov T T Cov X X Corr X X
Corr T T

Rel X Rel X

 
     

 
   

 
. 

This is sometimes called a disattenuation formula. We could say that the formula “corrects” the 

correlation between the observed scores of two tests for the attenuation due to their errors of 

measurement. 
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